Überwachtes Lernen II: Netze und Support-Vektor-Maschinen

Größe: px
Ab Seite anzeigen:

Download "Überwachtes Lernen II: Netze und Support-Vektor-Maschinen"

Transkript

1 Überwachtes Lernen II: Klassifikation und Regression - Neuronale Netze und Support-Vektor-Maschinen Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2009

2 Künstliche Neuronale Netze Praktikum Data Warehousing und Mining, Sommersemester 2009

3 Künstliche Neuronale Netze Idee Ausgangssituation Eingabegrößen: Mehrere e e beliebige eb Attribute Zielgröße: Vorhersage einer binären, kategorischen oder numerischen Variablen Idee: Nachbildung der kognitiven Fähigkeiten des menschlichen Gehirns Netzwerk aus Neuronen (Nervenzellen) verknüpft Eingabegröße mit Zielgröße Beispiel: Auge sieht Bier, Gehirn meldet Durst Definition Neuron Binäres Schaltelement mit zwei Zuständen (aktiv, inaktiv) Praktikum Data Warehousing und Mining, Sommersemester

4 Struktur des Neurons in der Biologie BSt Christi rol uian ct ogical Borgelt u r e of Ba ack p r otgr ou y p incal d b i ol ogi Int roduct cal ionn eu t o Neural r onnetworks 5 Endplatte Synapse Dendriten Zellkern Zellkörper Axon Myelinscheide Praktikum Data Warehousing und Mining, Sommersemester

5 Arbeitsweise von Neuronen Die Synapsen an den Enden der Axone senden chemische Stoffe aus, sog. Neuro-Transmitter. Diese wirken auf die Rezeptoren der Dendriten, deren Spannungspotential p ändert sich. Man unterscheidet zwischen exzitatorischen (erregenden) Synapsen inhibitorischen i h (hemmenden) Synapsen Bei genügend exzitatorischen Reizen (netto, über gewisse Zeitspanne) wird das Neuron aktiv. Aktive Neuronen senden selbst wieder Signale zu benachbarten Neuronen Praktikum Data Warehousing und Mining, Sommersemester

6 Das einfache Perzeptron (künstliches Neuron) x 0 w 0 - μ Weiteres k Gewicht (Bias) x 1 x n w 1 w n f Ausgabe y Zum Beispiel : Eingabe- Vkt Vektor X Gewichts- Gewichtete Aktivierungs- y = sign( w x i i Vkt Vektor W Summe Funktion i= 0 n + μ ) k Der n-dimensionale Eingabe-Vektor X wird durch ein Skalarprodukt kt und eine nichtlineare Funktion auf y abgebildet. bild Praktikum Data Warehousing und Mining, Sommersemester

7 Neuronale Netze - Multilayer-Perceptron (MLP) Eingabe-Neuron Verstecktes oder inneres Neuron Verbindungen (Gewichte) Ausgabe-Neuron Es kann mehr als nur eine versteckte Schicht geben! Eingabeschicht Versteckte Schicht Ausgabeschicht Praktikum Data Warehousing und Mining, Sommersemester

8 Künstliche Neuronale Netze Arbeitsweise Vorgehen Klassifikation/Regression Gegeben: Netzwerk e aus Neuronen e Alle Neuronen inaktiv, senden keine Signale Eingabeneuronen gemäß Eingabegrößen gereizt Gereizte Neuronen senden Signale Signale werden über Netzwerk zum Ausgabeneuron weitergeleitet Regression: Ausgabeneuron liefert kontinuierlichen Wert. Klassifikation (binär): Schwellwertsetzung am Ausgabeneuron. Klassifikation (allgemein) Ausgabeneuron mit höchstem Reiz definiert Klasse. Anwendung auf verschiedene Datensätze Einfaches Perzeptron: Linearer Klassifikator MLP: kann auch nicht linear separierbare Probleme lösen Praktikum Data Warehousing und Mining, Sommersemester

9 Lernen von neuronalen Netzen Zunächst: Definition der Netzstruktur Trial and Error Dann: Lernen der Gewichte 1. Initialisiere Gewichte und Bias mit zufälligen Werten 2. Propagiere die Werte eines Lerntupels durch das Netz 3. Berechne den Fehler, Anpassen von Gewichten und Bias 4. Wiederhole 2 und 3 bis Stoppkriterium erreicht (z.b. Fehler hinreichend klein oder Zeitüberschreitung) Anpassung findet entweder nach jedem Tupel statt oder nach jeder Epoche (ganzer Lerndatensatz) Variante: Eine Epoche besteht aus n zufälligen Lerndatensätzen. Praktikum Data Warehousing und Mining, Sommersemester

