Erweitern von Aqqu durch AutoSklearn

Größe: px
Ab Seite anzeigen:

Download "Erweitern von Aqqu durch AutoSklearn"

Transkript

1 Erweitern von Aqqu durch AutoSklearn Bachelorarbeit von Daniel Bindemann

2 Übersicht Motivation Funktionsweise von Auto-Sklearn Funktionsweise von Aqqu Ansatz Evaluation

3 Motivation What is the time zone in Japan? Who plays Mary Jane in the Spiderman Movies? What currency does France accept?

4 Motivation What is the time zone in Japan? Who plays Mary Jane in the Spiderman Movies? What currency does France accept? Wissendatenbanken enthalten Antwort - Entitäten (z.b. Japan und Mary Jane ) - Relationen (z.b. country.currency_used und location.time_zones )

5 Motivation SPARQL-Anfrage, welche Antwort findet auf Who plays Mary Jane in the Spiderman Movies? : SELECT DISTINCT?1 WHERE { "Mary Jane" film.film_character.portrayed_in_films?0.?0 film.performance.film "Spiderman".?0 film.performance.actor?1 }

6 Motivation SPARQL-Anfrage, welche Antwort findet auf Who plays Mary Jane in the Spiderman Movies? : SELECT DISTINCT?1 WHERE { "Mary Jane" film.film_character.portrayed_in_films?0.?0 film.performance.film "Spiderman".?0 film.performance.actor?1 } Sehr umständlich!

7 Motivation Aqqu Beantwortet natürlichsprachliche Fragen Maschinelles Lernen bildet zentralen Teil

8 Motivation Aqqu Beantwortet natürlichsprachliche Fragen Maschinelles Lernen bildet zentralen Teil Auto-sklearn System für automatisiertes maschinelles Lernen Optimiert Lernprozess ohne Parameterangabe

9 Motivation Aqqu Beantwortet natürlichsprachliche Fragen Maschinelles Lernen bildet zentralen Teil Auto-sklearn System für automatisiertes maschinelles Lernen Optimiert Lernprozess ohne Parameterangabe Ziel: Verbessern von Aqqu durch Auto-Sklearn

10 Auto-Sklearn Findet Konfiguration einer Pipeline: - Bis zu 3 Daten-Präprozessoren (von 4) - (Optionaler) Merkmalspräprozessor (von 14) - Ein Klassifikator (von 15)

11 Auto-Sklearn Findet Konfiguration einer Pipeline: - Bis zu 3 Daten-Präprozessoren (von 4) - (Optionaler) Merkmalspräprozessor (von 14) - Ein Klassifikator (von 15) Mehrdimensionales Optimierungsproblem (aus 110 Hyperparametern), gelöst durch Bayesian Optimization (SMAC)

12 Auto-Sklearn Findet Konfiguration einer Pipeline: - Bis zu 3 Daten-Präprozessoren (von 4) - (Optionaler) Merkmalspräprozessor (von 14) - Ein Klassifikator (von 15) Mehrdimensionales Optimierungsproblem (aus 110 Hyperparametern), gelöst durch Bayesian Optimization (SMAC) Meta-learning: Findet Start-Konfigurationen Ensemble-Selection: Kombinationen aus Modellen

13 Aqqu Natürlichsprachliche Frage SPARQL-Anfrage Schritte: 1) Finden von Entitäten ( Punktzahlen )

14 Aqqu Natürlichsprachliche Frage SPARQL-Anfrage Schritte: 1) Finden von Entitäten ( Punktzahlen ) 2) Generierung von Antwort-Kandidaten (= SPARQL-Anfrage)

15 Aqqu Natürlichsprachliche Frage SPARQL-Anfrage Schritte: 1) Finden von Entitäten ( Punktzahlen ) 2) Generierung von Antwort-Kandidaten (= SPARQL-Anfrage) 3) Bewertung der Relationen ( Punktzahlen )

16 Aqqu Natürlichsprachliche Frage SPARQL-Anfrage Schritte: 1) Finden von Entitäten ( Punktzahlen ) 2) Generierung von Antwort-Kandidaten (= SPARQL-Anfrage) 3) Bewertung der Relationen ( Punktzahlen ) Menge von Kandidaten mit jeweils Punktzahlen 4) Kandidaten Merkmalsvektoren

17 Aqqu Finde besten Kandidaten mit maschinellem Lernen auf Basis der Merkmalsvektoren 5) Pruning (Verwerfe irrelevante Kandidaten)

