Theorie des Sternaufbaus

Größe: px
Ab Seite anzeigen:

Download "Theorie des Sternaufbaus"

Transkript

1 Universität Konstanz Theorie des Sternaufbaus Vorlesung Astrophysik (WS 2009/2010) Achim Weiß Max-Planck-Institut für Astrophysik, Garching

2 Teil 2: Sternentwicklung und Anwendung

3 Entwicklung massearmer Sterne 0.1 < M/M < 2.5; insbesondere 0.8 < M/M < 1.5 Auf der Hauptreihe lange Lebensdauer (Milliarden Jahre) zentrales Wasserstoffbrennen via pp-ketten (M < 1.3M ) und CNO-Zyklus (in Sonne nur 1.5%) radiativer Kern, konvektive Hülle (M < 0.2M : konvektive Hülle bis Zentrum; voll-konvektive Sterne) allmählicher H-Verbrauch, schneller im Zentrum (höheres T) H-Profile, wie es sich in einem 1M Hauptreihenstern entwickelt

4 Die Hauptreihe: Die Alter-Null-Hauptreihe (Zero-age main-sequence): homogene Sterne, Energieerzeugung nur aus Wasserstoff- Fusion Entwicklung auf der Hauptreihe (und danach) für M = M.

5 Die Sonne - ein Hauptreihenstern niedriger Masse Solare Größen Größe Wert Genauigkeit Quelle d cm 10 8 Triangulation; Radar & Laser M g 10 3 Kepler s 3. Gesetz R cm Winkeldurchmesser g cm/s 2 L erg/s 10 4 Solarkonstante T eff 5779 K ±4.5 K Stefan-Boltzmann X Z/X = ± Photosph.;Meteor. Z/X = neueste Bestimmung Z O = 0.49, C = 0.30 N = 0.05, Fe = 0.07 X&Y X = Y = Sonnenmodel t a ± Meteoriten

6 Bisherige Entwicklung Vorhauptreihenentwicklung: Sterne entstehen aus kollabierenden Fragmenten in sehr kalten Molekülwolken erben Zusammensetzung früherer Generationen, vermischt mit dem interstellaren Medium steigender Druck führt zu Übergang zu quasihydrostatischer Kontraktion einer sphärischen Wolke (Protostern) Virial-Theorem Aufheizen und Zünden des nuklearen Brennens Zeitskala Vorhauptreihe: thermisch Entwicklung zunächst als kühler vollkonvektiver Stern 10 7 a: T c K CN-Gleichgewicht a; pp-ketten a: ǫ g 0 und L = ǫ n dm (ZAMS)

7

8 Hauptreihenentwicklung: X c (t ) = 0.36 (50% des Vorrats) seit t = 0: L = 0.68L & T eff = 5600 K T c & P c um 7% & 30% gestiegen. ǫ n : 98% pp-ketten; 2% CNO-Zyklus

9 Sonnen-Neutrinos aus nuklearer Produktion Solarer Neutrinofluss als Funktion der Neutrinoenergie und Schwellenenergie der irdischen Neutrino-Experimente

10 Das solare Neutrinoproblem (gelöst) Solare Neutrinos - Vorhersage und Messung Lösung: Neutrino-Flavour-Oszillationen (Mikhejev-Smirnov- Wolfenstein-Effekt) e -Neutrinos werden produziert und werden in Experimentent gemessen, aber beim Durchgang durch Sonnenmaterie (und auch durch Vakuum) Teil-Umwandlung in µ- und τ-neutrinos (messbar nur in SNO; 2 H 2 O- Experiment) Defizit in Messung

11 Helioseismology Sonne schwingt in > 10 5 Eigenmoden p-moden: stehende Druck- /Schallwellen gedämpft, aber durch Konvektion angeregt charakterisiert durch n (radiale), l (Winkel-), and m (Längen-) Modenzahl messbar durch Doppler-Beobachtungen der Spektrallinien Frequenzen um mhz (5-min.) Frequenzunterschiede im Bereich µhz Beobachtungen tage-/monatelang erreichte relative Genauigkeit 10 5! daraus lassen sich mit hoher Genauigkeit der Verlauf der Schallgeschwindigkeit und der Dichte im Sonneninnern bestimmen Vergleich mit Sonnenmodellen

12 Das Standard-Sonnenmodell volle Entwicklungssequenz von Vorhauptreihe oder ZAMS bis zum solaren Alter Masse M und Alter t bekannt unbekannte Parameter: anfängliches Y, Z, sowie α MLT (Konvektion) Zielgrößen: (Z/X), T eff (t ), L davon unabhängig vorhergesagt: r bcz, Y (t ), c(r) Input- (Mikro-) Physik; Standard (OPAL/OP κ & OPAL/MHD EOS; neueste nukleare Reaktionsraten; Teilchendiffusion )

13 Vergleich der Schallgeschwindigkeiten (c SSM c seis )/c seis ) für drei Standard-Sonnenmodelle mit den älteren und höheren Z/X Werten (0.023), sowie dem Unsicherheitsbereich der seismischen Schalgeschwindigkeit

14 Schallgeschwindigkeiten neueste Ergebnisse (c SSM c seis )/c seis Standard-Sonnenmodelle mit alter (Z/X = ) und neuer (Z/X = ) solarer Metallizität. Weitere Ergebnisse der Seismologie: Tiefe der Konvektionszone, Heliumgehalt der Hülle, Zentraltemperatur, Rotationsprofil,... überall sehr gute Üebereinstimmung mit Sonnenmodell unter Verwendung der alten Häufigkeiten, schlechter mit neuen Werten. Theorie gut bestätigt, aber Problem der richtigen Häufigkeiten

15 derzeitige Sonnenstruktur

16 Anwendungen: 1. Sonnenmodell ist wichtigster Test für Sternaufbau- Theorie und -Programme 2. wesentliche Verbesserungen in Theorie für Opazitäten und Zustandsgleichung 3. Diffusion (Sedimentation) findet statt und muss in Modelle integriert werden 4. Unsicherheiten in Physik können durch seismische Ergebnisse eingeschränkt werden. Dazu zählen: (a) dynamische Effekte in der Konvektion (b) Coulomb-Abschirmung bei nuklearen Reaktionen (c) Emission von Axionen und anderen postulierten Elementarteilchen 5. Nachweis der Neutrino-Oszillationen Neutrinos haben Masse

17 Nach der Hauptreihe Sterne entwickeln sich zunächst fast parallel zur Hauptreihe biegen dann später ab zu kühleren Temperaturen (Kern kontrahiert, Hülle expandiert) entwickeln sich auf nuklearer Zeitskala bei fast konstantem L ( Unterriesen-Ast ) zum Beginn des Riesenastes Entwicklung eines massearmen Sterns im HRD bis zur Spitze des Riesenastes und dann bis zur Riesenast-Spitze (Entwicklung entlang der Hayashi-Linie, dem Ort der kühlsten Sterne mit voll-konvektiven Hüllen in thermischen und hydrostatischen Gleichgewicht)

18 am Ende der Hauptreihe Ausbildung einer Wasserstoff- Schalenquelle um Kern innere Struktur von der Hauptreihe bis zur Spitze des Riesenastes (schraffiert: Energieproduktion; Wolken: Konvektion; punktiert: geänderte Zusammensetzung)

19 Auf dem RGB bis zum Zünden des Heliums Entwicklung bestimmt durch Heliumkern-Masse: L M 7 c Dauer einige 10 8 Jahre Kern ist isotherm, aber Kontraktionsenergie und Neutrino-Emission führen zu T-Maximum unterhalb Schalenquelle Kern zunehmend entartet; ρ c g/cm 3 T max ebenfalls Funktion von M c He zündet nicht-zentral bei T max 10 8 K He-Zünden wegen Entartung sehr dramatisch; für kurze Zeit L He > 10 6 L entartetes Gas wird durch nukleare Energie nur erhitzt thermonukleares Weglaufen erst später Aufheben der Entartung und Expansion und Kühlung

20 Anwendung: Spitze des Riesenastes wegen der Eigenschaften auf dem Riesenast: für alle Sterne zündet Helium bei demselben M c 0.48 M und L! da Sterne danach schnell vom Riesenast wegwandern, klar definierte Spitze des Riesenastes RGB-Spitze dient als Standard-Kerze und Entfernungs- Indikator umgekehrt: Entwicklung zu hohen Leuchtkräften wegen verzögertem Zünden des He Grund: Kühlung des Kerns durch Neutrino-Emission daher: Neutrinoeigenschaften (z.b. elektromagnetisches Moment), die Kühlungsrate beeinflussen, eingrenzbar durch Vergleich von theoretischer RGB-Spitzen- Leuchtkraft mit Roten-Riesen-Ästen in Sternhaufen bekannter Entfernung auch andere Kühlmechanismen (Axionen) untersuchbar wichtig: Bedingungen im entarteten Kern viel extremer als in Laboratorien erreichbar Sterne als Teilchen-Laboratorien

21 Nach dem Riesenast - Heliumbrennphase: auf dem Riesenast schwacher Massenverlust (einige 0.1 M ) durch Sternwinde, beschrieben durch Reimers- Formel: Ṁ = η LM R R L M M /yr Expansion des Kerns bis ρ 10 2 g/cm 3 und ruhiges He-Brennen im (konvektiven) Kern Ort im HRD: höheres T eff, niedrigeres L ( dasselbe für alle M) Horizontal-Ast; T eff hängt von Rest-Hüllenmasse ab (weniger = heißer) Entwicklung von Riesenast zum Horizontalast in einigen Millionen Jahre

22 Farb-Helligkeits-Diagramm des Kugelsternhaufens M68. Die Position des Turn-Offs kann zur Altersbestimmung verwendet werden. Anwendung: Alter von Galaxien und des Universums

23 Nach dem Horizontal-Ast: Ende des zentralen Helium-Brennens Helium-Schalenquelle um C/O-Kern und wie bisher weiter außen H-Schalenquelle Entwicklung zu Riesen Asymptotischer Riesenast (AGB) (s. Sterne mittlerer Masse) Verlust der restlichen Hüllenmasse, Verlassen des AGB, Durchqueren des HRD zu heißen T eff, Abkühlen zum Weißen Zwerg Entwicklung der Sonne von der Hauptreihe bis zum Weißen Zwerg (s. auch Sonnenfilm im Cosmic Cinema

24 Zwischenstand: Abfolge der nuklearen Phasen Alle Sterne folgen einer grundsätzlichen Entwicklungslinie: Kontraktion (nach Virial-Theorem) von Vorhauptreihe zu Hauptreihe Hauptreihenphase: Temperatur für zentrales Wasserstoffbrennen wird erreicht; langlebigste Phase Ende zentrales Brennen, da H verbraucht; Ausbilden einer H-Schalenquelle um Kern Entwicklung zu Riesen; Kontraktion des Kerns und Erhitzung Erreichen der nächsten Brenntemperatur: Zünden des Heliums zentrales Heliumbrennen (findet innerhalb ehemals H-brennendem Kern statt) plust H-Schalenquelle, die sich nach außen frisst Ende zentrales He-Brennen, Ausbilden einer He- Schalenquelle bei genügend hoher Masse: Kontraktion und Erhitzung des Kerns bis zum Zünden des Kohlenstoffs usw. Gründe: Virial-Theorem und Coulomb-Abstoßung der Atomkerne, die immer höhere Temperaturen für die Fusion erfordern.

25 ntwicklung von Sternen mittlerer Masse Grundlegende Eigenschaften: Masse: 2.5 < M/M < 8; untere Grenze: Zünden des He unter nicht-entarteten Bedingungen; obere Grenze: Brennphasen nur bis C-Fusion werden erreicht. auf Hauptreihe: konvektiver Kern, radiative Hülle H-Fusion via CNO-Zyklus schneller Übergang von Hauptreihe zu kühlen Riesen (thermische Zeitskala) Zünden des He bald nach Hauptreihe, da keine wesentliche Neutrino-Kühlung nach Ende des zentralen Helium-Brennens zwei dünne Schalenquellen um entarteten C/O-Kern Entwicklung entlang AGB, mit periodischen thermischen Instabilitäten in He-Schalenquelle (thermische Pulse)

26 Hauptreihenphase konvektives Brennen im Zentrum: allmählicher Verbrauch von H im gesamten Kern Lebensdauer: von < a für 2.5 M bis a für 8 M (abhängig von Zusammensetzung)

27 Beispiel: Entwicklung eines 5 M -Sterns Anwendung: Während der Schleifen im He-Brennen sind die Sterne instabil gegen radiale Schwingungen Cepheiden. Für diese besteht eine Perioden-Leuchtkraft-Beziehung wichtigste Standardkerzen zur Bestimmung der Entfernung von Galaxien; Bestimmung der Hubble-Konstanten (kosmologischer Parameter; Weltalter; Wert: 74 ± 7 km/s/mpc (1/s))

28 Interpretation des Hipparcos-FHD: Hauptreihe und Riesenast klar sichtbar Roter Klumpen (red clump) = langsamere zentrale Heliumbrennphase (längere Dauer; höhere Aufenthaltswahrscheinlichkeit) verschiedene Zusammensetzungen, verschiedene Sternalter Breite der Äste und Streuung Sterndichte auf Hauptreihe ergibt sich aus anfänglicher Massenfunktion ( M 2.5 ) und Beobachtungsgrenzen

29 Thermische Pulse auf dem AGB wichtigste Eigenschaft von Sternen mittlerer Masse thermische Instabilität in He-Schalenquelle regelmäßig wiederkehrende Leuchtkraftausbrüche; Dauer: einige hundert Jahre; ruhige Zwischenphase: etliche tausend Jahre kurzfristig in Schalenquelle L He 10 6 L variierende konvektive Schichten Mischen zwischen He-Brennzone und Wasserstoffhülle Kohlenstoff an die Oberfläche; Wasserstoff in sehr heiße Gebiete interessante Nukleosynthese mit Neutronen Fusion der seltenen Erden (Ba, Sr, Te, La, Dy, Pb, Ag, In,... Bi)

30 Leuchtkraftvariationen in einem 2.5M Stern auf dem AGB: Veränderungen der inneren Struktur in einem 2 M Stern:

31 Der s-prozess Neutronenquelle: 12 C(p, γ) 13 N(β + ν) 13 C (p, γ) 14 Nor(α, n) 16 O benötigt C- und p-mischen auf AGB wahrscheinlicher für Sterne mit niedrigerer Metallizität, niedrigerer Masse, in späteren thermischen Pulsen Neutronen werden von Saat-Elementen in der Eisengruppe eingefangen (kein Coulomb-Wall!) langsame (slow), sukzessive Neutroneneinfänge konkurrieren mit schnellen β-zerfällen Entwicklung entlang des Tals der β-stabilen Isotope

32 Nach dem Asymptotischen Riesenast: Hülle wird schnell durch Superwind mit Ṁ 10 5 M /yr (Strahlungsdruck auf Staubteilchen in sehr kühler Atmosphäre; T eff 2500 K) verloren wenn fast die ganze Hülle verloren wurde entwickelt sich Stern horizontal durch HRD zu heißem T eff beleuchtet dabei u.u. ehemalige Hülle von innen mit UV-Strahlung Planetarischer Nebel und ehemaliger Kern wird wieder zu Weißem Zwerg

33 Anwendung: Populationssynthese Entfernte Galaxien sind nicht mehr in Einzelsterne auflösbar; nur noch das integrierte Licht (Farbe, Spektrum) ist messbar. Populationssynthese ist der Versuch, diese integrierte Information durch Aufsummierung der Farben/Spektren einzelner Sterne zu reproduzieren. Ziel: Bestimmung von Alter und Zusammensetzung der unterschiedlichen Populationen einer Galaxie und der Sternentstehungsrate Notwendig: u.a. Sternentwicklungswege für verschiedene Massen und Zusammensetzungen; hauptsächlich für Sterne < 10 M.

34 Idealisiertes Ergebnis für eine Spiralgalaxie:... und für eine elliptische Galaxie:

35 Ein illustratives Beispiel fu r eine aufgelo ste, aber gemischte Population:

13. Aufbau und Entwicklung der Sterne

13. Aufbau und Entwicklung der Sterne 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 4: Leben nach der Hauptreihe Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 49 Übersicht auf dem

Mehr

Sterne IV: Sternentwicklung

Sterne IV: Sternentwicklung Sterne IV: Sternentwicklung 7 Dezember, 2006 Laura Baudis, lbaudis@physik.rwth-aachen.de Physikalisches Institut Ib, RWTH Aachen 1 Inhalt Energiereservoire, Zeitskalen Entwicklungswege im HR-Diagramm Sterne

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 5: Das Ende der Sterne Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 56 Übersicht Sterne mit geringer

Mehr

Sonnenmasse Sonnenleuchtkraft Oberflächentemperatur der Sonne Lichtgeschwindigkeit Atomare Masseneinheit Elektronenvolt

Sonnenmasse Sonnenleuchtkraft Oberflächentemperatur der Sonne Lichtgeschwindigkeit Atomare Masseneinheit Elektronenvolt Sommersemester 2007 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde. Außer eines Taschenrechners sind keine Hilfsmittel erlaubt. Alle Fragen sind zu

Mehr

Standard Sonnenmodell

Standard Sonnenmodell Standard Sonnenmodell Max Camenzind Akademie HD - Juli 2016 Inhalt Sonnenmodell Die Sonne in Zahlen Aufbau der Sonne Die Sonne im Gleichgewicht Woher stammt die Energie? Nukleare Prozesse im Sonnenkern

Mehr

Teil II. Grundzüge der Sternentwicklung

Teil II. Grundzüge der Sternentwicklung Teil II Grundzüge der Sternentwicklung 38 Kapitel 4 Sternmodelle Seit Ende der 60er Jahre des letzten Jahrhunderts werden Sternmodelle nur noch im Computer mit immer komplizierteren numerischen Programmen

Mehr

XI. Sternentwicklung

XI. Sternentwicklung XI. Sternentwicklung Entwicklungszeitskalen Änderungen eines Sterns kann sich auf drei Zeitskalen abspielen: 1) nukleare Zeitskala t n = Zeit, in der der Stern seine Leuchtkraft durch Kernfusion decken

Mehr

Kosmologie und Astroteilchenphysik

Kosmologie und Astroteilchenphysik Kosmologie und Astroteilchenphysik Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer Einführung in die Kosmologie Weltmodelle und kosmologische Inflation Thermische Geschichte des Universums Urknall-Nukleosynthese

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 3: Nebel + Sternentstehung Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 40 Übersicht Interstellare

Mehr

Contents Elementhäufigkeiten Big Bang Sterne NS mit Neutronen Explosive NS. Nukleosynthese. Christian Franik. LMU Munich, Faculty of physics, USM

Contents Elementhäufigkeiten Big Bang Sterne NS mit Neutronen Explosive NS. Nukleosynthese. Christian Franik. LMU Munich, Faculty of physics, USM Nukleosynthese Christian Franik LMU Munich, Faculty of physics, USM January 30, 2013 Einleitung: Elementhäufigkeiten Primordiale Nukleosynthese Hydrostatische Brennphasen in Sternen Wasserstoff-Brennen

Mehr

Das Alter der Sterne

Das Alter der Sterne Das Alter der Sterne Achim Weiss Max-Planck-Institut für Astrophysik, Garching 10/2004 p.1 Die Gleichungen des Sternaufbaus 10/2004 p.2 Sternstruktur-Gleichungen Sphärische Symmetrie sei angenommen und

Mehr

Neue Experimente der Teilchen- und Astroteilchenphysik

Neue Experimente der Teilchen- und Astroteilchenphysik Neue Experimente der Teilchen- und Astroteilchenphysik A-Vorlesung, 3std., Di. 14:00 16:30 (mit 15 min Pause) Dozenten: W. Dünnweber, M. Faessler Skript: Vorlesungswebseite Inhalt (vorläufig): 15. April:

Mehr

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden DAS SOLARE NEUTRINO-PROBLEM...... und wie man damit umgeht Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden Wem kommt das bekannt vor? 2 oder etwas weniger komplex... Fraunhofer Spektrallinien

Mehr

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster Sternenentwicklung Martin Hierholzer Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster sternenentwicklung.tex Sternenentwicklung Martin Hierholzer 25/5/2004

Mehr

Galaktische und Extragalaktische Physik. Oskar von der Lühe Fakultät für Physik Albert-Ludwig-Universität, Freiburg i. Br. Wintersemester 2000 / 2001

Galaktische und Extragalaktische Physik. Oskar von der Lühe Fakultät für Physik Albert-Ludwig-Universität, Freiburg i. Br. Wintersemester 2000 / 2001 WS 2000/01 Oskar von der Lühe Fakultät für Physik Albert-Ludwig-Universität, Freiburg i. Br. Wintersemester 2000 / 2001 GEG_01s.doc Seite 1-1 19.02.02 1 Überblick 1.1 Hierarchien der Strukturen im Universum

Mehr

Sternentwicklung und das Hertzsprung-Russel-Diagramm

Sternentwicklung und das Hertzsprung-Russel-Diagramm Sternentwicklung und das Hertzsprung-Russel-Diagramm Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Entwicklung der Sterne Sternentwicklung Weißer Zwerg Schwarzes

Mehr

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht Fabian Hecht 29.04.2010 Physikalische Grundlagen des Sternenaufbaus Motivation nur beschreibbar mit Wissen über Sternenaufbau 4 Zentrale Grundgleichungen zusammen mit Zustandsgleichungen und Zusammensetzung

Mehr

Sterne. Literatur über Sterne. Ralf Klessen. Liste von empfohlenen Büchern. Zentrum für Astronomie der Universität Heidelberg

Sterne. Literatur über Sterne. Ralf Klessen. Liste von empfohlenen Büchern. Zentrum für Astronomie der Universität Heidelberg Sterne Ralf Klessen Zentrum für Astronomie der Universität Heidelberg Literatur über Sterne Liste von empfohlenen Büchern Allgemeine Literatur Allgemeine Bücher Unsere Sonne Bild: SOHO Satellit Unsere

Mehr

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Milchstraße ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Galaxie M74 (NGC 628) Sternbild: Fische Abstand: 35 Mio. LJ. Rot: sichtbares Licht - ältere

Mehr

3. Stabilität selbstgravitierender Kugeln

3. Stabilität selbstgravitierender Kugeln 3. Stabilität selbstgravitierender Kugeln Stabilisierungsproblem Virialsatz Druck und Zustandsgleichungen Lane - Emden - Gleichung Weiße Zwerge, Braune Zwerge und Planeten Neutronensterne Energieerzeugung

Mehr

c) Elemente oberhalb Fe

c) Elemente oberhalb Fe c) Elemente oberhalb Fe Neutroneneinfang: (Z,A) + n (Z, A+1) + γ β-zerfall: (Z, A+1) (Z+1, A+1) + e + ν e s(low)-process: Rate ω n

Mehr

Urknall und Entwicklung des Universums

Urknall und Entwicklung des Universums Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen University Dies Academicus 11.06.2008 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.0 Blick ins Universum:

Mehr

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae Anreicherung der interstellaren Materie mit schweren Elementen Supernovae Unser heutiges Thema... Sterne können exotherm nur Elemente bis Eisen (Z=26) in ihrem Inneren regulär fusionieren. Wie gelangen

Mehr

Beobachtungen zur Nukleosynthese

Beobachtungen zur Nukleosynthese Vortrag zum Kompaktseminar: Das frühe Universum an der Universität Tübingen Beobachtungen zur Nukleosynthese Hermann Dautel 24. März 2004 Betreut von Jörn Wilms Gliederung: - Einleitung - Lithium-Häufigkeit:

Mehr

Sterne. Achim Weiss. Max-Planck-Institut für Astrophysik. Einführung in die Astrophysik Universität Augsburg; SoSe 2006 p.1

Sterne. Achim Weiss. Max-Planck-Institut für Astrophysik. Einführung in die Astrophysik Universität Augsburg; SoSe 2006 p.1 Sterne Achim Weiss Max-Planck-Institut für Astrophysik Einführung in die Astrophysik Universität Augsburg; SoSe 2006 p.1 Überblick Einführung in die Astrophysik Universität Augsburg; SoSe 2006 p.2 Empirische

Mehr

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne Sterne Eine kurze Zusammenfassung des Sternenlebens Jörn Lenhardt Willkommen Entstehung 1/5 Riesige Gas- und Staubwolken Fast Vakuum Durch Gravitation (Schwerkraft) wird die Wolke zusammengehalten Die

Mehr

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg Vom Urknall bis heute Kosmologie Christian Stegmann Universität Erlangen-Nürnberg Die Erde Heute einer von acht Planeten Heute Sterne Heute Die Milchstrasse Heute Voller Sterne Heute Und Nebel Heute Unsere

Mehr

Galaktische und Extragalaktische Physik

Galaktische und Extragalaktische Physik Galaktische und Extragalaktische Physik Oskar von der Lühe Fakultät für Physik Albert-Ludwig-Universität, Freiburg i. Br. Wolfgang Dobler Kiepenheuer-Institut für Sonnenphysik Freiburg i. Br. GEG_01_03.doc

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß

Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß Wasserstoffbrennen Der Bethe-Weizsäcker-Zyklus Synonym: CNO Zyklus H. Bethe, C.-F. von Weizsäcker 1939 Benötigt Kohlenstoff

Mehr

Die Entwicklung des Universums

Die Entwicklung des Universums Die Entwicklung des Universums Thomas Hebbeker RWTH Aachen September 2003 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne und Galaxien Die

Mehr

Vom Sterben der Sterne

Vom Sterben der Sterne Vom Sterben der Sterne Weiße Zwerge, Neutronensterne und Schwarze Löcher Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag

Mehr

Neutrino - Oszillationen

Neutrino - Oszillationen Neutrino - Oszillationen Geschichte der Neutrinos Theoretische Motivation (Neutrino-Oszillation im Vakuum/Materie) Experimente Solares Neutrino-Problem Super-Kamiokande Interpretation der Messungen, Ergebnisse

Mehr

Modul Sternphysik Repräsentativer Fragenkatalog

Modul Sternphysik Repräsentativer Fragenkatalog Modul Sternphysik Repräsentativer Fragenkatalog Elementare Größen Definieren und erläutern Sie folgende Größen: Strahlungsstrom, scheinbare Helligkeit, absolute Helligkeit, bolometrische Helligkeit, Leuchtkraft

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg Supernovae Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg sn.tex Supernovae Peter H. Hauschildt 16/2/2005 18:20 p.1 Übersicht Was ist eine Supernova? Was

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 9: Kosmologie Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 38 Entfernte Galaxien 2 / 38 Übersicht

Mehr

Einführungsvortrag Das Sonnenspektrum Sonnenbeobachtungen

Einführungsvortrag Das Sonnenspektrum Sonnenbeobachtungen Einführungsvortrag Das Sonnenspektrum Sonnenbeobachtungen Messung der Sonnenparallaxe Die Sonne per Satellit Vermessung von Sonnenflecken Messung der Sonnenrotation (Teleskopbeobachtungen) Abschluss on

Mehr

Neutrino Oszillation. Von Richard Peschke

Neutrino Oszillation. Von Richard Peschke Neutrino Oszillation Von Richard Peschke Gliederung: 1. Was sind Neutrinos? 2. Eigenzustände 3. Mischung 4. Grundlagen der Neutrino Oszillation 5. Experimente: 5.1 Sonnen-Neutrinos 5.2 Reaktor-Neutrinos

Mehr

2. Sterne im Hertzsprung-Russell-Diagramm

2. Sterne im Hertzsprung-Russell-Diagramm 2. Sterne im Hertzsprung-Russell-Diagramm Wie entstand die Astrophysik? Sternatmosphäre Planck-Spektrum Spektraltyp und Leuchtkraftklasse HRD Sternpositionen im HRD Die Sterne füllen das Diagramm nicht

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 11 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Fast Radio Burst zum ersten (?) Mal lokalisiert:

Mehr

Kosmische Strahlung in unserer Galaxie

Kosmische Strahlung in unserer Galaxie Kosmische Strahlung in unserer Galaxie Das Interstellare Medium Gas Staub Sternentstehung und -entwicklung Interstellares Photonenfeld Wechselwirkung von kosmischer Strahlung Photonen geladene Komponente

Mehr

3.5.5 Sternentstehung und -entwicklung

3.5.5 Sternentstehung und -entwicklung 3.5.5 Sternentstehung und -entwicklung Energiefreisetzung in Sternen durch Kernfusion Problem 1: Energieerzeugung muss irgendwann begonnen haben Wie entstehen Sterne? Problem 2: Irgendwann ist der Kernbrennstoff

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Von der Hauptreihe zu PNes und Supernovae. Max Camenzind Akademie Heidelberg Mai 2014

Von der Hauptreihe zu PNes und Supernovae. Max Camenzind Akademie Heidelberg Mai 2014 Von der Hauptreihe zu PNes und Supernovae Max Camenzind Akademie Heidelberg Mai 2014 Entwicklung der Sterne in der Milchstraße; Entwicklung massearmer Sterne zu Roten Riesen und Planetarischen Nebeln;

Mehr

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen Dies Academicus 08.06.2005 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne

Mehr

Exkurs: Veränderliche Sterne (6)

Exkurs: Veränderliche Sterne (6) Exkurs: Veränderliche Sterne (6) Einführung: Pulsationsveränderliche In bestimmten Phasen ihrer Entwicklung sind Sterne nicht stabil, sondern oszillieren um einen Gleichgewichtszustand. Solche Sterne nennt

Mehr

Das Olbers sche Paradoxon

Das Olbers sche Paradoxon Kosmologie Das Olbers sche Paradoxon Die Hubble-Konstante Ein endliches Universum Das kosmologische Prinzip Homogenität des Universums Metrik einer gekrümmter Raumzeit Hubble Parameter und kritische Dichte

Mehr

Der Urknall und die Kosmische Hintergrundstrahlung

Der Urknall und die Kosmische Hintergrundstrahlung und die Kosmische Hintergrundstrahlung Seminar Astroteilchenphysik in der Theorie und Praxis Physik Department Technische Universität München 12.02.08 und die Kosmische Hintergrundstrahlung 1 Das Standardmodell

Mehr

Neues aus Kosmologie und Astrophysik 1.0

Neues aus Kosmologie und Astrophysik 1.0 Neues aus Kosmologie und Astrophysik 1.0 Unser Universum Sterne und Galaxien Hintergrundstrahlung Elemententstehung Das Big-Bang-Modell Prozesse im frühen Universum Fragen und Antworten (?) Dunkle Materie

Mehr

Moderne Instrumente der Sternbeobachtung

Moderne Instrumente der Sternbeobachtung Moderne Instrumente der Sternbeobachtung Sternentstehung/ Sternentwicklung (Steffen Fuhrmann) Sternbeobachtung (Jan Zimmermann) 0. Gliederung 1. historische Entwicklung 2. Definitionen 3. Entstehung eines

Mehr

Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell

Institut für Strahlenphysik Dr. Daniel Bemmerer  Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell Institut für Strahlenphysik Dr. Daniel Bemmerer www.fzd.de Mitglied der Leibniz-Gemeinschaft Altes und Neues zum Standardmodell Von den Quarks zum Universum QuickTime and a TIFF (Uncompressed) decompressor

Mehr

Messung der kosmischen Expansion mittels Supernovae. Benedikt Hegner

Messung der kosmischen Expansion mittels Supernovae. Benedikt Hegner Messung der kosmischen Expansion mittels Supernovae Benedikt Hegner 14.07.2003 Inhalt Erste Hinweise Was ist eine Supernova? Kosmologische Modelle Aktuelle Beobachtungen Diskussion Erste Beobachtungen

Mehr

So nah und doch so fern Die Sonne

So nah und doch so fern Die Sonne So nah und doch so fern Die Sonne Uwe Wolter Astronomie-Werkstatt an der Hamburger Sternwarte Mai 2005 Zeitplan Inhaltliche Einführung Das Sonnenspektrum Sonnenbeobachtungen Messung der Sonnenparallaxe

Mehr

Hauptseminar: Neuere Entwicklungen der Kosmologie

Hauptseminar: Neuere Entwicklungen der Kosmologie Hauptseminar: Neuere Entwicklungen der Kosmologie Das frühe Universum: Inflation und Strahlungsdominanz Thorsten Beck Universität Stuttgart Hauptseminar: Neuere Entwicklungen der Kosmologie p. 1/14 Die

Mehr

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Was uns die Endstadien der Sterne über die Naturgesetze sagen Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at

Mehr

Sternaufbau und Sternentwicklung

Sternaufbau und Sternentwicklung Kapitel 2 Sternaufbau und Sternentwicklung 2.1 Hydrostatisches Gleichgewicht und Polytrope Gaskugeln einfachster Typ von Sternmodellen [Emden (197), Lane (187)] Polytrope; Modell eines Sterns im hydrostatischen

Mehr

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3.

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3. Einführung in die Astronomie I Wintersemester 2007/2008 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde (60 Minuten). Außer eines Taschenrechners sind

Mehr

Die Entstehung der Elemente

Die Entstehung der Elemente Die Entstehung der Elemente Ein Vortrag von Shin-Gyu Kang, Birger Buttenschön, Marco Knutzen, Ole Ammon Staack, Frank Schlotfeldt und Alexander Sperl Kiel, 10. Juni 2005 Inhalt Einleitung und Übersicht

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

Primordiale Nukleosynthese

Primordiale Nukleosynthese Hauptseminar: Dunkle Materie in Teilchen- und Astrophysik Primordiale Nukleosynthese Karin Haiser 14.06.2005 Inhalt Einführung Ablauf der Primordialen Nukleosynthese Definition wichtiger Größen Anfangsbedingungen

Mehr

Kosmische Strahlung in unserer Galaxie

Kosmische Strahlung in unserer Galaxie Kosmische Strahlung in unserer Galaxie Das Interstellare Medium Gas Staub Sternentstehung und -entwicklung Interstellares Photonenfeld Wechselwirkung von kosmischer Strahlung Photonen geladene Komponente

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Sternentwicklung (3) Wie Sterne Energie erzeugen

Sternentwicklung (3) Wie Sterne Energie erzeugen Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich

Mehr

Einführung in die Astroteilchenphysik. Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin

Einführung in die Astroteilchenphysik. Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin Einführung in die Astroteilchenphysik Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin ... Inhaltsverzeichnis Literaturverzeichnis iv 1 Einführung 1 2 Die Entwicklung des Universums

Mehr

Licht vom Anfang der Welt

Licht vom Anfang der Welt Licht vom Anfang der Welt Können Sternexplosionen das Universum vermessen? Wolfgang Hillebrandt MPI für Astrophysik Garching Licht vom Anfang der Welt Licht ist die kürzeste Verbindung zweier Ereignisse

Mehr

Die Physik der Sterne. Max Camenzind Akademie Heidelberg 2014

Die Physik der Sterne. Max Camenzind Akademie Heidelberg 2014 Die Physik der Sterne Max Camenzind Akademie Heidelberg März @ 2014 Objekte im hydrostatischen Gleichgewicht sind sphärisch Planeten, Sterne Asteroiden sind jedoch eher Kartoffeln Festkörper Themen: Stellare

Mehr

Kugelsternhaufen die einfachsten Sternsysteme. Farben, Helligkeit und Alter der Sterne

Kugelsternhaufen die einfachsten Sternsysteme. Farben, Helligkeit und Alter der Sterne Kugelsternhaufen die einfachsten Sternsysteme Farben, Helligkeit und Alter der Sterne Max Camenzind Akademie Heidelberg Sept. 2015 Messier Objekte Offene Sternhaufen: enthalten 10-1000 Sterne lohse Strukturen

Mehr

Zusammenfassung Primordiale Nukleosynthese. Fabian Joswig

Zusammenfassung Primordiale Nukleosynthese. Fabian Joswig Zusammenfassung Primordiale Nukleosynthese Fabian Joswig 22. Februar 2015 1 Einleitung Die Materie im heutigen Universum besteht zum größten Teil aus leichten Elementen, nämlich zu ca. 75 Prozent aus Wasserstoff

Mehr

Dunkle Materie und Teilchenphysik

Dunkle Materie und Teilchenphysik Universität Hamburg Weihnachtliche Festveranstaltung Department Physik 17. Dezember 2008 Woher weiß man, dass es Dunkle Materie gibt? Sichtbare Materie in Galaxien (Sterne, Gas) kann nicht die beobachteten

Mehr

Unser Universum: Vergangenheit & Zukunft

Unser Universum: Vergangenheit & Zukunft Unser Universum: Vergangenheit & Zukunft B. Kämpfer Forschungszentrum Rossendorf + TU Dresden Veränderliche Welt: kosmische Expansion Sterne: Vergehen & Werden chemische Elemente Alles fließt 1 AE = 1,5

Mehr

Vom Urknall zur Dunklen Energie

Vom Urknall zur Dunklen Energie Wie ist unser Universum entstanden und wie wird es enden? Wie werden Sterne geboren, leben und sterben dann? Woher kommen die Elemente im Universum? Einleitung Entstehung des Universums vor ungefähr 14

Mehr

Experimentelle Astroteilchenphysik. Prof. Dr. Dieter Horns Dr. Tanja Kneiske

Experimentelle Astroteilchenphysik. Prof. Dr. Dieter Horns Dr. Tanja Kneiske Experimentelle Astroteilchenphysik Prof. Dr. Dieter Horns Dr. Tanja Kneiske Experimentelle Astroteilchenphysik 1. Einführung und Überblick 2. Kosmische Strahlung auf der Erde 3. Kosmische Strahlung in

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 15. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 15. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 15. Januar 2016 Daniel Bick Physik V WS 2015/16 15. Januar 2016 1 / 25 Inhalt 1 Kernspaltung 2 Kernfusion 3 Fusion in der Sonne Solare Neutrinos Daniel

Mehr

Das Moderne Weltmodell

Das Moderne Weltmodell Das Moderne Weltmodell coldcreation.blogspot.com Max Camenzind Akademie HD Januar 2015 Welt-Revolution 1998 (SCP & Hz): Entfernte Supernovae sind weiter entfernt als in einem flachen expandierenden Einstein-de-Sitter

Mehr

4. Neutrinos. Hermann Kolanoski, EEP SS06-4.Neutrino-Oszillationen 1

4. Neutrinos. Hermann Kolanoski, EEP SS06-4.Neutrino-Oszillationen 1 4. Neutrinos Hermann Kolanoski, EEP SS06-4.Neutrino-Oszillationen 1 Sonnenneutrino-Defizit ν e 37 Cl 37 Ar e - Sonnenmodell (ohne Oszillation) Gallex, Sage ν e 37 Ga 37 Ge e - Hermann Kolanoski, EEP SS06-4.Neutrino-Oszillationen

Mehr

Kosmische Strukturbildung im Grossrechner. Simon White Max Planck Institut für Astrophysik

Kosmische Strukturbildung im Grossrechner. Simon White Max Planck Institut für Astrophysik Kosmische Strukturbildung im Grossrechner Simon White Max Planck Institut für Astrophysik Die Erdoberfläche, unsere komplexe Heimat Sternkarte des ganzen Himmels Wie erkennen wir das Unberührbare? Joseph

Mehr

Sternentwicklung. Sternentwicklung

Sternentwicklung. Sternentwicklung Übersicht Nebel Vor- n Stadium Endstadium n Stadium Nach- n Stadium Nebel & Vor-n Stadium Entstehung Eigentlich ist die Entstehung eines Sternes unwahrscheinlich, da Dichte der Atome zu gering Temperaturen

Mehr

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne Sonne, Mond und Sterne: Die neue Sicht des Universum III Physik der Sonne und der Sterne Fragen: 1. Wie bilden sich Sterne? 2. Wie wird die Energie im Sterninnern erzeugt? 3. Wie gelangt die Energie aus

Mehr

Die Sonne ein gewöhnlicher Hauptreihenstern

Die Sonne ein gewöhnlicher Hauptreihenstern Die Sonne ein gewöhnlicher Hauptreihenstern Parameter Das Sonnenspektrum Energieerzeugung Innerer Aufbau Die Sonnenatmosphäre Sonnenaktivität Sonnenwind Parameter 1. Entfernung von der Erde Aus Umlaufzeiten,

Mehr

Die Urknalltheorie. Hauptseminar von Tobias Buehler

Die Urknalltheorie. Hauptseminar von Tobias Buehler Die Urknalltheorie Hauptseminar von Tobias Buehler Inhaltsverzeichnis 1 Historische Entwicklung 3 Was man sich daraus herleitet 2 Was man Messen kann 3.1 Planck Ära 2.1 Rotverschiebung und Expansion 3.2

Mehr

Ende eines Sternenlebens

Ende eines Sternenlebens Ende eines Sternenlebens 2 In diesem Kapitel betrachten wir die Entwicklung der Sterne nach dem Wasserstoffbrennen und dem Verlassen der Hauptreihe. In Abschn. 2.1 behandeln wir zunächst das Heliumbrennen,

Mehr

Ausbildungsseminar Kerne und Sterne. Grundgleichungen des Sternaufbaus

Ausbildungsseminar Kerne und Sterne. Grundgleichungen des Sternaufbaus Ausbildungsseminar Kerne und Sterne Grundgleichungen des Sternaufbaus Matthias Heise 12.4.2007 1 Inhalt 1. Herleitung... 3 1.1. Annahmen... 3 1.2. Massenverteilung... 3 1.3. Hydrostatisches Gleichgewicht...3

Mehr

Planetologie substellarer Objekte

Planetologie substellarer Objekte Planetologie substellarer Objekte Die meisten der mittlerweile entdeckten Exoplaneten müssen der Gruppe der Gasplaneten zugeordnet werden Auswahleffekt, der den höheren Entdeckungswahrscheinlichkeiten

Mehr

Entwicklung massereicher Sterne

Entwicklung massereicher Sterne Entwicklung massereicher Sterne Eugenia Litzinger Friedrich-Alexander-Universität Erlangen-Nürnberg 23.11.2009 Inhaltsverzeichnis Entstehung eines massereichen Sternes Definition Entstehungsort Grundgleichungen

Mehr

Veränderliche Sterne Pulsierende Sterne Entfernungsbestimmung. Pulsierende Sterne. Scheinseminar Astroteilchenphysik Dominik Kießling. 6.

Veränderliche Sterne Pulsierende Sterne Entfernungsbestimmung. Pulsierende Sterne. Scheinseminar Astroteilchenphysik Dominik Kießling. 6. Scheinseminar Astroteilchenphysik Dominik Kießling 6. Mai 2010 Veränderliche Sterne Einleitung Unterklassen Abbildung: Cepheide in der Spiralgalaxie M100 aufgenommen mit dem Hubble-Teleskop. Quelle: Hubble,

Mehr

Protostern-Scheibe. Scheibe-System?

Protostern-Scheibe. Scheibe-System? Letzte Vorlesung: Wie entsteht das Protostern-Scheibe Scheibe-System? ρ Wiederholung: Inside-out-Kollaps Gravitation nicht abgeschirmt, daher fällt eine nach der anderen Massenschale in Stern r Expansionwelle

Mehr

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden Moderne Kosmologie Michael H Soffel Lohrmann Observatorium TU Dresden Die Expansion des Weltalls NGC 1300 1 Nanometer = 1 Millionstel mm ; 10 Å = 1 nm Fraunhofer Spektrum Klar erkennbare Absorptionslinien

Mehr

Der Helium-Flash. Einleitung. Fabian Müller, Ludwig-Maximilians-Universität München

Der Helium-Flash. Einleitung. Fabian Müller, Ludwig-Maximilians-Universität München Der Helium-Flash Fabian Müller, Ludwig-Maximilians-Universität München Einleitung Unter dem Helium-Flash versteht man den thermonuklearen Runaway, welcher das Heliumbrennen im Kern von massearmen Sternen

Mehr

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Objekte des Sonnensystems Sonne Innere Gesteinsplaneten und deren Monde Asteroidengürtel Äußere Gas- und Eisplaneten und deren Monde Zentauren

Mehr

Einführung in die Astronomie I

Einführung in die Astronomie I Einführung in die Astronomie I Teil 6 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 20. Juni 2017 1 / 30 Übersicht Teil 6 Sternatmosphären Strahlungstransport

Mehr

5. Neutrinos. Hermann Kolanoski, Astroteilchenphysik WS09/10-5.Neutrinos 1

5. Neutrinos. Hermann Kolanoski, Astroteilchenphysik WS09/10-5.Neutrinos 1 5. Neutrinos Hermann Kolanoski, Astroteilchenphysik WS09/10-5.Neutrinos 1 Neutrinos: Standard Model and Beyond in SU(2) L dubletts Mixing masses - flavour eigenstates - mass eigenstates = double decay

Mehr

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 In dieser Aufgabe bestimmen Sie anhand gegebener Lichtkurven von Cepheiden in der Spiralgalaxie M100 im

Mehr

GLIEDERUNG. Gaswolken Erster Kollaps Protostern Vorhauptreihenstern Sternentstehung in Clustern Population

GLIEDERUNG. Gaswolken Erster Kollaps Protostern Vorhauptreihenstern Sternentstehung in Clustern Population STERN ENTSTEHUNG GLIEDERUNG Gaswolken Erster Kollaps Protostern Vorhauptreihenstern Sternentstehung in Clustern Population ABLAUF Prästellarer Kern Protostern Vorhauptreihenstern Verdichtung der Masse

Mehr

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum Kosmologische Konstante kosmischer Mikrowellen-Hintergrund und Strukturbildung im frühen Universum Philip Schneider, Ludwig-Maximilians-Universität 31.05.005 Gliederung Geschichte: Die letzten 100 Jahre

Mehr

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner Kerne und Sterne (Was verbindet Mikro- und Makrokosmos?) PLOPP SUPERNOVA He H Li SONNE SONNENSYSTEME GALAXIEN C Fe O N U Moderne Astronomie: Infrarot-, Radio-, Optische, Röntgen-, Gamma-, Neutrino- Klassische

Mehr

Junge stellare Objekte

Junge stellare Objekte Junge stellare Objekte 2 Nach den Erläuterungen zur Entstehung der Protosterne bzw. der jungen stellaren Objekte im Allgemeinen in (Heyssler 2014) befassen wir uns in diesem Kapitel mit ihrem Entwicklungsweg

Mehr

Highlights der Astronomie. APOD vom : Carinae Massereiche Sterne, Vorläufer von Supernovae

Highlights der Astronomie. APOD vom : Carinae Massereiche Sterne, Vorläufer von Supernovae Highlights der Astronomie APOD vom28.11.04: Carinae Massereiche Sterne, Vorläufer von Supernovae was sehen wir? 2 große, symmetrische Wolken innere Struktur, dunkle Streifen räumliche Vorstellung einer

Mehr