Machine Learning. Kurzeinführung Erfahrungen in GIS

Größe: px
Ab Seite anzeigen:

Download "Machine Learning. Kurzeinführung Erfahrungen in GIS"

Transkript

1 Machine Learning Kurzeinführung Erfahrungen in GIS Bernd Torchala

2 Anlass advangeo prediction Seit über 10 Jahren entwickelt, angewandt und vertrieben Integriert bislang: Neuronale Netze, Weights of Evidence und Fuzzy Logic Es besteht Bedarf nach weiteren Verfahren, vor allem Random Forest Folie 2 Folie 2

3 Kurzeinführung: Arten des ML Einige gängige Verfahren: einfache statistische Regression: Lineare Regression Polynomiale Regression Logistische Regression Support Vector Machines (SVM) Entscheidungsbäume Decision Trees Random Forest Boosting Ada Boost Gradient Boosting Klassifikation z. B.: Bodenart, Landnutzung inkl. binär: ja/nein bzw. 1/0 Regression z. B.: C org Anteil (%) supervised learning unsupervised learning (Clustering) Neuronal Networks (KNN) Multilayer Perceptron (MLP) Convolutional Neuronal Networks (Objekterkennung in Bildern) Recurrent Neuronal Network (Rekursive Erkenntnisse, Abfolgen) Reinforcement Learning (in der Robotic, Spiele) Folie 3 Folie 3

4 Kurzeinführung: Das Grundprinzip Machine Learning besteht prinzipiell aus zwei Phasen 1. Training (des Modelles) Minimieren des Fehlers (loss, cost function), d. h. des Abstands: tatsächliche - errechnete Werte X t + y t Modell Vektor mit n samples Es gibt auch multinomial sampling! y ist n*k-matrix n*p Matrix, p features; n samples (unabhängige Variablen) - bekannte Fälle, Ereignisse, Punkte 2. Vorhersage Anwendung des Modells X v + Modell y v Vektor mit n samples (abhängige Variablen) - unbekannte Fälle) n*p Matrix, p features; n samples Folie 4 Folie 4

5 Kurzeinführung: Die Güte des Modells Güte des Modells: Validierung nach dem Training tuning: automatisch Validierungsdaten abtrennen test split, cross validation, Vergleich der Vorhersage mit a priori abgetrennten Test-Daten (Test-Set); bekannte Fälle, die nicht ins Training/in die Validierung eingeflossen sind. Güte-Größen: Klassifikation Precision (1 gut, 0 schlecht) Recall (1 gut, 0 schlecht) Accuracy / Gesamtgüte (1 gut, 0 schlecht) F1-Score (1 gut, 0 schlecht) confusion matrix Regression R2-Score (1 gute, negativ sehr schlecht) MAE (mean absolut error) MSE (mean squared error) RMSE (root MSE) Percent variance explained / Bestimmtheitsmaß Folie 5 Folie 5

6 Kurzeinführung: 2 typische Ansätze Lernansatz: Objekterkennung (Quelle: Bild oder Ton) X t y t Beispiel: Ziffern- Erkennung jedes Bild ist ein 30x30 0/1-Raster (900 Pixel) Bild 1 Bild 2 Bild 3 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel Ziffer Prediction: X v Bild y v Folie 6 Folie 6

7 Kurzeinführung: 2 typische Ansätze Lernansatz: Ereignis/Fall vorhersagen (Quelle: Analysedaten, Faktentabelle) Beispiel: organischer Kohlenstoff (C org) im Oberboden Punkt 1 Punkt 2 Punkt Slope Gaussian Curvatur Landnutzung Bodenarten DGM- Ableitungen Corg (%) ,3 0, , ,1-0, ,2... X t... y t Prediction: X v y v Punkt 5 8 9,3 0, ,9 oder für jede Zelle eines Rasters eine Zeile Folie 7 Folie 7

8 Eingabe- Layer Hidden- Layer Ausgabe- Layer Kurzeinführung: Prinzip künstl. neuronaler Netze Landnutzung Bodenart Slope Gaussian Curvatur weitere DGM- Ableitungen Training: X t - Zeilen Corg Prognose (Klasse) y t - Wert Ermitteln der Gewichte wi beim Minimieren des Quadratfehlers 1/n (y v y t ) 2 Prediction: ausrechnen X v y v e2 e3 e1 w2 w3 e4 w4 w1 f Aktivierungsfunktion (Sigmoidal-Funktion) z. B. logistische Funktion c / (1+a * e bx ) a Folie 8 Folie 8

9 Kurzeinführung: Prinzip Entscheidungsbäume Beispiel: Hangrutschung Eingabe: Landnutzung, Bodentyp, DGM-Ableitungen (Slope) Lern-Algorithmus: Bei jedem Split (an jedem Knoten) das Entscheidungskriterium finden, welches die Trainingsmenge am saubersten teilt!!? Hangneigung (0% 100%) Landnutzung: Wald, Wiese, Feld Erosion: wenig, mittel, stark slope > 21,5 Grad? Erosion: 1 wenig 8 mittel 15 stark ja Erosion: 10 wenig 20 mittel 20 stark nein Erosion: 9 wenig 12 mittel 5 stark = 50 = 24 = 26 Erosion: 1 mittel 12 stark ja 50 Trainingspunkte nein = 13 Landnutzung = Feld? Erosion: 1 wenig 7 mittel 3 stark y t - Werte X t - Spalte = 11 Folie 9 Folie 9

10 Kurzeinführung: Prinzip Zufallswälder Prinzipieller Algorithmus des Trainings: Schritt 1: Trainingsdaten für einen Baum b zusammenstellen: Bootstrap-Stichprobe, n mal Auswahl aus den n bekannten Punkten (samples), jeweils mit Zurücklegen Schritt 2: nicht verwendete Punkte bilden die sogen. OOB-Menge Schritt 3: Baum b generieren: Schritt 3.1: zufällige Auswahl von mtry, der p feature (mtry p), Schritt 3.2: besten binären Split am Knoten finden Schritt 3.3: Split in zwei Kindknoten nächster Knoten, bis Abbruchbedingung nächster Baum bis ntree Ergebnis: Wald mit ntree Bäumen Anwenden eines Waldes: X v Abstimmung der Bäume y v Folie 10 Folie 10

11 Erfahrungen in GIS: ArcGIS - Tools ArcSDM: Spatial Data Modeller (SDM) Weights of Evidence Logistische Regression, Fuzzy Logic, unsupervised and supervised neural network methods Beispiele in Desktop-Toolbar, jedoch sehr simple Folie 11 Folie 11

12 Erfahrungen in GIS: advangeo prediction ESRI- GRIDs X t, y t X v advangeo 2D und (3D) Base-Raster Source Data Processed Source Data Modelinput Data Training Data Data / Model Explorer ArcGIS-Extension Rechenkern o ANN: (FANN-library) o WoE o Fuzzy-Logic o weitere Verfahren Result y v ESRI-GRID GeoTiff oder ERDAS.img ESRI-GRID ESRI-fc csv-tabelle odbc-tabelle Python-Anwendungen: ML_advangeo_training ML_advangeo_prediction sklearn, tensorflow, H2O, o o o o o o o o o Decision Tree Classifier Decision Tree Regressor Random Forest Classifier Random Forest Regressor SVM Logische Regression MLP Classifier MLP Regressor Perceptron GeoTiff oder ESRI-fc oder csv-tabelle Folie 12 Folie 12

13 Erfahrungen in GIS: Anwendungen Flächiger Bodenabtrag Einzugsgebiet Talsp. Klingenberg Hangrutschungen/ Bodenkriechen Gebiet Tharandt/Freital Deutschland weit Rinnenerosion Südafrika/ Limpoporegion, Tharandt/ Freital Lagerstättenprognose Kosovo (Au, Pb/Zn, Cr), Ghana, Burkina Faso (Gold), Erzgebirge Folie 13 Folie 13

14 Erfahrungen in GIS: Anwendungen Geologische Kartierung Kosovo, Burkina Faso Forstschädlinge Osterzgebirge, Tharandter Wald Folie 14 Folie 14

15 Erfahrungen in GIS: Anwendungen Forstliche Standortkartierung Karten der Feuchtestufen Regionalisierung von Punktdaten im Bodenschutz Stadtböden Aue/ Annaberg Folie 15 Folie 15

16 Erfahrungen in GIS: Anwendungen Kohlebrände China Belegungsdichte von Manganknollen Brutvogel Dresden Folie 16 Folie 16

17 Erfahrungen in GIS: Anwendungen Sand/Schluff/Ton sowie Corg 1: Kartenblätter Freiberg und Meißen Random Forest Decision Tree Folie 17 Folie 17

18 Vielen Dank für Ihre Aufmerksamkeit Folie 18 Folie 18

Einsatz von DV-Verfahren der künstlichen Intelligenz zur flächenhaften Darstellung von Schadstoffgehalten in Siedlungsgebieten

Einsatz von DV-Verfahren der künstlichen Intelligenz zur flächenhaften Darstellung von Schadstoffgehalten in Siedlungsgebieten UBA 2010 Einsatz von DV-Verfahren der künstlichen Intelligenz zur flächenhaften Darstellung von Schadstoffgehalten in Siedlungsgebieten Thomas Hertwig, Karl-Otto Zeißler (Beak) Ingo Müller (LfULG) 28./29.09.2010

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Neues zu advangeo I Umstellung auf ArcGIS 10

Neues zu advangeo I Umstellung auf ArcGIS 10 Neues zu advangeo I Umstellung auf ArcGIS 10 Sven Etzold, Silke Noack (Beak) 04.05.2012 Anwendungsgebiete / Methodik advangeo Prediction Software Anwendungsgebiete Vorhersage von Ereignissen Abgrenzung

Mehr

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Heiko Spindler Apache Spark - Components Machine Learning Machine learning explores the construction and study of algorithms that can learn from

Mehr

A linear-regression analysis resulted in the following coefficients for the available training data

A linear-regression analysis resulted in the following coefficients for the available training data Machine Learning Name: Vorname: Prof. Dr.-Ing. Klaus Berberich Matrikel: Aufgabe 1 2 3 4 Punkte % % (Bonus) % (Gesamt) Problem 1 (5 Points) A linear-regression analysis resulted in the following coefficients

Mehr

Frischer Wind für ein bekanntes Thema Klassifikation 4.0

Frischer Wind für ein bekanntes Thema Klassifikation 4.0 Frischer Wind für ein bekanntes Thema Klassifikation 4.0 AK Fernerkundung Heidelberg, 4.-5.10.2018 Ruth Leska, GEOSYSTEMS GmbH GEOSYSTEMS ist Ihr Partner für Geo-IT Lösungen und Hexagon Geospatial Platinum

Mehr

Supervised & Unsupervised Machine Learning

Supervised & Unsupervised Machine Learning Machine Learning-Algorithmen in Python mit scikit-learn Machine Learning-Algorithmen in Python mit scikit-learn Kurzbeschreibung Machine Learning-Algorithmen sind ein elementares Element von Künstlicher

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Gerhard Svolba SAS Austria Mariahilfer Straße 116 A-1070 Wien Sastools.by.gerhard@gmx.net Zusammenfassung

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten M. Siebers 1 U. Schmid 2 1 Otto-Friedrich-Universität Bamberg 2 Fakultät für Wirtschaftsinformatik und Angewandte Informatik

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Albert-Ludwigs-Universität zu Freiburg 13.09.2016 Maximilian Dippel max.dippel@tf.uni-freiburg.de Überblick I Einführung Problemstellung

Mehr

Machine Learning Tutorial

Machine Learning Tutorial Machine Learning Tutorial a very fast WEKA Introduction busche@ismll.uni-hildesheim.de 05.01.09 1 Hauptbestandteile von WEKA: Instances Instance Attribute FastVector Classifier Evaluation (Filter) http://weka.wiki.sourceforge.net/

Mehr

Deep Learning Prof. Dr. E. Rahm und Mitarbeiter

Deep Learning Prof. Dr. E. Rahm und Mitarbeiter Deep Learning Prof. Dr. E. Rahm und Mitarbeiter Seminar, WS 2017/18 Big Data Analyse-Pipeline Dateninte -gration/ Anreicherung Datenextraktion / Cleaning Datenbeschaffung Datenanalyse Interpretation Volume

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Maschinelles Lernen auf FPGAs

Maschinelles Lernen auf FPGAs Folie 1 Gliederung 1. Motivation 2. Konzepte 3. Multilayer perceptrons (MLP) 4. Random Forest 5. Q-Learning 6. 7. Fazit & Ausblick Folie 2 Motivation Folie 3 Motivation Problem: Herkömmliche Algorithmen

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus 3. Klassifikation Motivation Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus Beispiel: Bestimme die Herkunft eines Autos

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Prädiktion und Klassifikation mit

Prädiktion und Klassifikation mit Prädiktion und Klassifikation mit Random Forest Prof. Dr. T. Nouri Nouri@acm.org Technical University NW-Switzerland /35 Übersicht a. Probleme mit Decision Tree b. Der Random Forests RF c. Implementation

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Predictive Analytics. Warum datenbasierte Vorhersagen kein Hexenwerk sind. ASQF Automation Day Dr. Stefano Signoriello

Predictive Analytics. Warum datenbasierte Vorhersagen kein Hexenwerk sind. ASQF Automation Day Dr. Stefano Signoriello Predictive Analytics Warum datenbasierte Vorhersagen kein Hexenwerk sind Dr. Stefano Signoriello Seite 1 Inhalte des Vortrags Analytics Von Daten zu Wissen Von Nachsicht über Einsicht zu Voraussicht Descriptive,

Mehr

Artificial Intelligence. Was ist das? Was kann das?

Artificial Intelligence. Was ist das? Was kann das? Artificial Intelligence Was ist das? Was kann das? Olaf Erichsen Tech-Day Hamburg 13. Juni 2017 Sehen wir hier bereits Künstliche Intelligenz (AI)? Quelle: www.irobot.com 2017 Hierarchie der Buzzwords

Mehr

Neuronale Netze. Automatische Hinderniserkennung Paul Fritsche

Neuronale Netze. Automatische Hinderniserkennung Paul Fritsche 1 Neuronale Netze Automatische Hinderniserkennung 2 Hintergrund Grundlagen Tensorflow Keras Fazit 3 TTBN 4 TTBN 5 TTBN 6 TTBN 7 Biological Neural Network By BruceBlaus - Own work, CC BY 3.0 8 Artificial

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Predictive. Statistik. Informatik. Daten. Domäne

Predictive. Statistik. Informatik. Daten. Domäne I Predictive Statistik Informatik Daten Domäne Risiken Chancen Ordinary Least Squares k-means Logistic Regression Expectation Maximisation (EM) Clustering Methods Regression Stepwise Regression Hier.

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

Big Data - und nun? Was kann die Bioinformatik?

Big Data - und nun? Was kann die Bioinformatik? Big Data - und nun? Was kann die Bioinformatik? Jochen Kruppa Institut für Biometrie und Klinische Epidemiologie jochenkruppa@charitede 1 59 Vorstellung Wer spricht heute zu Ihnen? Studium der Pflanzenbiotechnologie

Mehr

Gerhard Svolba, SAS Austria Mannheim, 2. März KSFE

Gerhard Svolba, SAS Austria Mannheim, 2. März KSFE Wie bringe ich 4 unterschiedliche Analytik-Benutzergruppen an einen Tisch? Die Offenheit von SAS Viya ermöglicht eine Analyseplattform für unterschiedliche Benutzertypen Gerhard Svolba, SAS Austria Mannheim,

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Feature Selection / Preprocessing

Feature Selection / Preprocessing 1 Feature Selection / Preprocessing 2 Was ist Feature Selection? 3 Warum Feature Selection? Mehr Variablen führen nicht automatisch zu besseren Ergebnissen. Lernen von unwichtigen Daten Mehr Daten notwendig

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

advangeo - Anwendung von Verfahren der künstlichen Intelligenz zur Regionalisierung von bodenkundlichen Punktdaten

advangeo - Anwendung von Verfahren der künstlichen Intelligenz zur Regionalisierung von bodenkundlichen Punktdaten advangeo - Anwendung von Verfahren der künstlichen Intelligenz zur Regionalisierung von bodenkundlichen Punktdaten Stand der Forschung und Ausblick A. Knobloch 1, Dr. T. Hertwig 1, S. Noack 1, M.K. Zeidler

Mehr

MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN

MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN MACHINE VISION KLASSIFIKATOREN VORTEILE UND HERAUSFORDERUNGEN AUSGEWÄHLTER METHODEN FRANK ORBEN, TECHNICAL SUPPORT / DEVELOPER IMAGE PROCESSING, STEMMER IMAGING GLIEDERUNG Einführung Aufgabe: Klassifikation

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Objektmerkmale für die räumlich-spektrale Klassifikation

Objektmerkmale für die räumlich-spektrale Klassifikation Objektmerkmale für die räumlich-spektrale Klassifikation AG Geomatik Geographisches Institut Ruhr-Universität Bochum AK Fernerkundung, Bochum 2012 Übersicht Ansatz zur automatischen Bildinterpretation:

Mehr

Neural Networks. mit. Tools für Computerlinguist/innen

Neural Networks. mit. Tools für Computerlinguist/innen Neural Networks mit Tools für Computerlinguist/innen WS 17 / 18 Anwendungsbeispiele Anwendungsbeispiele Anwendungsbeispiele Anwendungsbeispiele WaveNet ist ein Voice Synthesizer und ein Projekt von Google

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 11: Machine Learning Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.unileipzig.de Data Mining 111 112 Data Mining Übersicht Hochdimension.

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Was ist, kann und darf Deep Learning? Dr. Beat Tödtli Laboratory for Web Science

Was ist, kann und darf Deep Learning? Dr. Beat Tödtli Laboratory for Web Science Was ist, kann und darf Deep Learning? Dr. Beat Tödtli Laboratory for Web Science 15.12.2017 Suchinteresse 15.12.2017 Was ist, kann und darf Deep Learning? 2 Google Trends für Deep Learning ILSVRC 2012:

Mehr

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer?

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? ASQF Automation Day 2018 - Predictive Analytics Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? Vasilij Baumann Co-Founder/Co-CEO vasilij.baumann@instrunext.com +49 931

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Machine Learning & Künstliche Intelligenz

Machine Learning & Künstliche Intelligenz Dr. med. Christina Czeschik Serapion www.serapion.de Machine Learning & Künstliche Intelligenz Eine kurze Einführung Künstliche Intelligenz intelligent nutzen Essen, 08.06.2018 Künstliche Intelligenz Turing-Test

Mehr

SKOPOS Webinar 22. Mai 2018

SKOPOS Webinar 22. Mai 2018 SKOPOS Webinar 22. Mai 2018 Marktforschung 2020: Künstliche Intelligenz und automatische Text Analysen? Christopher Harms, Consultant Research & Development 2 So? Terminator Exhibition: T-800 by Dick Thomas

Mehr

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38 Planen and Evaluieren von Machine Learning Eperimenten Marina Sedinkina Folien von Benjamin Roth CIS LMU München Evaluieren von Machine Learning Eperimenten 1 / 38 Übersicht 1 Entwickeln von maschinellen

Mehr

Machine Learning. Dr. Bartholomäus Wissmath 3. Swiss Innovation Day

Machine Learning. Dr. Bartholomäus Wissmath 3. Swiss Innovation Day Machine Learning Dr. Bartholomäus Wissmath 3. Swiss Innovation Day Artificial Intelligence (AI) Teilgebiet der Informatik, welches sich mit der Automatisierung von intelligenten Verhalten und dem Maschinenlernen

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065)

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065) Christoph Beck Di, 14:00-15:30 (3065) Packages / Pakete in R Pakete in R Erweiterungen der (Basis)-Funktionalitäten in R Basis-Pakete Zusätzliche Pakete Base packages base Base R functions (and datasets

Mehr

Erstes Mathe-Tutorium am Themen können gewählt werden unter:

Erstes Mathe-Tutorium am Themen können gewählt werden unter: Mathe-Tutorium Erstes Mathe-Tutorium am 07.05. Themen können gewählt werden unter: https://docs.google.com/forms/d/1lyfgke7skvql cgzspjt4mkirnrgnrfpkkn3j2vqos/iewform 1 Uniersität Potsdam Institut für

Mehr

Decision-Tree-Klassifikator

Decision-Tree-Klassifikator D3kjd3Di38lk323nnm Decision-Tree-Klassifikator Decision Trees haben einige Vorteile gegenüber den beiden schon beschriebenen Klassifikationsmethoden. Man benötigt in der Regel keine so aufwendige Vorverarbeitung

Mehr

Heavy Equipment Demand Prediction with Support Vector Machine Regression Towards a Strategic Equipment Management

Heavy Equipment Demand Prediction with Support Vector Machine Regression Towards a Strategic Equipment Management Heavy Equipment Demand Prediction with Support Vector Machine Regression Towards a Strategic Equipment Management Dubai, 04.12.2016 International Conference on Architecture, Materials and Construction

Mehr

Rekurrente / rückgekoppelte neuronale Netzwerke

Rekurrente / rückgekoppelte neuronale Netzwerke Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion

Mehr

Bring your own Schufa!

Bring your own Schufa! Bring your own Schufa! Jan Schweda Senior Softwareengineer Web & Cloud jan.schweda@conplement.de @jschweda Ziele des Vortrags Die Möglichkeiten von maschinellem Lernen aufzeigen. Azure Machine Learning

Mehr

6. Tutoriumsserie Statistik II

6. Tutoriumsserie Statistik II 6. Tutoriumsserie Statistik II 1. Aufgabe: Eine Unternehmensabteilung ist ausschließlich mit der Herstellung eines einzigen Produktes beschäftigt. Für 10 Perioden wurden folgende Produktmenge y und Gesamtkosten

Mehr

Institut für angewandte Datenanalyse GmbH

Institut für angewandte Datenanalyse GmbH Institut für angewandte Datenanalyse GmbH Überblick Vorstellung Marktforschung oder Data Mining? Database Enrichment Machine-Learning-Verfahren Zwei Fallstudien Ausblick und Fazit Vorstellung IfaD Institut

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung Institut für Soziologie Dipl.-Soz. Methoden 2 Ausblick; Darstellung von Ergebnissen; Wiederholung Ein (nicht programmierbarer) Taschenrechner kann in der Klausur hilfreich sein. # 2 Programm Ausblick über

Mehr

Statistik II für Betriebswirte Vorlesung 11

Statistik II für Betriebswirte Vorlesung 11 Statistik II für Betriebswirte Vorlesung 11 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 07. Januar 2019 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 11 Version:

Mehr

TensorFlow Open-Source Bibliothek für maschinelles Lernen. Matthias Täschner Seminar Deep Learning WS1718 Abteilung Datenbanken Universität Leipzig

TensorFlow Open-Source Bibliothek für maschinelles Lernen. Matthias Täschner Seminar Deep Learning WS1718 Abteilung Datenbanken Universität Leipzig TensorFlow Open-Source Bibliothek für maschinelles Lernen Seminar Deep Learning WS1718 Abteilung Datenbanken Universität Leipzig Motivation Renaissance bei ML und KNN Forschung bei DNN fortgeschrittene

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

11. weitere Übungsaufgaben Statistik II WiSe 2017/2018

11. weitere Übungsaufgaben Statistik II WiSe 2017/2018 11. weitere Übungsaufgaben Statistik II WiSe 2017/2018 1. Aufgabe: Bei 100 Fahrzeugen des gleichen Typs sind neben dem Preis (PREIS) auch die gefahrene Strecke (MEILEN) und die Anzahl der Werkstattbesuche

Mehr

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation Yupeng Guo 1 Agenda Introduction RNN Encoder-Decoder - Recurrent Neural Networks - RNN Encoder Decoder - Hidden

Mehr

Klassifikation von Multidimensionalen Zeitreihen mittels Deep Learning

Klassifikation von Multidimensionalen Zeitreihen mittels Deep Learning Master Informatik - Hauptseminar Department Informatik Klassifikation von Multidimensionalen Zeitreihen mittels Deep Learning Manuel Meyer Master Hauptseminar SS 2018 Betreuender Professor: Prof. Dr.-Ing.

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Übung Aufgabe 5: Gen-Erkennung mit Maschinellen Lernen Mario Sänger Problemstellung Erkennung von Genen in Texten NEU: Beachtung von Multi-Token-Entitäten (B-/I-protein)

Mehr

Data Mining Cup deck using PDA or similar devices. Wissensextraktion Multimedia Engineering

Data Mining Cup deck using PDA or similar devices. Wissensextraktion Multimedia Engineering Data Mining Cup 2012 Wissensextraktion Multimedia Engineering deck using PDA or similar devices Fakultät für Ingenieurwissenschaften Jevgenij Jakunschin Christian Mewes www.hs-wismar.de 2 Gliederung 1.

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Logistische Regression

Logistische Regression Logistische Regression Christian Herta August, 2013 1 von 45 Christian Herta Logistische Regression Lernziele Logistische Regression Konzepte des maschinellen Lernens (insb. der Klassikation) Entscheidungsgrenze,

Mehr

Modell Komplexität und Generalisierung

Modell Komplexität und Generalisierung Modell Komplexität und Generalisierung Christian Herta November, 2013 1 von 41 Christian Herta Bias-Variance Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

dlib - A toolkit for making real world machine learning and data analysis applications in C++

dlib - A toolkit for making real world machine learning and data analysis applications in C++ - A toolkit for making real world machine learning and data analysis applications in C++ Stefan Schweter Masterseminar: Klassifikation und Clustering, Wintersemester 2016/2017, Dozent: Stefan Langer 19122016

Mehr

Übersicht Blockvorlesung: Machinelles Lernen

Übersicht Blockvorlesung: Machinelles Lernen Übersicht Blockvorlesung: Machinelles Lernen Inhaltsverzeichnis Montag: 1.+2. Lerneinheit 1. Übersicht und Entscheidungsbäume 1.1 Organisatorisches 1.2 Definition Machine Learning 1.3 Klassen von maschinellen

Mehr

Diskriminatives syntaktisches Reranking für SMT

Diskriminatives syntaktisches Reranking für SMT Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung

Mehr

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 1. Aufgabe: Für 25 der größten Flughäfen wurde die Anzahl der abgefertigten Passagiere in den Jahren 2009 und 2012 erfasst. Aus den Daten (Anzahl

Mehr

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL)

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Übungssitzung 1: Organisation und Orientierung Julian Hitschler ICL, Universität Heidelberg, WiSe 2016/17 27.10.2016 1 / 1 Inhalt Vorstellung Organisatorisches

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Erarbeitung einer Risikokarte für Sturmschäden in Wäldern in Baden- Württemberg (RESTER UniFR)

Erarbeitung einer Risikokarte für Sturmschäden in Wäldern in Baden- Württemberg (RESTER UniFR) Erarbeitung einer Risikokarte für Sturmschäden in Wäldern in Baden- Württemberg (RESTER UniFR) Karin Grebhan Inhalt Datenübersicht und -aufbereitung Ergebnisse der statistischen Auswertung Weights of Evidence

Mehr