Praktische Optimierung
|
|
|
- Leander Arnold
- vor 9 Jahren
- Abrufe
Transkript
1 Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering
2 Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze (RBF) Kriging Neuronale Netze Rudolph: PO (WS 27/8) Künstliche neuronale Netze 2
3 Biologisches Vorbild Neuronen - Information aufnehmen (D) - Information verarbeiten (Z) - Information weiterleiten (A / S) Mensch: 2 Neuronen Strom im mv-bereich 2 m / s Zellkörper (Z) Axon (A) Kern Dendrit (D) Synapse (S) Rudolph: PO (WS 27/8) Künstliche neuronale Netze 3
4 Abstraktion Dendriten Zellkern / Zellkörper Axon Synapse Signal- Eingabe Signal- Verarbeitung Signal- Ausgabe Rudolph: PO (WS 27/8) Künstliche neuronale Netze 4
5 Modell x Funktion f f(x,,, x n ) x n McCulloch-Pitts-Neuron 943: x i {, } =: B f: B n B Rudolph: PO (WS 27/8) Künstliche neuronale Netze 5
6 Perzeptron (Rosenblatt 958) komplexes Modell reduziert von Minsky & Papert auf das Notwendigste Minsky-Papert-Perzeptron (MPP), 969 Was leistet ein MPP? J umstellen nach liefert: J N N Bsp: N J Trenngerade separiert R 2 in 2 Klassen Rudolph: PO (WS 27/8) Künstliche neuronale Netze 6
7 = = AND OR NAND NOR XOR? x xor w x + w 2 θ < θ w 2 θ w θ w + w 2 < θ w, w 2 θ > w + w 2 2θ Widerspruch! Rudolph: PO (WS 27/8) Künstliche neuronale Netze 7
8 969: Marvin Minsky / Seymor Papert Buch Perceptrons Analyse math. Eigenschaften von Perzeptrons Ernüchterndes Ergebnis: Triviale Probleme können nicht mit Perzeptrons gelöst werden! - XOR-Problem - Parity-Problem - Connectivity-Problem Folgerung : Alle künstliche Neuronen haben diese Schwäche! Forschung auf diesem Gebiet ist wissenschaftliche Sackgasse! Folge: Forschungsförderung bzgl. KNN praktisch eingestellt (~ 5 Jahre) Rudolph: PO (WS 27/8) Künstliche neuronale Netze 8
9 Wege aus der Sackgasse :. Mehrschichtige Perzeptrons: x 2 x 2 realisiert XOR 2. Nichtlineare Trennfunktionen: XOR g(x, ) = 2x + 2 4x - mit θ = g(,) = g(,) = + g(,) = + g(,) = Rudolph: PO (WS 27/8) Künstliche neuronale Netze 9
10 Wie kommt man zu den Gewichten und θ? bisher: durch Konstruktion Bsp: NAND-Gatter x NAND θ w 2 θ w θ w + w 2 < θ erfordert Lösung eines linearen Ungleichungssystems ( P) (Bsp: w = w 2 = -2, θ = -3) jetzt: durch Lernen bzw. Trainieren Rudolph: PO (WS 27/8) Künstliche neuronale Netze
11 Perceptron-Lernen Annahme: Testbeispiele mit richtigem Ein-/Ausgabeverhalten bekannt Prinzip: () wähle Gewichte irgendwie (2) lege Testmuster an (3) falls Perceptronausgabe falsch, dann verändere Gewichte (4) gehe nach (2) bis richtige Perceptronausgabe für alle Testmuster grafisch: Verschieben und Drehen der Trenngeraden Rudolph: PO (WS 27/8) Künstliche neuronale Netze
12 Was kann man durch zusätzliche Schichten (Layer) erreichen? Single-layer perceptron (SLP) Hyperfläche separiert Raum in zwei Teilräume N P Two-layer perceptron beliebige konvexe Mengen unterscheidbar Verknüpfung mit AND in der 2. Schicht Three-layer perceptron beliebige Mengen unterscheidbar (abh. von Anzahl der Neuronen), weil mehrere konvexe Mengen bis 2. Schicht darstellbar, diese können in 3. Schicht kombiniert werden Mehr als 3 Schichten sind nicht nötig! Rudolph: PO (WS 27/8) Künstliche neuronale Netze 2
13 XOR mit 3 Neuronen in 2 Schichten x - y 2 z x y y 2 z - y 2 konvexe Menge Rudolph: PO (WS 27/8) Künstliche neuronale Netze 3
14 XOR mit 3 Neuronen in 2 Schichten x - y z x y y 2 z - y 2 ohne AND-Verknüpfung in 2. Schicht Rudolph: PO (WS 27/8) Künstliche neuronale Netze 4
15 XOR mit 2 Neuronen möglich x y -2y x -2y+ z x 2 y -2 z -2 aber: keine Schichtenarchitektur Rudolph: PO (WS 27/8) Künstliche neuronale Netze 5
16 Lernalgorithmus für Multi-Layer-Perceptron vorteilhaft: sigmoide Aktivierungsfunktion (statt Signum-Funktion) θ monoton wachsend differenzierbar nicht-linear Ausgabe [,] statt {, } Bsp: Schranke θ in Aktivierungsfunktion integriert Werte für Ableitungen direkt aus Funktionswerten bestimmbar Rudolph: PO (WS 27/8) Künstliche neuronale Netze 6
17 Quantifizierung des Klassifikationsfehlers beim MLP Total Sum Squared Error (TSSE) Ausgabe des Netzes für Gewichte w und Eingabe x Soll-Ausgabe des Netzes für Eingabe x Total Mean Squared Error (TMSE) TSSE Anzahl der Beispiele Anzahl der Ausgabeneuronen const. führt zur gleichen Lösung wie TSSE Rudolph: PO (WS 27/8) Künstliche neuronale Netze 7
18 Lernalgorithmus für Multi-Layer-Perceptrons Gradientenverfahren w y u x z f(w t, u t ) = TSSE y 2 u t+ = u t - γ u f(w t, u t ) 2 z 2 w t+ = w t - γ w f(w t, u t ) z K x i : Eingabe an Eingabeschicht y j : Ausgabe der verdeckten Schicht x I w nm J y J K z k = a( ) z k : Ausgabe der Ausgabeschicht y j = h( ) Rudolph: PO (WS 27/8) Künstliche neuronale Netze 8
19 Ausgabe von Neuron j in der verdeckten Schicht Ausgabe von Neuron k in der Ausgabeschicht Fehler bei Eingabe x: Netzausgabe Sollausgabe bei Eingabe x Rudolph: PO (WS 27/8) Künstliche neuronale Netze 9
20 Fehler bei Eingabe x und Sollausgabe z*: Gesamtfehler für alle Beispiele (x, z*) B: (TSSE) Rudolph: PO (WS 27/8) Künstliche neuronale Netze 2
21 Gradient des Gesamtfehlers: Vektor der partiellen Ableitungen nach den Gewichten u jk und w ij also: bzw. Rudolph: PO (WS 27/8) Künstliche neuronale Netze 2
22 Annahme: und: Kettenregel der Differentialrechnung: äußere Ableitung innere Ableitung Rudolph: PO (WS 27/8) Künstliche neuronale Netze 22
23 partielle Ableitung nach u jk : Fehlersignal δ k Rudolph: PO (WS 27/8) Künstliche neuronale Netze 23
24 partielle Ableitung nach w ij : Faktoren umordnen Fehlersignal δ k aus vorheriger Schicht Fehlersignal δ j aus aktueller Schicht Rudolph: PO (WS 27/8) Künstliche neuronale Netze 24
25 Verallgemeinerung Das neuronale Netz habe L Schichten (layer) S, S 2,... S L. Seien Neuronen aller Schichten durchnummeriert von bis N. Alle Gewichte w ij sind in Gewichtsmatrix W zusammengefasst. Sei o j Ausgabe (output) von Neuron j. j S m Neuron j ist in m-ter Schicht Fehlersignal: Korrektur: beim Online-Lernen: Korrektur nach jedem präsentierten Beispiel Rudolph: PO (WS 27/8) Künstliche neuronale Netze 25
26 Fehlersignal eines Neurons einer inneren Schicht bestimmt durch Fehlersignale aller Neuronen der nachfolgenden Schicht und zugehörige Verbindungsgewichte. Erst Fehlersignale der Ausgabeneuronen bestimmen, daraus Fehlersignale der Neuronen der vorhergehenden Schicht berechnen, daraus Fehlersignale der Neuronen der vorhergehenden Schicht berechnen, usw. bis zur ersten inneren Schicht. Fehler wird also von Ausgabeschicht zur ersten inneren Schicht zurückgeleitet. Backpropagation (of error) Rudolph: PO (WS 27/8) Künstliche neuronale Netze 26
27 Satz: MLPs mit einer verdeckten Schicht sigmoidaler Einheiten sind universelle Approximatoren für stetige Funktionen. Beweis: Hornik, K., Stinchcombe, M., and White, H. (989). "Multilayer Feedforward Networks are Universal Approximators," Neural Networks, 2(5), Folgt im Grunde aus dem Satz von Weierstraß. Netz explizit hinschreiben und ausmultiplizieren. Sigmoidale Funktionen durch ihre Reihenentwicklung (Polynome!) ersetzen. Ausmultiplizieren Polynom als Ersatzzielfunktion Rudolph: PO (WS 27/8) Künstliche neuronale Netze 27
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?
Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger
Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale
Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg
Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)
Konzepte der AI Neuronale Netze
Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: [email protected] Was sind Neuronale
Hannah Wester Juan Jose Gonzalez
Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer
(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.
(hoffentlich kurze) Einführung: [email protected] (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild
6.4 Neuronale Netze zur Verarbeitung von Zeitreihen
6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1
Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)
29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein
Neural Networks: Architectures and Applications for NLP
Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap
Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.
Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen
Neuronale Netze (Konnektionismus)
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung
Künstliche neuronale Netze
Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung
Proseminar Neuronale Netze Frühjahr 2004
Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, [email protected] Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die
Künstliche Neuronale Netze
Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches
11. Neuronale Netze 1
11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
Klassifikationsverfahren und Neuronale Netze
Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Hochschule Regensburg. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer
Hochschule Regensburg Übung 44_ Multilayer-Perzeptron: Entwurf, Implementierung Bacpropagation Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Name: Vorname: Multilayer-Perzeptrons (MLPs) sind
Neuronale Netze mit mehreren Schichten
Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren
Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell
Fachbereich Design Informatik Medien Studiengang Master Informatik Künstliche neuronale Netze Das Perzeptron Sebastian Otte Dezember 2009 1 Grundlegendes Als Perzeptron bezeichnet man eine Form von künstlichen
Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung
Klassifikation linear separierbarer Probleme
Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear
BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON
BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008
Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen
Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise
Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)
6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese
Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134
Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches
Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120
Radiale-Basisfunktionen-Netze Rudolf Kruse Neuronale Netze 2 Radiale-Basisfunktionen-Netze Eigenschaften von Radiale-Basisfunktionen-Netzen (RBF-Netzen) RBF-Netze sind streng geschichtete, vorwärtsbetriebene
5. Lernregeln für neuronale Netze
5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1
Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr.
Neuronale Netze Maschinelles Lernen Michael Baumann Universität Paderborn Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Kleine Büning WS 2011/2012 Was ist ein neuronales Netz? eigentlich: künstliches
Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron
Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische
Adaptive Systeme. Einführung. Grundlagen. Modellierung. Prof. Rüdiger Brause WS Organisation. Einführung in adaptive Systeme B-AS-1, M-AS-1
Adaptive Systeme Prof. Rüdiger Brause WS 2013 Organisation Einführung in adaptive Systeme B-AS-1, M-AS-1 Vorlesung Dienstags 10-12 Uhr, SR11 Übungen Donnerstags 12-13 Uhr, SR 9 Adaptive Systeme M-AS-2
Grundlagen neuronaler Netzwerke
AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann [email protected]) WS 00/03 Timo Glaser [email protected]) 0.. 003 Marco Kunze [email protected]) Sebastian Nowozin [email protected])
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2
Einführung in Neuronale Netze
Einführung in Neuronale Netze Thomas Ruland Contents 1 Das menschliche Gehirn - Höchstleistungen im täglichen Leben 2 2 Die Hardware 2 2.1 Das Neuron 2 2.2 Nachahmung in der Computertechnik: Das künstliche
Aufbau und Beschreibung Neuronaler Netzwerke
Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser
Neuronale Netze (I) Biologisches Neuronales Netz
Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung
auch: Konnektionismus; subsymbolische Wissensverarbeitung
10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache
Neuronale Netze. Anna Wallner. 15. Mai 2007
5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen
Neuronale Netze. Christian Böhm.
Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale
Grundlagen Künstlicher Neuronaler Netze
FernUniversität in Hagen Fachbereich Elektrotechnik und Informationstechnik Lehrgebiet Informationstechnik Seminar Computational Intelligence in der Prozessautomatisierung 7. Juli 2003 Grundlagen Künstlicher
Inhaltsverzeichnis. Einführung
Inhaltsverzeichnis Einführung 1 Das biologische Paradigma 3 1.1 Neuronale Netze als Berechnungsmodell 3 1.1.1 Natürliche und künstliche neuronale Netze 3 1.1.2 Entstehung der Berechenbarkeitsmodelle 5
10. Neuronale Netze 1
10. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form
Lernverfahren von Künstlichen Neuronalen Netzwerken
Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.
Einführung in die Computerlinguistik
Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?
Neuronale Netze Aufgaben 3
Neuronale Netze Aufgaben 3 [email protected] (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus
Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze
Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der
Intelligente Algorithmen Einführung in die Technologie
Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche
Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation
Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für
Ausarbeitung zum Hauptseminar Machine Learning
Ausarbeitung zum Hauptseminar Machine Learning Matthias Seidl 8. Januar 2004 Zusammenfassung single-layer networks, linear separability, least-squares techniques Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungen
Modellbildung und Simulation
Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:
Thema 3: Radiale Basisfunktionen und RBF- Netze
Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung
Künstliche Neuronale Netze
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung
Künstliche neuronale Netze
Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche
Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003
Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung
Neuronale Netze. Volker Tresp
Neuronale Netze Volker Tresp 1 Einführung Der Entwurf eines guten Klassifikators/Regressionsmodells hängt entscheidend von geeigneten Basisfunktion en ab Manchmal sind geeignete Basisfunktionen (Merkmalsextraktoren)
Klassifizierungsverfahren und neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik
Hauptseminar WS 2011/2012 Klassifizierungsverfahren und neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck [email protected] Karlsruher Institut für Technologie, 09.12.2011
Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1
Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten
Eine kleine Einführung in neuronale Netze
Eine kleine Einführung in neuronale Netze Tobias Knuth November 2013 1.2 Mensch und Maschine 1 Inhaltsverzeichnis 1 Grundlagen neuronaler Netze 1 1.1 Kopieren vom biologischen Vorbild...... 1 1.2 Mensch
Künstliche neuronale Netze
Künstliche neuronale Netze Einführung und Anwendung im Bereich der Mustererkennung Michael Pucher BG/BRG Weiz, Offenburgergasse 23 Künstliche neuronale Netze Einführung und Anwendung im Bereich der Mustererkennung
Einführung in die Methoden der Künstlichen Intelligenz
www.is.cs.uni-fra ankfurt.de Einführung in die Methoden der Künstlichen Intelligenz Vorlesung 7 Künstliche Neuronale Netze 2. Mai 2009 Andreas D. Lattner, Ingo J. Timm, René Schumann? Aldebaran Robotics
Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema
Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion
Überwachtes Lernen II: Netze und Support-Vektor-Maschinen
Überwachtes Lernen II: Klassifikation und Regression - Neuronale Netze und Support-Vektor-Maschinen Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2009
Computational Intelligence 1 / 31. Computational Intelligence Künstliche Neuronale Netze Geschichte 3 / 31
1 / 31 Gliederung 1 Künstliche Neuronale Netze Geschichte Natürliches Neuron Künstliches Neuron Typen von Neuronen Geschichte Künstliche Neuronale Netze Geschichte 3 / 31 1943 Warren McCulloch (Neurologe),
3 Differenzierbarkeit und Ableitung (Differentialrechnung I)
3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)
Universität Klagenfurt
Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.
Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?
Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic
Neuronale Netze I. Proseminar Data Mining Florian Zipperle Fakultät für Informatik Technische Universität München
Neuronale Netze I Proseminar Data Mining Florian Zipperle Fakultät für Informatik Technische Universität München Email: [email protected] Zusammenfassung Neuronale Netze werden im Bereich Data Mining
Kohonennetze Selbstorganisierende Karten
Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial
Künstliche neuronale Netze
Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ [email protected] SS 2011 1 Softcomputing Einsatz
Einführung in neuronale Netze
Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze
Das Subgradientenverfahren
Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler
Technische Universität. Fakultät für Informatik
Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian
Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 12. Aufgabenblatt: Projektvorschläge für WS 2010/2011
Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 12. Aufgabenblatt: Projektvorschläge für WS 2010/2011 Hinweis: Alle Projekte sind angemessen zu dokumentieren. Die Dokumentation
Künstliche Neuronale Netze
Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze
Künstliche Neuronale Netze als Neues Paradigma der Informationsverarbeitung
Künstliche Neuronale Netze als Neues Paradigma der Informationsverarbeitung Raúl Rojas FB Mathematik und Informatik Freie Universität Berlin. Die biologische Motivation Neuronale Netze bilden ein alternatives
Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.
Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x
Computational Intelligence I Künstliche Neuronale Netze
Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund [email protected] Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.
Kapitel LF: IV. IV. Neuronale Netze
Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c
Was sind Neuronale Netze?
Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk
Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06
Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas 39 Multilayer-Perzeptrons und
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
12. Trennungssätze für konvexe Mengen 83
12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C
