Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
|
|
|
- Margarete Dieter
- vor 6 Jahren
- Abrufe
Transkript
1 Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection P. Belhumeur, J. Hespanha, D. Kriegman IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, July 1997 Visuelle Überwachung - Gesichtserkennung Marco Kortkamp 17. Ma / 18
2 1 Ziel Schwierigkeiten 2 2 / 18
3 Ziel der Gesichtserkennung Ziel Schwierigkeiten automatische Zuordnung eines Gesichtsbildes zu einer Person bzw. Rückweisung 3 / 18
4 Ziel Schwierigkeiten Schwierigkeiten der Gesichtserkennung Schwierigkeiten ergeben sich durch Variationen verschiedener Parameter: Kopfpose Beleuchtung (Intensität, Lage und Anzahl der Lichtquellen) Alterung Gesichtsausdrücke Größe des Bildes Verkleidungen (Brillen, Hüte etc.) Verdeckungen schlechte Bildqualität (Unschärfe etc.) 4 / 18
5 Schwierigkeiten der Evaluation Ziel Schwierigkeiten Vergleich von Verfahren schwierig da: unterschiedliche Evaluationen der Verfahren in Publikationen unterschiedliche Annahmen der Verfahren 5 / 18
6 Paper in einem Satz Paper beschreibt (damals) neuen Ansatz zur Gesichtserkennung Verwendung der Fisher Diskriminanzanalyse Unempfindlichkeit gegen relativ große Variationen der Beleuchtung und von Gesichtsausdrücken 6 / 18
7 in Bezug auf Seminar bzw. praktischen Einsatz Visuelle Überwachung Video-Daten Verfahren nicht explizit für Gesichtserkennung auf Video-Daten Anwendung des Verfahrens auf einzelne Bilder der Sequenz 7 / 18
8 in Bezug auf Seminar bzw. praktischen Einsatz Visuelle Überwachung Video-Daten Verfahren nicht explizit für Gesichtserkennung auf Video-Daten Anwendung des Verfahrens auf einzelne Bilder der Sequenz Visuelle Überwachung unkontrollierte Umgebungen fordert robustes Verfahren Verfahren trifft viele Annahmen versucht mit einem Teil der Variation umzugehen in komplexen realen Umgebungen ungeeignet 7 / 18
9 Annahmen jeder Pixel eines M N Bildes ist Koordinate in M N dimensionalen Vektorraum (Bildraum) Gesichter sind bereits detektiert (ggfs. normalisiert) verwendete Bilder: Grauwertbilder gleicher Größe Kopfose variiert nicht im Grunde: keine anderen Variationen bis auf Beleuchtung und Gesichtsausdrücke 8 / 18
10 Klassifikation alle Verfahren verwenden Nächster-Nachbar-Klassifikator (NNK) Merkmalsvektor wird der Klasse zugeordnet, die das nächstgelegene Stichprobenelement besitzt es werden vier Verfahren Verglichen; hier nur Eigenfaces und Fisherfaces 9 / 18
11 Eigenfaces Dimensionsreduktion mit Hauptkomponentenanalyse (PCA) PCA lässt sich durch eine Transformationsmatrix angeben, die aus den Eigenvektoren der Kovarianzmatrix gebildet wird PCA maximiert Varianz aller projezierten Trainingsbilder 10 / 18
12 Eigenfaces Eigenfaces sind Eigenvektoren der Kovarianzmatrix man verwendet die Eigenvektoren, die die m größten Eigenwerte haben 11 / 18
13 Fisherfaces Verwendung der Fisher Diskriminanzanalyse (FLD) zur Dimensionsreduktion FLD benutzt Klassenlabels der Bilder Wahl der Transformationsmatrix, so dass Intraklassenvarianz minimiert und Interklassenvarianz maximiert 12 / 18
14 Fisherfaces erhalt der Unterscheidbarkeit; wegprojezieren von Variationen FLD bessere Ergebnisse als PCA 13 / 18
15 Fisherfaces Fisherfaces sind Eingenvektoren der Intraklassen-Kovarianzmatrix und der Interklassen-Kovarianzmatrix man verwendet die Eigenvektoren, die die m größten Eigenwerte haben 14 / 18
16 Ergebnisse evaluiert auf zwei Datenbanken 330 Bilder von 5 Personen; 160 Bilder von 16 Personen In a Nutshell: Variationen Beleuchtung: Fisherfaces am besten, Linear Subspaces knapp dahinter Variationen Beleuchtung und Gesichtsausdrücke: Fisherfaces rel. klar vorne 15 / 18
17 Lob: gut erklärt, warum Einsatz der FLD zur Gesichtserkennung Sinn macht und warum FLD bessere Ergebnisse als PCA 16 / 18
18 Lob: Kritik: gut erklärt, warum Einsatz der FLD zur Gesichtserkennung Sinn macht und warum FLD bessere Ergebnisse als PCA Evaluierung auf zu kleiner Datenbank Evaluation unter extremen Bedingungen im Hinblick auf Praxis: Erweiterbarkeit zum Umgang mit anderen Variationen (z.b. Kopfpose) 16 / 18
19 Lob: Kritik: gut erklärt, warum Einsatz der FLD zur Gesichtserkennung Sinn macht und warum FLD bessere Ergebnisse als PCA Evaluierung auf zu kleiner Datenbank Evaluation unter extremen Bedingungen im Hinblick auf Praxis: Erweiterbarkeit zum Umgang mit anderen Variationen (z.b. Kopfpose) Alternativen: heute ehr nicht lineare Transformationen (wie Kernel PCA) 16 / 18
20 Fazit: Paper heute noch immer gut zu lesen; bietet traditionelles Verfahren zur Gesichtserkennung allerdings: für praktischen Einsatz in unkontrollierten Umgebungen zu viele Annahmen 17 / 18
21 Fragen? 18 / 18
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection Peter N. Belhumeur, João P. Hespanha, David J. Kriegman IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
Multimedia-Metadaten und ihre Anwendung
Multimedia-Metadaten und ihre Anwendung 14.02.2006 Automatische Gesichtserkennung Dominikus Baur Gesichtserkennung in MPEG-7 MPEG-7 bietet Face Descriptor zur Beschreibung von Gesichtern Im Folgenden:
Principal Component Analysis (PCA)
Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen
Statistik, Datenanalyse und Simulation
Dr. Michael O. Distler [email protected] Mainz, 12. Juli 2011 Gesichtserkennung Begriffsunterscheidung: Lokalisation eines Gesichts im Bild Zuordnung des Gesichts zu einer bestimmten Person Technische
Statistik, Datenanalyse und Simulation
Dr. Michael O. Distler [email protected] Mainz, 5. Juli 2011 Zunächst: PCA (Hauptkomponentenanalyse) ist eine mathematische Prozedur, die eine Anzahl von (möglicherweise korrelierten) Variablen
1. Referenzpunkt Transformation
2.3 Featurereduktion Idee: Anstatt Features einfach wegzulassen, generiere einen neuen niedrigdimensionalen Featureraum aus allen Features: Redundante Features können zusammengefasst werden Irrelevantere
Mustererkennung. Merkmalsreduktion. R. Neubecker, WS 2016 / Übersicht
Mustererkennung Merkmalsreduktion R. Neubecker, WS 2016 / 2017 Übersicht 2 Merkmale Principal Component Analysis: Konzept Mathematische Formulierung Anwendung Eigengesichter 1 Merkmale 3 (Zu) Viele Merkmale
Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces
EFME-Zusammenfassusng WS11 Kurze Fragen: Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces Unter welcher Bedingung konvergiert der Online Perceptron Algorithmus?
Anwendungen der Hauptkomponentenanalyse. Volker Tresp vertreten durch Florian Steinke
Anwendungen der Hauptkomponentenanalyse Volker Tresp vertreten durch Florian Steinke 1 Dimensionsreduktion für Supervised Learning 2 Beispiel: Kaufentscheidung 3 Verbesserte Abstandsmaße durch Hauptkomponentenanalyse
PCA based feature fusion
PCA based feature fusion Seminar Inhaltsbasierte Bildsuche WS 04/05 Übersicht Motivation: PCA an einem Beispiel PCA in der Bildsuche Tests Zusammenfassung / Ausblick Diskussion / Demo 2 Motivation: PCA
SEMINAR AUTOMATISCHE GESICHTSERKENNUNG
SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR AUTOMATISCHE ANALYSE VON GESICHTSAUSDRÜCKEN Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide
Lineare Klassifikatoren
Lineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 8 1 M. O. Franz 06.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht 1 Nächste-Nachbarn-
BMI. Der P300-Speller. Alexander Schulz Der P300-Speller. Übersicht. Einleitung. Verarbeitung & Klassifikation. Experiment 1.
16.12.09 1 2 3 4 5 P300 Grundlagen Versuchsaufbau Wiederholung Evoziertes Potential (Event-related potential oder ERP) P300 Grundlagen Versuchsaufbau Wiederholung Evoziertes Potential (Event-related potential
Vorlesung Digitale Bildverarbeitung Sommersemester 2013
Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches
Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik.
Harald Hauptseminarpräsentation Kirschenmann Personenerkennung 1 Inhaltsübersicht Motivation Grundlagen Benchmark Eigene Gesichtserkennung 2 Motivation Baustein einer Microservice Architektur Personenerkennung
REIHE INFORMATIK TR Gesichtserkennung in Bildern und Videos mit Hilfe von Eigenfaces
Technical Report TR-05-008, Mathematics and Computer Science Department, University of Mannheim, September 2005 by Stephan Kopf, Alexander Oertel REIHE INFORMATIK TR-05-008 Gesichtserkennung in Bildern
Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung
Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator
Unüberwachtes Lernen
Unüberwachtes Lernen Mustererkennung und Klassifikation, Vorlesung No. 12 M. O. Franz 17.01.2008 Übersicht 1 Hauptkomponentenanalyse 2 Nichtlineare Hauptkomponentenanalyse 3 K-Means-Clustering Übersicht
Support Vector Machines, Kernels
Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen
Erkennung von Fußgängern
Erkennung von Fußgängern Sensoren Radar Laserscanner Kameras sichtbares Spektrum Infrarot Verwandte Forschungsgebiete Automatische Überwachung oft feste Kamera Wiedererkennung von Personen Interesse an
Lineare Methoden zur Klassifizierung
Lineare Methoden zur Klassifizierung Kapitel 3 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität
One-class Support Vector Machines
One-class Support Vector Machines Seminar Wissensbasierte Systeme Dietrich Derksen 3. Januar 204 Motivation One-class Support Vector Machines: Detektion von Ausreißern (Systemfehlererkennung) Klassifikation
Automatische Gesichtserkennung an der Haustür
Automatische Gesichtserkennung an der Haustür Robert Malz Hochschule Bonn-Rhein-Sieg Fachbereich Informatik Email: [email protected] Idris Nawid Hochschule Bonn-Rhein-Sieg Fachbereich Informatik
Multivariate Analysemethoden
Multivariate Analysemethoden Günter Meinhardt Johannes Gutenberg Universität Mainz (DFA) Discriminant Function Analysis (DFA) Klassifikation Ziele Maximale Trennung von Gruppen auf einem gegebenem Set
Feature Selection / Preprocessing
1 Feature Selection / Preprocessing 2 Was ist Feature Selection? 3 Warum Feature Selection? Mehr Variablen führen nicht automatisch zu besseren Ergebnissen. Lernen von unwichtigen Daten Mehr Daten notwendig
Gesichtserkennung. Seminar Biometrische Identifikationsverfahren SoSe2004. Yasushi Tomii Steffen Scheer
Seminar Biometrische Identifikationsverfahren SoSe2004 Yasushi Tomii Steffen Scheer 1. Einleitung Bei der Gesichterkennung werden die charakteristischen Merkmale eines menschlichen Gesichtes verwendet
Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.
Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich
Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines
Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)
Gesichtsdetektierung und Gesichtserkennung
[ 1 / 103 ] Technische Universität Bergakademie Freiberg [email protected] Fakultät für Mathematik und Informatik Institut für Numerische Mathematik und Optimierung Spezialistenlager des GCG Halle, 15.01.2009
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
Gliederung: 1) Einleitung 2) Oberflächenvergleich 3) Objekterkennung
Using Spin Images for Efficient Object Recogition in Cluttered 3D Scenes (Effiziente Objekterkennung von ungeordneten 3D Szenen mithilfe von Spin Images) Gliederung: 1) Einleitung 2) Oberflächenvergleich
Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.
Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen
6. Lineare DGL-Systeme erster Ordnung
HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die
SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR NEURONALE NETZE FÜR COMPUTER VISION
PROSEMINAR COMPUTER VISION SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR NEURONALE NETZE FÜR COMPUTER VISION Organisation, Überblick, Themen Übersicht der heutigen Veranstaltung Organisatorisches
Bild-Erkennung & -Interpretation
Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung
Überblick. Classifying The Real World. Textkategorisierung. Textkategorisierung. Textkategorisierung (II)
Classifying The Real World Sebastian Bitzer ([email protected]) Sven Lauer ([email protected]) Seminar: Neuronale Netze University of Osnabrueck 10. 07. 2003 Anwendungen von Support Vector Machines Überblick
Pfinder: Real-Time Tracking of the Human Body
Pfinder: Real-Time Tracking of the Human Body Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland aus: IEEE Transactions on Pattern Analysis and Machine Intelligence (pp. 780-785) 12. April
Multivariate Analysemethoden
Multivariate Analysemethoden 8.04.008 Günter Meinhardt Johannes Gutenberg Universität Mainz (DFA) Discriminant Function Analysis (DFA) Klassifikation Ziele Maximale Trennung von Gruppen auf einem gegebenem
Principal Component Analysis (PCA) (aka Hauptkomponentenanalyse)
Principal Component Analysis (PCA) (aka Hauptkomponentenanalyse) Seminar für Statistik Markus Kalisch 25.11.2014 1 Unsupervised Learning Supervised Learning: Erkläre Zielgrösse durch erklärende Variablen
Automatische Gesichtsdetektion und Feinanalyse
Automatische Gesichtsdetektion und Feinanalyse 3. Wissenschaftstag Metropolregion Nürnberg 26. Mai 2009 Dipl.-Inf. (FH) Tobias Ruf [email protected] http://www.iis.fraunhofer.de Fraunhofer-Institut
Statistische Verfahren für das Data Mining in einem Industrieprojekt
Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: [email protected]
4. Segmentierung von Objekten Video - Inhaltsanalyse
4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder
Lineare Algebra und Datenwissenschaften in Ingenieur- und Informatikstudiengängen
Lineare Algebra und Datenwissenschaften in Ingenieur- und Informatikstudiengängen Heiko Knospe Technische Hochschule Köln [email protected] 6. September 26 / 2 Einleitung Das Management und die
Klassifikation und Ähnlichkeitssuche
Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Merkmale und Klassifikation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 1 Einordnung in die Inhalte der
Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator
Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen
BZQ II: Stochastikpraktikum
BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden
Oberflächennahe und ferne Gestenerkennung mittels 3D-Sensorik
Oberflächennahe und ferne Gestenerkennung mittels 3D-Sensorik 26.10.2016 Gliederung Gesten für Mensch-Maschine Interaktion Anwendungsszenario Interaktive Projektionssitzkiste Herausforderungen Lösungsansatz
Matrixzerlegungsalgorithmen in der Mensch-Maschine-Interaktion
Matrixzerlegungsalgorithmen in der Mensch-Maschine-Interaktion Dr.-Ing. Sven Hellbach S. Hellbach Matrixzerlegungsalgorithmen in der Mensch-Maschine-Interaktion 1 Inhalt (not necessary in order of appearance)
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Pareto optimale lineare Klassifikation
Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung
10.5 Maximum-Likelihood Klassifikation (I)
Klassifikation (I) Idee Für die Klassifikation sind wir interessiert an den bedingten Wahrscheinlichkeiten p(c i (x,y) D(x,y)). y Wenn man diese bedingten Wahrscheinlichkeiten kennt, dann ordnet man einem
Departement für Mathematik und Informatik Thomas Vetter
Lebenslauf 979-985 Studium Physik und Mathematik in Ulm 989 Promotion in Biophysik 99-993 PostDoc am M.I.T. USA 993-999 Max-Planck-Institut für biol. Kybernetik Tübingen 999-00 Professor für Computer Graphik
Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle
Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators
Kapitel 11 Eigenwerte und Eigenvektoren
Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare
Automatische Tumorerkennung bei unterschiedlichen Organen mittels Berechnung und Klassifikation von Texturmerkmalen
Automatische Tumorerkennung bei unterschiedlichen Organen mittels Berechnung und Klassifikation von Texturmerkmalen Thomas Wittenberg, Kurt Neubauer, Christian Küblbeck, Ignacio Permanyer, Robert Schmidt
Hauptseminar Machine Learning: Support Vector Machines, Kernels. Katja Kunze
Hauptseminar Machine Learning: Support Vector Machines, Kernels Katja Kunze 13.01.2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Grundlagen............................ 2 2 Lineare Seperation 5 2.1 Maximum
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 LK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1 4. SCHRITT: DEN RECHTEN WINKEL NACHWEISEN Ein
Hauptkomponenten-basierte Klassifikationsverfahren (PCA)
Hauptkomponenten-basierte Klassifikationsverfahren (PCA) Projektseminar: Wetterlagen und Feinstaub - Übung Dozent: Claudia Weitnauer Referent: Esther Oßwald, Julian Dare Datum: 30.05.2011 Übersicht 1 Einleitung
Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin
Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 60 Angewandte Multivariate Statistik Principal Components Analysis Standardisierte Linearkombination
Prof. J. Zhang [email protected]. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004
[email protected] Universität Hamburg AB Technische Aspekte Multimodaler Systeme [email protected] Inhaltsverzeichnis Kalibrierung einer Kamera: Grundkonzept...............344
1 Diskriminanzanalyse
Multivariate Lineare Modelle SS 2008 1 Diskriminanzanalyse 1. Entscheidungstheorie 2. DA für normalverteilte Merkmale 3. DA nach Fisher 1 Problemstellungen Jedes Subjekt kann einer von g Gruppen angehören
Vorstellung von Bewegung Berlin Brain Computer Interfaces (BBCI)
Vorstellung von Bewegung Berlin Brain Computer Interfaces (BBCI) Let the machines learn! Jela Ruhe, Sara Winter 02.12.2009 BMI Universität Bielefeld ౧ Gliederung 2 Einführung Methoden Experimente & Ergebnisse
Multivariate Statistik
Multivariate Statistik von Univ.-Prof. Dr. Rainer Schlittgen Oldenbourg Verlag München I Daten und ihre Beschreibung 1 1 Einführung 3 1.1 Fragestellungen 3 1.2 Datensituation 8 1.3 Literatur und Software
Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen
Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Seminar - Wintersemester 2010/2011 Fakultät Technik und Informatik Department Informatik Gregory Föll Übersicht Rückblick Stereo
INTELLIGENTE DATENANALYSE IN MATLAB
INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick
Neuronale Netze. Christian Böhm.
Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch
Sparse Hauptkomponentenanalyse
Sparse Referent: Thomas Klein-Heßling LMU München 20. Januar 2017 1 / 36 1 Einführung 2 3 4 5 2 / 36 Einführung Ziel: vorhandene Datenmenge verstehen Daten komprimieren Bei der Sparse (SPCA) handelt es