10 Lernen der Gewichte einfaches Perzeptron Anpassen erfolgt durch Delta-Regel: w i = w i + Δw i Δwi = μ = μ + Δμ 0 + σx σx 0 Δμ = σ + σ i i wenn wenn wenn wenn wenn y wenn p y p y y p p y y p = y = 0 y = 1 = 1 y = 0 p = y = 0 y = 1 = 1 y = 0 w i : Ein Gewicht des Perzeptrons μ: Bias des Perzeptrons (x 1, x 2,, x n ): Ein Eingabemuster y: Zugehöriger Zielwert y p : Berechneter Ausgabewert p σ: Lernrate (Benutzerdefiniert) Praktikum Data Warehousing und Mining, Sommersemester

11 Lernen der Gewichte MLP Generalisierung der Delta-Regel: Backpropagation Ziel: Minimierung i i des Fehlers und Festlegen der Gewichte/Bias-Werte; Netzwerk ist vorgegeben. Lösung: Gradientenverfahren Aktivierungsfunktion muss differenzierbar sein: Sigmoidfunktion statt sign: sig(x) = 1 / (1 + e -x ) Mit Bias und Steilheit α: sig(x) = 1 / (1 + e -α(x-μ) ) Fehlerfunktion muss differenzierbar sein: Fehlerquadrate Funktioniert auch bei mehreren versteckten Ebenen und mehreren Ausgabeneuronen. Gradientenverfahren liefert lokales Minimum σ ändern oder initiale Gewichte bzw. Bias variieren. Praktikum Data Warehousing und Mining, Sommersemester

12 Neuronale Netze - Bewertung Herausforderungen Aufbereiten e der Daten Üblich: Normalisierung auf 0 1 Bei kategorischen Daten: ggf. ein Eingabeneuron pro Attribut-Ausprägung Aufbau des Netzes Erfahrungswerte oder Trial and Error. Verhinderung von Overfitting Evaluation mit neuen Daten Voraussagewert bei Regressionsproblemen Lineare Funktion an Ausgabeneuron und Skalieren des Wertes Vorteile Gutes Verhalten bei neuen und verrauschten Daten Nachteile Lernen oft vergleichsweise aufwändig Ergebnis schwer zu interpretieren Praktikum Data Warehousing und Mining, Sommersemester

13 Support-Vektor-Maschinen (SVMs) Praktikum Data Warehousing und Mining, Sommersemester 2009

14 Support-Vektor-Maschinen - Motivation Relativ neue Klassifikationstechnik Nativ für binäre Probleme Gesucht ist eine Hyperebene, die optimal zwei Klassen separiert 1D: Grenzwert 2D: Gerade 3D: Ebene 4D etc.: Hyperebene Auch nicht linear separierbare Fälle lösbar x x x x o x x x o o x x o o o o o Linear separierbares Beispiel für den 2D-Fall x o o o o o Praktikum Data Warehousing und Mining, Sommersemester

15 SVMs - Finden von Hyperebenen (linear separierbar) Small Margin Large Margin Ziel: Finden einer Hyperebene mit max. Margin. So entsteht ein generalisierender Klassifikator. Praktikum Data Warehousing und Mining, Sommersemester

16 Finden einer separierenden Hyperebene Eine Hyperebene kann wie folgt beschrieben werden: W X + w 0 = 0 W = {w 1, w 2,, w n } ist Vektor von gesuchten Gewichten X ist Lerndatensatz H 2 H 1 Im 2D-Fall z.b.: w 0 + w 1 x 1 + w 2 x 2 = 0 Für die Rand- Hyperebenen gilt dann: H 1 : w 0 + w 1 x 1 + w 2 x 2 1 für y i = +1, und H 2 : w 0 + w 1 x 1 + w 2 x 2 1 für y i = 1 Die Tupel des Lerndatensatzes auf H 1 und H 2 heißen Stützvektoren (support vectors) Praktikum Data Warehousing und Mining, Sommersemester

17 Berechnung der Hyperebene Das Bestimmen von W = {w 1, w 2,, w n } ist ein quadratisches Optimierungsproblem i mit Constraints. t Lösbar mit der Lagrange-Multiplikatorenregel. S. Bücher von V. Vapnik. Die Komplexität hängt von der Anzahl der Stützvektoren ab, nicht von der Dimension der Daten. Auch mit wenigen Vektoren können gute Ergebnisse erzielt werden, auch im hochdimensionalen Raum. Praktikum Data Warehousing und Mining, Sommersemester

18 SVMs Nicht linear separierbare Probleme Trainingsdaten werden nichtlinear in einen höherdimensionalen i Raum abgebildet. bild Dort wird nach linear separierender Hyperebene gesucht. Viele Mapping-Techniken (Kernels) verfügbar Z.B.: Aus (x, y, z) wird (x, y, z, x², xy, xz) Mit geeigneten Mapping-Techniken und hinreichend hohen Dimensionen kann meist eine separierende Hyperebene gefunden werden. Theorem von Cover (1965): Die Wahrscheinlichkeit dass Klassen linear separierbar sind steigt wenn die Features nichtlinear in einen höheren Raum abgebildet werden. Praktikum Data Warehousing und Mining, Sommersemester

19 SVMs zur Klassifikation - Bewertung Herausforderungen Anwendung auf allgemeine e e Klassifikationsprobleme at sp ob e (allgemeine kategorische Zielgröße, nicht binäre): Lernen mehrerer SVMs und Zusammenführung der Ergebnisse. Wahl von Kernel-Funktion und Dimensionalität. Vorteile Oft hervorragende Ergebnisse. Oft Bessere Generalisierung als neuronales Netzwerk. Nachteile Skaliert schlecht für viele Lerndatensätze (Dimensionalität nicht problematisch). Ergebnis im extrem hochdimensionalen Raum schwer zu interpretieren. Häufige Anwendungen: Handschrifterkennung, Objekterkennung, Sprechererkennung Praktikum Data Warehousing und Mining, Sommersemester

20 SVMs zur Regression Idee Die Idee von Support-Vektoren und Kernel- Funktionen kann übertragen werden. Ähnlich wie lineare Regression, aber: Fehler kleiner als ε werden ignoriert. ε ist benutzerdefinierter Parameter, der Schlauch um Regressionsfunktion definiert. Meist wird absolutes Fehlermaß in y-richtung verwendet. Gleichzeitig werden Flache Funktionen angestrebt. ε=1 ε=2 Praktikum Data Warehousing und Mining, Sommersemester

21 SVMs zur Regression Berechnung Stützvektoren sind die Lerndatensatz-Punkte, die außerhalb des Schlauchs liegen. Im allgemeinen kann kein Schlauch bei gegebenem ε gefunden werden, der alle Punkte umschließt. Es existieren zwei konkurrierende Optimierungsziele: Minimierung des Fehlers der Stützvektoren. Erreichen einer flachen Funktion. Parameter C kontrolliert Tradeoff. C: max. Wert der Regressionskoeffizienten. Hohes C: Gut auf Trainingsdaten, da keine Wertbegrenzung. Niedriges C: Bessere Generalisierung. Praktikum Data Warehousing und Mining, Sommersemester ε=0,5

22 Wiederholung: Evaluationstechniken Praktikum Data Warehousing und Mining, Sommersemester 2009

23 Überwachtes Lernen Vorgehen Trainingsdaten Klassifikator lernen Klassifikationsregeln modell Testdaten Klassifikator testen optimiertes Klassifikationsregeln modell Produktivdaten Klassifikator anwenden Praktikum Data Warehousing und Mining, Sommersemester

24 Sampling bzw. Holdout Institut für Programmstrukturen und Datenorganisation (IPD) Die Leistung eines Klassifikators kann nicht mit dem Lerndatensatz beurteilt werden! Overfitting! Vgl. Motivation Pruning. Deshalb: Unterteilung der Ausgangsdaten in Training Set zum Lernen des Klassifikators (oft zwei Drittel) Test Set zur Evaluation des Klassifikators (oft ein Drittel) Beide Mengen sollten möglichst repräsentativ sein: Stratifikation: Aus jeder Klasse wird ein proportionaler p Anteil in das Training- und Test Set übernommen. Eine Unterteilung in Training- und Test Set ist oft nicht möglich, wenn nicht genug Daten zur Verfügung stehen: Ein kleines Test Set ist ggf. nicht mehr repräsentativ. Ein kleines Training Set bietet ggf. zu wenig zum Lernen. Praktikum Data Warehousing und Mining, Sommersemester

25 Cross-Validation Institut für Programmstrukturen und Datenorganisation (IPD) Unterteilung der Ausgangsdaten in k Partitionen Typischerweise eise wird k=10 gewählt Eine Partition bildet Test Set k 1 Partitionen bilden Training Set Berechnung und Evaluation von k Klassifikatoren: In k Runden wird jedes Datentupel k-1 mal zum Lernen verwendet und genau ein mal klassifiziert. Stratifizierte Cross-Validation ist in vielen Fällen die zu empfehlende Evaluationstechnik, besonders aber bei kleinen Datensätzen. Achtung: Cross-Validation ist sehr Rechenaufwändig Leave-One-Out Out ist Spezialfall für k=n Praktikum Data Warehousing und Mining, Sommersemester

26 Quellen Institut für Programmstrukturen und Datenorganisation (IPD) J. Han und M. Kamber: Data Mining: Concepts and Techniques, Morgan Kaufmann, I.H. Witten und E. Frank: "Data Mining - Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Vladimir N. Vapnik : The Nature of Statistical Learning Theory, Springer, Vladimir N. Vapnik : Statistical Learning Theory, Wiley, T. M. Mitchell: Machine Learning, Mc Graw Hill, F. Klawonn: Folien zur Vorlesung Data Mining, C. Borgelt: Folien zur Vorlesung Introduction to Neural Networks, 2009 SPSS: SS Clementine 12.0 Algorithms Guide /applet-perceptron/Perceptron.html fh b / b i/ Praktikum Data Warehousing und Mining, Sommersemester

27 Organisatorisches zum Data-Mining-Cup Praktikum Data Warehousing und Mining, Sommersemester 2009

28 Zwischenpräsentation am pro Gruppe 10 Minuten Vortrag, 5 Minuten Diskussion Status Quo beim Data-Mining-Cup: Ergebnisse der Analyse der Daten statistische Auffälligkeiten? resultierende Vorverarbeitungsschritte ggf. ausprobierte Verfahren (evtl. erste Punktzahlen) nächste geplante Schritte Praktikum Data Warehousing und Mining, Sommersemester

29 Weiteres Vorgehen Institut für Programmstrukturen und Datenorganisation (IPD) 18. Mai: Vorstellung von Punktzahlen im Tutorium keine Vorlesungssitzung genaues Evaluationsverfahren wird am spezifiziert Punktzahl ist Grundlage für Gewichtung unserer gemeinsamen Einreichung 25. Mai: Abgabe DMC Gruppenergebnis per bis 9:30 Uhr an uns wir berechnen dann Gesamtlösung Praktikum Data Warehousing und Mining, Sommersemester

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Überwachtes Lernen: Klassifikation und Regression

Überwachtes Lernen: Klassifikation und Regression Überwachtes Lernen: Klassifikation und Regression Praktikum: Data Warehousing und Data Mining Klassifikationsprobleme Idee Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkung)

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Überwachtes Lernen I: Klassifikation und Regression

Überwachtes Lernen I: Klassifikation und Regression Überwachtes Lernen I: Klassifikation und Regression Praktikum: Data Warehousing und Data Mining Klassifikationsprobleme Idee Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkung)

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Seminar Statistische Lerntheorie und ihre Anwendungen Support Vector Machines (SVM) Jasmin Fischer 12. Juni 2007 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Lineare Trennung 3 2.1 Aufstellung

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell Fachbereich Design Informatik Medien Studiengang Master Informatik Künstliche neuronale Netze Das Perzeptron Sebastian Otte Dezember 2009 1 Grundlegendes Als Perzeptron bezeichnet man eine Form von künstlichen

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler

Mehr

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Praktikum: Data Warehousing und Data Mining Clusteranalyse Clusteranalyse Idee Bestimmung von Gruppen ähnlicher Tupel in multidimensionalen Datensätzen.

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen / Support Vector Machines Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen, Diagnosesystem für Krankheiten Trainingsdaten: Expressionsprofile von Patienten mit bekannter Diagnose

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen, Einsatz z.b. für Klassifizierungsaufgaben

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr.

Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Neuronale Netze Maschinelles Lernen Michael Baumann Universität Paderborn Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Kleine Büning WS 2011/2012 Was ist ein neuronales Netz? eigentlich: künstliches

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Hochschule Regensburg. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer

Hochschule Regensburg. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Hochschule Regensburg Übung 44_ Multilayer-Perzeptron: Entwurf, Implementierung Bacpropagation Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Name: Vorname: Multilayer-Perzeptrons (MLPs) sind

Mehr

Eine kleine Einführung in neuronale Netze

Eine kleine Einführung in neuronale Netze Eine kleine Einführung in neuronale Netze Tobias Knuth November 2013 1.2 Mensch und Maschine 1 Inhaltsverzeichnis 1 Grundlagen neuronaler Netze 1 1.1 Kopieren vom biologischen Vorbild...... 1 1.2 Mensch

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Einführung in Neuronale Netze Thomas Ruland Contents 1 Das menschliche Gehirn - Höchstleistungen im täglichen Leben 2 2 Die Hardware 2 2.1 Das Neuron 2 2.2 Nachahmung in der Computertechnik: Das künstliche

Mehr

Neuronale Netze. Volker Tresp

Neuronale Netze. Volker Tresp Neuronale Netze Volker Tresp 1 Einführung Der Entwurf eines guten Klassifikators/Regressionsmodells hängt entscheidend von geeigneten Basisfunktion en ab Manchmal sind geeignete Basisfunktionen (Merkmalsextraktoren)

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten M. Siebers 1 U. Schmid 2 1 Otto-Friedrich-Universität Bamberg 2 Fakultät für Wirtschaftsinformatik und Angewandte Informatik

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Räumliches Data Mining

Räumliches Data Mining Räumliches Data Mining Spatial Data Mining Data Mining = Suche nach "interessanten Mustern" in sehr großen Datensätzen => explorative Datenanlyse auch: Knowledge Discovery in Databases (KDD) verbreitete

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40 Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003,2015, DHBW Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Aufbau des Gehirns Säugetiergehirn,

Mehr

Implementationsaspekte

Implementationsaspekte Implementationsaspekte Überlegungen zur Programmierung Neuronaler Netzwerke Implementationsprinzipien Trennung der Aspekte: Datenhaltung numerische Eigenschaften der Objekte Funktionalität Methoden der

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

Kapitel LF: IV. IV. Neuronale Netze

Kapitel LF: IV. IV. Neuronale Netze Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Künstliche Neuronale Netze. 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5.

Künstliche Neuronale Netze. 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5. Künstliche Neuronale Netze Wolfram Schiffmann FernUniversität Hagen Rechnerarchitektur 1. Einführung 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5. Zusammenfassung

Mehr

auch: Konnektionismus; subsymbolische Wissensverarbeitung

auch: Konnektionismus; subsymbolische Wissensverarbeitung 10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Lösungen zum Buch: Wissensverarbeitung Kapitel 10 Künstliche neuronale Netze Lösung 10.1 (Maschinelles Lernen) a) Ein Computerprogramm lernt aus einer Erfahrung E bezüglich einer Aufgabenklasse T und einer

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren Holger Rahlf; Reiner Schubert www.baw.de Künstlich Neuronales Netz Gliederung Einleitung Grundlagen Möglichkeit und Grenzen Anwendung

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Structurally Evolved Neural Networks for Forecasting

Structurally Evolved Neural Networks for Forecasting Structurally Evolved Neural Networks for Forecasting - Strukturierte neuronale Netze für Vorhersagen Institut für Informatik - Ausgewählte Kapitel aus dem Bereich Softcomputing Agenda Grundlagen Neuronale

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06 Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas 39 Multilayer-Perzeptrons und

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

9.5 Entscheidungsbäume

9.5 Entscheidungsbäume 9.5. ENTSCHEIDUNGSBÄUME 149 9.5 Entscheidungsbäume Wir betrachten wieder einen Datensatz von Ereignissen mit jeweils m Merkmalen, zusammengefasst in x, die zwei verschiedenen Klassen angehören, zum Beispiel

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze Modul Informatik Seminar Simon Krenger, Frühlingssemester 2015 Studiengang: Informatik Autor: Simon Krenger Betreuer: Prof. Dr. Jürgen Eckerle Datum: 25.05.2015 Berner Fachhochschule

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Warum? Manche Probleme (z.b. Klassifikation)

Mehr

Multi-Layer Neural Networks and Learning Algorithms

Multi-Layer Neural Networks and Learning Algorithms Multi-Layer Neural Networks and Learning Algorithms Alexander Perzylo 22. Dezember 2003 Ausarbeitung für das Hauptseminar Machine Learning (2003) mit L A TEX gesetzt Diese Ausarbeitung ist eine Weiterführung

Mehr

Business Intelligence & Machine Learning

Business Intelligence & Machine Learning AUSFÜLLHILFE: BEWEGEN SIE DEN MAUSZEIGER ÜBER DIE ÜBERSCHRIFTEN. AUSFÜHRLICHE HINWEISE: LEITFADEN MODULBESCHREIBUNG Business Intelligence & Machine Learning Kennnummer Workload Credits/LP Studiensemester

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Approximation einer Kennlinie mit einem Künstlich Neuronalen Netz (KNN) in MATLAB 28.01.2008 5_CI2_Deckblatt_Kennlinie_Matlab_Schn2.doc

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Mandl Innovative Information Retrieval Verfahren Hauptseminar Wintersemester 2004/2005 Letzte Sitzung Grundlagen Heterogenität Ursachen Beispiele Lösungsansätze Visualisierung 2D-Karten heute Maschinelles

Mehr