18 Aqqu Finde besten Kandidaten mit maschinellem Lernen auf Basis der Merkmalsvektoren 5) Pruning (Verwerfe irrelevante Kandidaten) 6) Ranking (Ordne Kandidaten nach Relevanz) - Punktweise: Bewerte jeden Kandidaten einzeln - Paarweise: Vergleiche Paare von Kandidaten (Trainiere auf Differenzen der Merkmalsvektoren)

19 Ansatz Verbessere Ranking mit Auto-Sklearn: SMAC und Ensemble-Selection evaluieren Konfigurationen bzw. Ensembles nach gewählter Metrik Gesucht: Metrik, welche nach der Anzahl korrekt beantworteter Fragen maximiert

20 Ansatz Standard-metrik: Accuracy = Anteil korrekt beantworteter Datenpunkte Datenpunkte = Antwort-Kandidaten bzw. Vergleiche zwischen Antwort-Kandidaten Datenpunkte gehören zu verschiedenen Fragen Accuracy % korrekt beantwortete Fragen

21 Ansatz Punktweise: Question-Accuracy-Exact Frage richtig gdw. korrekter Kandidat die beste Bewertung unter allen Kandidaten der Frage hat Question-Accuracy Frage richtig gdw. alle Kandidaten dazu richtig klassifiziert

22 Ansatz Punktweise: Question-Accuracy-Exact Frage richtig gdw. korrekter Kandidat die beste Bewertung unter allen Kandidaten der Frage hat Question-Accuracy Frage richtig gdw. alle Kandidaten dazu richtig klassifiziert Paarweise: Nur Question-Accuracy

23 Ansatz Punktweise: Question-Accuracy-Exact / Question-F1-Exact Frage richtig gdw. korrekter Kandidat die beste Bewertung unter allen Kandidaten der Frage hat Question-Accuracy Frage richtig gdw. alle Kandidaten dazu richtig klassifiziert Paarweise: Nur Question-Accuracy

24 Evaluation Datensätze mit Antworten und Fragen - Free917: 917 Fragen, Accuracy - WebQuestions: 5,810 Fragen, mittlerer F1 (Hier: Teilmenge von 1059 Fragen)

25 Evaluation 12 Free917 (Accuracy) WebQuestions (F1) 10 Punktweise Paarweise Punktweise Paarweise 8 Nur Aqqu 59,06 65,22 42,46 46,17 6 Standard- Accuracy 4 Question- 2 Accuracy Question- 0 Acc- / F1- Exact Row 1 Row 2 Row 3 Row 4 Column 1 Column 2 Column 3 66,30 66,24 43,82 46,92 62,32 66,61 43,17 46,72 61,05-40,39 -

26 Evaluation 12 Free917 (Accuracy) WebQuestions (F1) 10 Punktweise Paarweise Punktweise Paarweise 8 Nur Aqqu 59,06 65,22 42,46 46,17 6 Standard- Accuracy 4 Question- 2 Accuracy Question- 0 Acc- / F1- Exact Row 1 Row 2 Row 3 Row 4 Column 1 Column 2 Column 3 66,30 66,24 43,82 46,92 62,32 66,61 43,17 46,72 61,05-40,39 -

27 Evaluation 12 Free917 (Accuracy) WebQuestions (F1) 10 Punktweise Paarweise Punktweise Paarweise 8 Nur Aqqu 59,06 65,22 42,46 46,17 6 Standard- Accuracy 4 Question- 2 Accuracy Question- 0 Acc- / F1- Exact Row 1 Row 2 Row 3 Row 4 Column 1 Column 2 Column 3 66,30 66,24 43,82 46,92 62,32 66,61 43,17 46,72 61,05-40,39 -

28 Evaluation 12 Free917 (Accuracy) WebQuestions (F1) 10 Punktweise Paarweise Punktweise Paarweise 8 Nur Aqqu 59,06 65,22 42,46 46,17 6 Standard- Accuracy 4 Question- 2 Accuracy Question- 0 Acc- / F1- Exact Row 1 Row 2 Row 3 Row 4 Column 1 Column 2 Column 3 66,30 66,24 43,82 46,92 62,32 66,61 43,17 46,72 61,05-40,39 -

29 Evaluation Paarweise ist immer besser als Punktweise Auto-Sklearn verbessert unter Standard-Metrik immer die Ergebnisse Angepasste Metriken liefern fast immer schlechtere Ergebnisse, beim bevorzugten paarweisen Ranking fast die selben

Erweitern von Aqqu durch AutoSklearn. Daniel Bindemann

Erweitern von Aqqu durch AutoSklearn. Daniel Bindemann Bachelorarbeit Erweitern von Aqqu durch AutoSklearn Daniel Bindemann 1. Gutachter: Prof. Dr. Hannah Bast 2. Gutachter: Prof. Dr. Frank Hutter Albert-Ludwigs-Universität Freiburg Technische Fakultät Institut

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

Extended Question Answering on Freebase

Extended Question Answering on Freebase Bachelorarbeit Extended Question Answering on Freebase Matthias Urban Sommersemester 2016 Albert-Ludwigs-Universität Freiburg Technische Fakultät Lehrstuhl für Algorithmen und Datenstrukturen Lehrstuhlinhaberin:

Mehr

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38 Planen and Evaluieren von Machine Learning Eperimenten Marina Sedinkina Folien von Benjamin Roth CIS LMU München Evaluieren von Machine Learning Eperimenten 1 / 38 Übersicht 1 Entwickeln von maschinellen

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Named Entity Recognition auf Basis von Wortlisten

Named Entity Recognition auf Basis von Wortlisten Named Entity Recognition auf Basis von Wortlisten EDM SS 2017 Lukas Abegg & Tom Schilling Named Entity Recognition auf Basis von Wortlisten Lukas Abegg - Humboldt Universität zu Berlin Tom Schilling -

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Data Cube Katharina Morik, Uwe Ligges Informatik LS 8 22.04.2010 1 von 26 Gliederung 1 Einführung 2 Aggregation in SQL, GROUP BY 3 Probleme mit GROUP BY 4 Der

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Gliederung Vorlesung Wissensentdeckung in Datenbanken Data Cube Katharina Morik, Claus Weihs 14.07.2009 1 Einführung 2 Aggregation in SQL, GROUP BY 3 Probleme mit GROUP BY 4 Der Cube-Operator 5 Implementierung

Mehr

Information Retrieval und Question Answering

Information Retrieval und Question Answering und Question Answering Kai Kugler 19. November 2009 Auffinden von relevantem Wissen Die Relevanz der aufzufindenden Information ist abhängig vom... aktuellen Wissen des Benutzers dem aktuellen Problem

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Data Cubes PG Wissensmangement Seminarphase

Data Cubes PG Wissensmangement Seminarphase PG 402 - Wissensmangement Seminarphase 23.10.2001-25.10.2001 Hanna Köpcke Lehrstuhl für Künstliche Intelligenz Universität Dortmund Übersicht 1. Einführung 2. Aggregation in SQL, GROUP BY 3. Probleme mit

Mehr

Diskriminatives syntaktisches Reranking für SMT

Diskriminatives syntaktisches Reranking für SMT Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung

Mehr

Data Cube. 1. Einführung. 2. Aggregation in SQL, GROUP BY. 3. Probleme mit GROUP BY. 4. Der Cube-Operator. 5. Implementierung des Data Cube

Data Cube. 1. Einführung. 2. Aggregation in SQL, GROUP BY. 3. Probleme mit GROUP BY. 4. Der Cube-Operator. 5. Implementierung des Data Cube Data Cube 1. Einführung 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator 5. Implementierung des Data Cube 6. Zusammenfassung und Ausblick Dank an Hanna Köpcke! 1 On-line Analytical

Mehr

Samuel's Checkers Program

Samuel's Checkers Program Samuel's Checkers Program Seminar: Knowledge Engineering und Lernen in Spielen 29.06.2004 Ge Hyun Nam Überblick Einleitung Basis Dame-Programm Maschinelles Lernen Auswendiglernen Verallgemeinerndes Lernen

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

Automated Feature Generation from Structured Knowledge Seminar aus maschinellem Lernen WS 11/12 Dr. Heiko Paulheim, Frederik Janssen

Automated Feature Generation from Structured Knowledge Seminar aus maschinellem Lernen WS 11/12 Dr. Heiko Paulheim, Frederik Janssen Automated Feature Generation from Structured Knowledge Seminar aus maschinellem Lernen WS 11/12 Dr. Heiko Paulheim, Frederik Janssen 13.12.2011 Automated Feature Generation from Structured Knowledge Johanna

Mehr

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Mark Reinke Bachelorarbeit TU Dresden 17. Februar 2014 Webtabellen Warum sind Webtabellen von Bedeutung? Sie können relationale

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Klausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz Technische Universität Darmstadt Wintersemester 2014/15 Termin: 17. 2. 2015 Name: Vorname: Matrikelnummer: Fachrichtung:

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.

DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort. 1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.ONR) Jugendherberge(JNR, Name, Ort Ort.ONR, Manager Person.PNR) Ort(ONR,

Mehr

Praktische Erfahrungen mit der statistischen Auswertung von Ereignisdaten

Praktische Erfahrungen mit der statistischen Auswertung von Ereignisdaten Praktische Erfahrungen mit der statistischen Auswertung von Ereignisdaten Geltmar von Buxhoeveden (iva), Roman Slovák (BAV) Überblick Motivation, generelle Anforderungen Methodische Anforderungen an Analyse

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus 3. Klassifikation Motivation Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus Beispiel: Bestimme die Herkunft eines Autos

Mehr

Maschinelle Sprachverarbeitung Übung

Maschinelle Sprachverarbeitung Übung Maschinelle Sprachverarbeitung Übung Aufgabe 3: SPAM-Klassifikation Mario Sänger Aufgabe Rund 50% des weltweiten Email-Verkehrs ist Spam* Spam- und Phishing-Mails stellen eines der größten Sicherheitsrisiken

Mehr

Klassifikation von Textabschnitten

Klassifikation von Textabschnitten Klassifikation von Textabschnitten Am Beispiel von Stellenanzeigen (JASC - Job Ads Section Classifier) Gliederung 1. Einführung: Zu welchem Zweck machen wir das? 2. Klassifikation ein kurzer Überblick

Mehr

KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM

KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM VOR NACH MATRIKELNUMMER: STUDIENGANG: B.Sc. Computerlinguistik, B.Sc. Informatik,

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos mit den Mengen pos von Positionen (Adressen) col von Farben, Intensitäten Aufgaben maschineller Bildverarbeitung: Erzeugung, Wiedergabe,

Mehr

1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung)

1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung) 1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Hafen(HNR, Ort, Grundsteinlegung) Matrose(MNR, Nachname, Geburtsdatum, Ausbildungsort Hafen.HNR) Schi(SNR, Name, Bruttoregistertonnen,

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Seminar für Computerlinguistik Logik in der Praxis Lyubov Nakryyko

Seminar für Computerlinguistik Logik in der Praxis Lyubov Nakryyko Seminar für Computerlinguistik Logik in der Praxis Lyubov Nakryyko Einführung Globale Entitäten/ Relationeninferenz Berechnungsverfahren Experimente Verbesserungsvorschläge Erkennung und Klassifikation

Mehr

Lexikalisch-semantische Disambiguierung mit WordNet

Lexikalisch-semantische Disambiguierung mit WordNet Lexikalische Semantik Lexikalisch-semantische Disambiguierung mit WordNet Conrad Steffens Paper: Rada Mihalcea & Dan I. Moldovan: A Method for Word Sense Disambiguation of Unrestricted Text Lexikalisch-semantische

Mehr

Informationssysteme für Ingenieure

Informationssysteme für Ingenieure Informationssysteme für Ingenieure Vorlesung Herbstsemester 2016 Überblick und Organisation R. Marti Organisation Web Site: http://isi.inf.ethz.ch Dozent: Robert Marti, martir ethz.ch Assistenz:??

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 10 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Schlüssel. Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1

Schlüssel. Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1 Schlüssel Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1 und t 2 r gilt: - t 1 (K) t 2 (K) und - keine echte Teilmenge K'

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle. Seminar 2 SQL - DML(Data Manipulation Language) und DDL(Data Definition Language) Befehle. DML Befehle Aggregatfunktionen - werden auf eine Menge von Tupeln angewendet - Verdichtung einzelner Tupeln yu

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung INTELLIGENTE DATENANALYSE IN MATLAB Zusammenfassung Überwachtes Lernen Gegeben: Trainingsdaten mit bekannten Zielattributen (gelabelte Daten). Eingabe: Instanz (Objekt, Beispiel, Datenpunkt, Merkmalsvektor)

Mehr

Bring your own Schufa!

Bring your own Schufa! Bring your own Schufa! Jan Schweda Senior Softwareengineer Web & Cloud jan.schweda@conplement.de @jschweda Ziele des Vortrags Die Möglichkeiten von maschinellem Lernen aufzeigen. Azure Machine Learning

Mehr

Learning to Rank Sven Münnich

Learning to Rank Sven Münnich Learning to Rank Sven Münnich 06.12.12 Fachbereich 20 Seminar Recommendersysteme Sven Münnich 1 Übersicht 1. Einführung 2. Methoden 3. Anwendungen 4. Zusammenfassung & Fazit 06.12.12 Fachbereich 20 Seminar

Mehr

Themen für Bachelorprojekte und Bachelorarbeiten Lehrstuhl Prof. Dr. Pohl, Software Systems Engineering

Themen für Bachelorprojekte und Bachelorarbeiten Lehrstuhl Prof. Dr. Pohl, Software Systems Engineering Themen für Bachelorprojekte und Bachelorarbeiten Lehrstuhl Prof. Dr. Pohl, Software Systems Engineering 11.07.2018 Vergleich von Metriken zur Bewertung der Genauigkeit binärer Prozessprognosen anhand eines

Mehr

Instrumente zur Bewertung von Schulungen

Instrumente zur Bewertung von Schulungen Instrumente zur Bewertung von Schulungen Diskussionsforum: Qualität in der Patientenschulung und generische Ansätze Andrea C. Schöpf Institut für Qualitätsmanagement und Sozialmedizin Bewertung von Schulungen

Mehr

Verknüpfte Daten abfragen mit SPARQL. Thomas Tikwinski, W3C.DE/AT

Verknüpfte Daten abfragen mit SPARQL. Thomas Tikwinski, W3C.DE/AT Verknüpfte Daten abfragen mit SPARQL Thomas Tikwinski, W3C.DE/AT Agenda SPARQL Eine Anfragesprache für RDF Was ist eine SPARQL-Abfrage? Beispiel Arbeiten mit Variablen Komplexere Anfragen Filtern und sortieren

Mehr

Information-Retrieval: Evaluation

Information-Retrieval: Evaluation Information-Retrieval: Evaluation Claes Neuefeind Fabian Steeg 17. Dezember 2009 Themen des Seminars Boolesches Retrieval-Modell (IIR 1) Datenstrukturen (IIR 2) Tolerantes Retrieval (IIR 3) Vektorraum-Modell

Mehr

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS DATENMODELLIERUNG (184.685) GRUPPE A MUSTERLÖSUNG 06.05.2014 Matrikelnr.

Mehr

HOT TOPICS IN CYBERSECURITY

HOT TOPICS IN CYBERSECURITY HOT TOPICS IN CYBERSECURITY Claudia Eckert, TU München und Fraunhofer AISEC Sprecherin der Themenplattform Cybersicherheit im ZD.B Industrial Hardware Embedded Cloud Automotive Evaluation Secure System

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Datenbanken 1. Sommersemester Übung 2

Datenbanken 1. Sommersemester Übung 2 Datenbanken 1 Sommersemester 2017 Übung 2 Übersicht Aufgabe 1: Mengen vs. Multimengen (Grundlagen) Aufgabe 2: ER-Diag. und rel. Schema (binäre Beziehung) Aufgabe 3: ER-Diag. und rel. Schema (ternär Beziehung)

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Oracle 9i Einführung Performance Tuning

Oracle 9i Einführung Performance Tuning Kurs Oracle 9i Einführung Performance Tuning Teil 3 Der Optimizer Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 16 Seite 1 von 16 1. auf Tabellen 2. 3. Optimizer 4. Optimizer RBO 5. Optimizer CBO 6.

Mehr

Wechselkursenprognosen mit Methoden der künstlichen Intelligenz

Wechselkursenprognosen mit Methoden der künstlichen Intelligenz Wechselkursenprognosen mit Methoden der künstlichen Intelligenz Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft der Wirtschaftswissenschaftlichen

Mehr

Efficient Learning of Label Ranking by Soft Projections onto Polyhedra

Efficient Learning of Label Ranking by Soft Projections onto Polyhedra Efficient Learning of Label Ranking by Soft Projections onto Polyhedra Technische Universität Darmstadt 18. Januar 2008 Szenario Notation duales Problem Weitere Schritte Voraussetzungen Tests Szenario

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 3.2.2 bis 3.3 besser zu verstehen. Auswertung und Lösung Abgaben: 81 / 265 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.28 Frage

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

English grammar BLOCK F:

English grammar BLOCK F: Grammatik der englischen Sprache UNIT 24 2. Klasse Seite 1 von 13 English grammar BLOCK F: UNIT 21 Say it more politely Kennzeichen der Modalverben May and can Adverbs of manner Irregular adverbs Synonyms

Mehr

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ]

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ] Detaillierte Testergebnisse für Testdurchlauf 1 1. Fundamentals of Processes: Core Processes [ID: 1430232] English: Which of the following statements usually refer to a critical (core) process of a company?

Mehr

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ]

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ] Detaillierte Testergebnisse für Testdurchlauf 1 1. Fundamentals of Processes: Core Processes [ID: 1430232] English: Which of the following statements usually refer to a critical (core) process of a company?

Mehr

Der Satz vom Diktator

Der Satz vom Diktator Prof. Dr. Michael Eisermann Institut für Geometrie und Topologie Der Satz vom Diktator Kenneth Arrows geniale Antwort auf die Frage Wie schreibe ich meine Doktorarbeit in fünf Tagen und erhalte dafür den

Mehr

Vorlesung Suchmaschinen Semesterklausur Sommersemester 2015

Vorlesung Suchmaschinen Semesterklausur Sommersemester 2015 Universität Augsburg, Institut für Informatik Sommersemester 2015 Prof. Dr. W. Kießling 15. Juli 2015 F. Wenzel, L. Rudenko Suchmaschinen Vorlesung Suchmaschinen Semesterklausur Sommersemester 2015 Hinweise:

Mehr

Sicherheits-Kennzahlen in der Praxis

Sicherheits-Kennzahlen in der Praxis Sicherheits-Kennzahlen in der Praxis Matthias Hofherr, Shikha Shahi 25. DFN-Konferenz, 28.02.2018 atsec öffentlich atsec information security, 2018 Kennzahlen, Metriken, KPIs Was ist das? Metrik: Die Erhebung

Mehr

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ]

1. Fundamentals of Processes: Core Processes [ID: ] 2. Fundamentals of Processes: Core Processes [ID: ] Detaillierte Testergebnisse für Testdurchlauf 1 1. Fundamentals of Processes: Core Processes [ID: 1430232] English: Which of the following statements usually refer to a critical (core) process of a company?

Mehr

Vorlesung Suchmaschinen Semesterklausur Sommersemester 2016

Vorlesung Suchmaschinen Semesterklausur Sommersemester 2016 Universität Augsburg, Institut für Informatik Sommersemester 2016 Prof. Dr. W. Kießling 12. Juli 2016 Dr. F. Wenzel, L. Rudenko Suchmaschinen Vorlesung Suchmaschinen Semesterklausur Sommersemester 2016

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Evaluation zum Thema Modellierung von Algorithmen aus Abläufen

Evaluation zum Thema Modellierung von Algorithmen aus Abläufen Evaluation zum Thema Modellierung von Algorithmen aus Abläufen Leo von Klenze Katholische Universität Eichstätt-Ingolstadt 12. und 14. Mai 2009 1 Ziel der Evaluation Ziel der Evaluation ist es, herauszunden,

Mehr

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen 1 22.06.16 Kognitive Systeme Übung 2 22.06.2016 Klassifikation und Spracherkennung Matthias Sperber, Thai Son Nguyen KIT, Institute for Anthropomatics

Mehr

Datenmanagement I SoSe 2006 Aufgabenblatt 4

Datenmanagement I SoSe 2006 Aufgabenblatt 4 Datenmanagement I SoSe 2006 Aufgabenblatt 4 June 11, 2009 Versuchen Sie, einige der Anfragen zu formulieren (ab Punkt 6), die im Tutorium stehen, das hier zu finden ist: http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/dm/tut/tutorium.html.

Mehr

Voraussetzungen und Anwendungspotentiale einer präzisen Sacherschließung aus Sicht der Wissenschaft

Voraussetzungen und Anwendungspotentiale einer präzisen Sacherschließung aus Sicht der Wissenschaft Voraussetzungen und Anwendungspotentiale einer präzisen Sacherschließung aus Sicht der Wissenschaft Dr. Anna Kasprzik Kiel, 29. August 2018 GBV-Verbundkonferenz http://geek-and-poke.com/ What is metadata?

Mehr

Focusing Search in Multiobjective Evolutionary Optimization through Preference Learning from User Feedback

Focusing Search in Multiobjective Evolutionary Optimization through Preference Learning from User Feedback Focusing Search in Multiobjective Evolutionary Optimization through Preference Learning from User Feedback Thomas Fober Weiwei Cheng Eyke Hüllermeier AG Knowledge Engineering & Bioinformatics Fachbereich

Mehr

Accountability in Algorithmic. Decision Making.

Accountability in Algorithmic. Decision Making. Accountability in Algorithmic Decision Making Vural Mert, Larcher Daniel 1. Juni 2016 Zusammenfassung Diese Seminararbeit gibt einen kurzen Überblick über die Algorithmische Entscheidungsfindung, deren

Mehr

Information und Produktion. Rolland Brunec Seminar Wissen

Information und Produktion. Rolland Brunec Seminar Wissen Information und Produktion Rolland Brunec Seminar Wissen Einführung Informationssystem Einfluss des Internets auf Organisation Wissens-Ko-Produktion Informationssystem (IS) Soziotechnisches System Dient

Mehr

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt Maschinelles Lernen: Symbolische Ansätze Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt 1 Aufgabe 1 Nearest Neighbour Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity

Mehr

Linked Open Data & Bibliotheken Warum? Was? Wie? FIS Fachtagung, Frankfurt/Main 22. Mai 2012 Adrian Pohl

Linked Open Data & Bibliotheken Warum? Was? Wie? FIS Fachtagung, Frankfurt/Main 22. Mai 2012 Adrian Pohl Linked Open Data & Bibliotheken Warum? Was? Wie? FIS Fachtagung, Frankfurt/Main 22. Mai 2012 Adrian Pohl 2 3 4 5 Was steckt dahinter? 6 Agenda 1. Warum Linked Open Data? 2. Linked Data

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters Brad Johanson, Riccardo Poli Seminarvortrag von Thomas Arnold G ˇ ˇ ˇ ˇ WS 2012/13 TU Darmstadt Seminar

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6

Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6 Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6 Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M. Franke DBS1 Blatt 4 Mitschreibbar 2 Welche Autoren

Mehr

SQL: Abfragen für einzelne Tabellen

SQL: Abfragen für einzelne Tabellen Musterlösungen zu LOTS SQL: Abfragen für einzelne Tabellen Die Aufgaben lösen Sie mit dem SQL-Training-Tool LOTS der Universität Leipzig: http://lots.uni-leipzig.de:8080/sql-training/ Wir betrachten für

Mehr

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL)

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Visuelle Lenkassistenz für Fahrzeuge mit Einachsanhänger

Visuelle Lenkassistenz für Fahrzeuge mit Einachsanhänger Visuelle Lenkassistenz für Fahrzeuge mit Einachsanhänger PEARL 2006 Echtzeit im Alltag Dieter Zöbel, Uwe Berg, Gliederung Motivation Fahrerunterstützung durch optisches Lenkassistenzsystem Trajektorien

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Learning regular sets from queries and counterexamples

Learning regular sets from queries and counterexamples Learning regular sets from queries and countereamples Seminar: Spezialthemen der Verifikation H.-Christian Estler estler@upb.de 7..28 Universität Paderborn Motivation Wie können wir Unbekanntes erlernen?

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Wir haben folgende Ausprägung der Relation Studenten:

Wir haben folgende Ausprägung der Relation Studenten: Übungen Aufgabe 1 Wir haben folgende Ausprägung der Relation Studenten: SID Name Email Age Note 2833 Jones jones@scs.ubbcluj.ro 19 9 2877 Smith smith@scs.ubbcluj.ro 20 8 2976 Jones jones@math.ubbcluj.ro

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Decision-Tree-Klassifikator

Decision-Tree-Klassifikator D3kjd3Di38lk323nnm Decision-Tree-Klassifikator Decision Trees haben einige Vorteile gegenüber den beiden schon beschriebenen Klassifikationsmethoden. Man benötigt in der Regel keine so aufwendige Vorverarbeitung

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Anwendungen der KI / SoSe 2018

Anwendungen der KI / SoSe 2018 Anwendungen der KI / SoSe 2018 Organisatorisches Prof. Dr. Adrian Ulges Angewandte Informatik / Medieninformatik / Wirtschaftsinformatik / ITS Fachbereich DSCM Hochschule RheinMain KursWebsite: www.ulges.de

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr