KESS - Die Komplexität evolutionär stabiler Strategien

Größe: px
Ab Seite anzeigen:

Download "KESS - Die Komplexität evolutionär stabiler Strategien"

Transkript

1 KESS - Die Komplexität evolutionär stabiler Strategien Andreas Lochbihler Universität Karlsruhe (TH) K. Etessami, A. Lochbihler: The computational complexity of evolutionarily stable strategies. Int. J. of Game Theory (008) 7:9 Andreas Lochbihler KESS /

2 Überblick Evolutionär stabile Strategien Komplexitätstheorie Untere Komplexitätsschranken Obere Komplexitätsschranken 5 Inapproximierbarkeit 6 Zusammenfassung Andreas Lochbihler KESS /

3 Evolutionär stabile Strategien Evolutionär stabile Strategie Evolutionär stabile Strategie x (ESS): symmetrisches Normalform-Spiel für Spieler mit Auszahlungsmatrix A (A = A, A = A ) symmetrisches Nash-Gleichgewicht (x, x ): Stabilität: Für alle y x gilt: x Ax y Ax für alle Strategien y y Ax = x Ax y Ay < x Ay Regularität: Träger von x enthält alle reinen besten Antworten auf x supp(x ) {i e i Ax = x Ax } = extsupp(x ) Andreas Lochbihler KESS /

4 Evolutionär stabile Strategien Beispiel zu ESS: Stein-Schere-Papier A Stein Schere Papier Stein 0 Schere 0 Papier 0 Ein symmetrisches Nash-Gleichgewicht (x, x ): x = (,, ) Nicht evolutionär stabil: Für y = (, 0, 0) : y Ay = 0 = x Ay Andreas Lochbihler KESS /

5 Evolutionär stabile Strategien Beispiel zu ESS: Stein-Schere-Papier A Stein Schere Papier Stein Schere Papier Ein symmetrisches Nash-Gleichgewicht (x, x ): x = (,, ) Evolutionär stabil: x einziges Maximum von y Ay = (y + y + y ) über y =, y 0 Regulär: Träger supp(x ) = {,, } enthält alle besten Antworten Andreas Lochbihler KESS /

6 Evolutionär stabile Strategien Beispiel zu ESS: Stein-Schere-Papier A Stein Schere Papier Stein Schere Papier - Symmetrisches Nash-Gleichgewicht (x, x ): x = (, 0, 0) Evolutionär stabil: Beste Antwort y = (t, 0, t) auf x : y Ay x Ay = (t ) < 0 für t Nicht regulär: extsupp(x ) = {, }, supp(x ) = {} Andreas Lochbihler KESS /

7 Komplexitätstheorie Komplexitätsfragen zu ESSn Wie aufwändig ist es im schlechtesten Fall, auf die Existenz einer (regulären) ESS zu testen?... eine Strategie als (reguläre) ESS zu verifizieren?... eine (reguläre) ESS zu berechnen? Abschätzungen nach oben und unten! Andreas Lochbihler KESS /

8 Komplexitätsklassen Komplexitätstheorie P Entscheidungsprobleme, die in polynomieller Zeit entschieden können werden LP Lineare Optimierung (Khachiyan) NP Entscheidungsprobleme, für deren Ja -Instanzen a es ein polynomiell langes Zertifikat c gibt, mit dessen Hilfe in polynomieller Zeit überprüft werden kann, ob a wirklich eine Ja -Instanz ist. Sat Ist eine Boolesche Formel (in KNF) erfüllbar? (Zertifikat = erfüllende Belegung) QP Quadratische Optimierung (Vavasis) conp Komplement von NP ( Nein statt Ja ) Unsat Ist eine Boolesche Formel unerfüllbar? Taut Ist eine Boolesche Formel eine Tautologie? (Zertifikat = nicht erfüllende Belegung) Andreas Lochbihler KESS /

9 Reduktion Komplexitätstheorie f : Γ Γ ist eine Reduktion eines Entscheidungsproblems A auf ein Entscheidungsproblem B, wenn f in polynomieller Zeit berechenbar ist, Ja-Instanzen in A auf Ja in B und Nein-Instanzen in A auf Nein in B abgebildet werden. A Γ* A f f f(a) B Γ* B f( A) Hat man einen (polynomiellen) Algorithmus für B, so erhält man mit der Redukion einen (polynomiellen) Algorithmus für A. Ist A ein schweres Problem, dann ist B wohl auch ein schweres Problem. B ist hart bzgl. einer Klasse K von Problemen, falls jedes Problem aus K sich auf B reduzieren lässt. Ist B auch in K, dann ist B K-vollständig. Andreas Lochbihler KESS /

10 Polynomielle Hierarchie Komplexitätstheorie Sat ist NP-hart: Für A NP gibt es eine Reduktion f A mit a A gdw. x.f A (a)(x). x x. (x x) x FF FT TF TT Taut ist conp-hart: Für A conp gibt es eine Reduktion f A mit a A gdw. x.f A (a)(x). x x. (x x) x FF FT TF TT Σ ist die Menge aller Probleme A, die sich in eine Formel der Form x. y.φ(x, y) mit polynomiell großem Φ kodieren lassen. Andreas Lochbihler KESS /

11 Komplexitätstheorie Komplexitäten von Gleichgewichten Spiele mit zwei Spielern P Nash-GG für Nullsummenspiel Symm. Nash-GG für gegebenen extsupp (Reduktion auf LP) PPAD-vollst. Berechnung eines beliebigen Nash-GGs Lemke-Howson-Algorithmus 96 Härte: Chen, Deng 006 NP-vollst. Mehr als ein Nash-GG? (Gilboa, Zemel 989) Ist eine reine Strategie im Träger eines Nash-GG? (G., Z.) Existiert ein pareto-optimales Nash-GG? (Conitzer, Sandholm 00) NP... P conp Dieser Vortrag: Existiert eine ESS? NP-hart, conp-hart, in Σ Ist eine Strategie evolutionär stabil? conp-vollständig Existiert eine reguläre ESS? NP-vollständig Andreas Lochbihler KESS /

12 Komplexitätstheorie Komplexitäten von Gleichgewichten Spiele mit zwei Spielern P Nash-GG für Nullsummenspiel Symm. Nash-GG für gegebenen extsupp (Reduktion auf LP) PPAD-vollst. Berechnung eines beliebigen Nash-GGs Lemke-Howson-Algorithmus 96 Härte: Chen, Deng 006 NP-vollst. Mehr als ein Nash-GG? (Gilboa, Zemel 989) Ist eine reine Strategie im Träger eines Nash-GG? (G., Z.) Existiert ein pareto-optimales Nash-GG? (Conitzer, Sandholm 00) NP... P conp Dieser Vortrag: Existiert eine ESS? NP-hart, conp-hart, in Σ Ist eine Strategie evolutionär stabil? conp-vollständig Existiert eine reguläre ESS? NP-vollständig Andreas Lochbihler KESS /

13 Untere Komplexitätsschranken ESS als Entscheidungsprobleme ESS Eingabe: Auszahlungsmatrix Antwort: Gibt es eine ESS? RegESS Eingabe: Auszahlungsmatrix Antwort: Gibt es eine reguläre ESS? TestESS Eingabe: Auszahlungsmatrix und eine Strategie x Antwort: Ist x evolutionär stabil? TestRegESS Eingabe: Auszahlungsmatrix und eine Strategie x Antwort: Ist x regulär evolutionär stabil? Andreas Lochbihler KESS /

14 NP-Härte Untere Komplexitätsschranken Reduktion von Sat auf ESS und RegESS: Beispielformel: Φ = (v v v ) ( v }{{} ) ( v }{{} v ) }{{} =c =c =c A Φ v v v v v v c c c v 0 - v - 0 v 0 - v - 0 v 0 - v - 0 c c c x evolutionär stabil c, c, c / supp(x), x(v i ) =, x( v i) = 0 oder x(v i ) = 0, x( v i ) = Für solche x sind nicht erfüllte Klauseln beste Antworten. Andreas Lochbihler KESS /

15 NP-Härte Untere Komplexitätsschranken Reduktion von Sat auf ESS und RegESS: Beispielformel: Φ = (v v v ) ( v }{{} ) ( v }{{} v ) }{{} =c =c =c x A Φ v v v v v v c c c v 0-0 v v 0 - v v 0 - v c 0 c 0 c x evolutionär stabil c, c, c / supp(x), x(v i ) =, x( v i) = 0 oder x(v i ) = 0, x( v i ) = Für solche x sind nicht erfüllte Klauseln beste Antworten. Andreas Lochbihler KESS /

16 NP-Härte Untere Komplexitätsschranken Reduktion von Sat auf ESS und RegESS: Beispielformel: Φ = (v v v ) ( v }{{} ) ( v }{{} v ) }{{} =c =c =c x A Φ v v v v v v c c c v 0-0 v v 0 - v - 0 v 0-0 v c 0 c 0 c x evolutionär stabil c, c, c / supp(x), x(v i ) =, x( v i) = 0 oder x(v i ) = 0, x( v i ) = Für solche x sind nicht erfüllte Klauseln beste Antworten. Andreas Lochbihler KESS /

17 Untere Komplexitätsschranken Cliquen in Graphen Graph Menge von Knoten V und Kanten E zwischen Knoten Clique Menge von Knoten C, die alle untereinander durch Kanten verbunden sind. coclique Hat die größte Clique weniger als k Knoten? conp-vollständig 6 5 Adjazenzmatrix A Lemma (Motzkin, Straus 965): Sei d die maximale Cliquengröße. Für alle x 0 mit x = gilt: x Ax d d Andreas Lochbihler KESS /

18 conp-härte Untere Komplexitätsschranken Reduktion von coclique auf ESS und TestESS 6 5 A (G,k) 5 6 a b c a k k k k k k k k k k k k 0 0 b c x evolutionär stabil x(a) = Andreas Lochbihler KESS /

19 conp-härte Untere Komplexitätsschranken Reduktion von coclique auf ESS und TestESS 6 5 k = y A (G,) y = x A (G,) y = y A (G,) 5 6 a b c a b c x evolutionär stabil x(a) = Andreas Lochbihler KESS /

20 conp-härte Untere Komplexitätsschranken Reduktion von coclique auf ESS und TestESS 6 5 k = 5 y A (G,5) y = x A (G,5) y = 5 y A (G,5) 5 6 a b c a b c x evolutionär stabil x(a) = Andreas Lochbihler KESS /

21 Härte-Resultate Untere Komplexitätsschranken NP-hart Φ f A Φ Reduktion von Sat auf ESS und RegESS f ist polynomiell berechenbar Φ nicht erfüllbar: A Φ hat keine ESSn Φ erfüllbar: A Φ hat ESSn Jede erfüllende Belegung entspricht genau einer ESS und umgekehrt. Alle ESS in A Φ sind regulär. conp-hart f A(G,k) (G, k) Reduktion von coclique auf ESS und TestESS f ist polynomiell berechenbar a ist die einzige potentielle ESS a ist evolutionär stabil gdw. die größte Clique in G weniger als k Knoten umfasst Erkennen einer ESS (TestESS) ist bereits conp-hart Andreas Lochbihler KESS /

22 Obere Komplexitätsschranken Komplexität von TestESS und TestRegESS Test auf symmetrisches Nash-GG (x, x ) ist einfach! Stabilität (Haigh 975, Abakuks 980, Bomze 99): Sei M = extsupp(x ) {m 0 } und C R M M geeignet. x ist stabil gdw. f. a. w R M mit w 0 und w i 0 für i M supp(x ) gilt: w Cw > 0 Wenn x regulär ist, d.h. supp(x ) = extsupp(x ): Test, ob C positiv definit (in P) TestRegESS in P Wenn supp(x ) extsupp(x ): Reduktion auf QP x nicht stabil gdw. es ex. w R M mit w ( C)w 0, w 0 und w i 0 für i M supp(x ). Umschreiben von w 0: M viele QP Probleme mit ±w j als weitere Bedingung. Da QP in NP liegt, ist TestESS in conp und also conp-vollständig. Bomze: Iterative Prozedur für diesen Test Andreas Lochbihler KESS /

23 Obere Komplexitätsschranken Trägerkriterium Lemma (Trägerkriterium): Wenn x evolutionär stabil ist und (y, y) ein symmetrisches Nash-GG mit supp(y) extsupp(x ), dann x = y. Beweis durch Widerspruch: Angenommen, y x. Wegen supp(y) extsupp(x ) ist y eine beste Antwort auf x. Da (y, y) Nash-GG, gilt x Ay y Ay. Widerspruch zur Stabilität von x. Folgerung: Für jeden erweiterten Träger gibt es höchstens eine ESS. Dann ist auch ein solches Nash-GG eindeutig. Andreas Lochbihler KESS /

24 Obere Komplexitätsschranken Algorithmen für RegESS und ESS Algorithmus für RegESS und ESS: Eingabe: Auszahlungsmatrix A Rate den erweiterten Träger M des Strategiekandidaten Berechne symmetrisches Nash-GG (x, x) mit extsupp(x) = M (in P) Falls kein solches x existiert, dann gibt es auch keine solche ESS Wende TestRegESS bzw. TestESS auf (A, x) an Komplexität: TestRegESS ist in P, damit RegESS in NP Zertifikat = erweiterter Träger = Träger TestESS ist in conp, damit ESS in Σ Die Ratestrategie ist auch Sat-Löser Bomze 99: Branch-and-Bound-Ansatz für. Andreas Lochbihler KESS /

25 Inapproximierbarkeit A Inapproximierbarkeit f x ist eine Approximation für (reg.) ESS, falls gilt: f ist in polynomieller Zeit berechenbar Falls A eine mind. (reg.) ESS besitzt: d(f (A), x) < ɛ A für eine (reg.) ESS x von A Angenommen, es gäbe so eine Approximation f mit d(y, x) = y x und ɛ A m A, wobei m A = Anzahl der Strategien in A. Dann wäre dies ein P-Algorithmus für Sat: Wende f auf A Φ an, y = f (A Φ ). Wegen m AΦ < n existiert maximal ein x mit y x < m AΦ, so dass x(v i ) = n, x( v i) = 0 oder x(v i ) = 0, x( v i ) = n. Falls es kein solches x gibt, ist Φ unerfüllbar. Φ ist erfüllbar gdw. dieses x eine erfüllende Belegung darstellt. Solch eine Approximation gibt es also nicht (außer P=NP). Andreas Lochbihler KESS /

26 Inapproximierbarkeit Beispiel zur Approximation Φ = (v v v ) ( v ) ( v v ) n =, m AΦ = 9, ɛ AΦ = 9 A Φ v v v v v v c c c v 0 - v - 0 v 0 - v - 0 v 0 - v - 0 c c c Andreas Lochbihler KESS /

27 Inapproximierbarkeit Beispiel zur Approximation Φ = (v v v ) ( v ) ( v v ) n =, m AΦ = 9, ɛ AΦ = 9 f (A Φ ) A Φ v v v v v v c c c 0.5 v v v 0-0. v v v c 0.0 c 0.0 c Andreas Lochbihler KESS /

28 Inapproximierbarkeit Beispiel zur Approximation Φ = (v v v ) ( v ) ( v v ) n =, m AΦ = 9, ɛ AΦ = 9 f (A Φ ) x A Φ v v v v v v c c c 0.5 v v v 0-0. v v v c c c Andreas Lochbihler KESS /

29 Zusammenfassung Folgerungen für reguläre ESS (P NP, NP conp) Reguläre ESS: Test, ob eine Strategie evolutionär stabil und regulär ist: effizient Berechnung einer regulären ESS mit gegebenen Träger: effizient Suche nach Träger ist NP-vollständig: nicht effizient Beliebig genaue Approximation von regulären ESSn: nicht effizient Allgemeine ESS: Test, ob eine Strategie evolutionär stabil ist: nicht effizient Existenz einer ESS ist in Σ -(NP conp): nicht effizient Berechnung einer ESS: nicht effizient Beliebig genaue Approximation von ESSn: nicht effizient Andreas Lochbihler KESS /

30 Zusammenfassung Zusammenfassung Zusammenfassung: Reguläre ESS sind gutartig Allgemeine ESS sind deutlich komplexer Erkennen einer allgemeinen ESS ist wahrscheinlich exponentiell NP-, conp-härtenachweise liefern nur Schranken für die worst-case Komplexität Keine Aussage über die praktische Komplexität Noam Nisan. ECCC 006 A note on the computational hardness of evolutionary stable strategies Vereinfachung und Zusammenfassung der Reduktionen Andreas Lochbihler KESS /

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Algorithmische Spieltheorie

Algorithmische Spieltheorie Algorithmische Spieltheorie Grundlagen der Komplexitätstheorie Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

NP-Vollständigkeit einiger Zahlprobleme

NP-Vollständigkeit einiger Zahlprobleme NP-Vollständigkeit einiger Zahlprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 22. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr Definition 6 3SAT ist die Menge der booleschen Formeln in konjunktiver Normalform, die in jeder Klausel höchstens drei Literale enthalten und die erfüllbar sind. Satz 7 3SAT ist N P-vollständig. Info IV

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p 6.3 NP-Vollständigkeit 1 Polynomielle Reduzierbarkeit p 2 NP-vollständige Probleme = härteste Probleme in NP, alle anderen Probleme in NP darauf polynomiell reduzierbar 3 Satz: SAT ist NP-vollständig Definition

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 13 Übungsblatt Wir unterscheiden

Mehr

Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5]

Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5] Warum polynomielle Reduktionen? erlauben feinere Unterteilungen von Komplexitätsklassen als Turing- Reduktionen, genügen für die betrachteten Probleme, für alle von uns betrachteten Komplexitätsklassen

Mehr

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14.

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Spieltheorie Nash-Gleichgewichts-Berechnung Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel,

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Helmut Veith Technische Universität München Organisatorisches Anmeldung zur Lehrveranstaltung: complexity@tiki.informatik.tu-muenchen.de

Mehr

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel, R. Mattmüller Spieltheorie

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, 10.12.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick:

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

NP Vollständigkeit. Patryk Mazur

NP Vollständigkeit. Patryk Mazur NP Vollständigkeit Patryk Mazur 04.05.2010 0.Gliderung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Algorithmen zur Visualisierung von Graphen Kombinatorische Optimierung mittels Flussmethoden II Vorlesung im Wintersemester 2011/2012 10.11.2011 Orthogonale Zeichnungen II letztes Mal: Satz G Maxgrad-4-Graph

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Probabilistische Pfadsuche

Probabilistische Pfadsuche Probabilistische Pfadsuche Frage: Existiert ein Pfad in G von s nach t? Deterministisch mit Breitensuche lösbar in Zeit O( V + E ). Erfordert allerdings auch Speicher Ω( V ). Algorithmus PATH EINGABE:

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 4 Komplexitätstheorie Zeitkomplexität 3 Definition: Sei

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 27.11.2018 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Die

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

NP-Vollständigkeit und der Satz von Cook und Levin

NP-Vollständigkeit und der Satz von Cook und Levin NP-Vollständigkeit und der Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 17. Dezember 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-18: Jenseits von P und NP 1/43 Organisatorisches Nächste (letzte) Vorlesung: Mittwoch,

Mehr

VL-17: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-17: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-17: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-17: Jenseits von P und NP 1/46 Organisatorisches Nächste (letzte) Vorlesung: Donnerstag,

Mehr

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016. FORMALE SYSTEME 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten Markus Krötzsch TU Dresden, 14. November 2016 Rückblick Markus Krötzsch, 14. November 2016 Formale Systeme Folie 2 von

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 e0926364@student.tuwien.ac.at 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +

Mehr

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei:

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei: Approximierbarkeit Ein Optimierungsproblem P ist gegeben durch ein Quadrupel wobei: P = (I, Sol, m, goal), I ist die Menge der Instanzen von P. Sol ist eine Funktion, die ein x I abbildet auf die Menge

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste (letzte) Vorlesung: Mittwoch, Januar 24, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Arbeitsheft zur NP-Vollständigkeit

Arbeitsheft zur NP-Vollständigkeit Arbeitsheft zur NP-Vollständigkeit (BuK / WS 2017 / RWTH Aachen) Gerhard J. Woeginger Dieses Arbeitsheft enthält einige Übungsaufgaben zur NP-Vollständigkeit. Jede Aufgabe besteht im Wesentlichen aus einem

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Klausur SoSe Juli 2013

Klausur SoSe Juli 2013 Universität Osnabrück / FB6 / Theoretische Informatik Prof. Dr. M. Chimani Informatik D: Einführung in die Theoretische Informatik Klausur SoSe 2013 11. Juli 2013 (Prüfungsnr. 1007049) Gruppe: Batman,

Mehr

Programmierpraktikum Algorithm Engineering (FPT-Algorithmen) Einführung

Programmierpraktikum Algorithm Engineering (FPT-Algorithmen) Einführung Programmierpraktikum Algorithm Engineering (FPT-Algorithmen) Einführung Martin Holzer Ignaz Rutter 31. Oktober 2008 Ansätze für NP-schwere Probleme 2/28 Approximative Lösungen Average-Case- statt Worst-Case-Analyse

Mehr

Lösungen zur Ergänzung 12

Lösungen zur Ergänzung 12 Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}.

Mehr

Rational Choice Theory

Rational Choice Theory Rational Choice Theory Rational Choice and Rationale Entscheidung ist eine Sammelbezeichnung für verschiedene Ansätze in den Wirtschafts- und Sozialwissenschaften. Generell schreiben diese Ansätze handelnden

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder Wie schwer ist SAT? Ziel: Nachweis, dass SAT eines der schwersten Probleme in NP ist: SAT ist das erste bekannte Beispiel eines NP-vollständigen Problems. Demnach kann SAT mit bisher bekannten Techniken

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr