Was sind Neuronale Netze?
|
|
|
- Christel Buchholz
- vor 9 Jahren
- Abrufe
Transkript
1 Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum:
2 Was sind Neuronale Netze? ein Netzwerk aus vielen kleinen Einheiten miteinander verknüpft sind adaptiv, d.h. sie lernen jede Einheit erledigt simple Aufgaben aber insgesamt komplexe Aufgabe
3 Wie kam es überhaupt zu diesem Begriff? 1943 W.S. McCulloch und W. Pitts anfänglich hauptsächlicher Einsatz in Bereichen wie Medizin, Psychologie... Anstieg seit Mitte der 80er Jahre Einsatz auch in anderen Fachbereichen, wie Wirtschaft...
4 Zusammenhang zum Gehirn... Biologische Motivation zwei Gründe für Übertragung einiger biologischen Prinzipien in die Informatik: Mit Hilfe der Computer lassen sich biologische Effekte so näher untersuchen. Mit Hilfe der aus der Biologie übertragenen Funktionsweise lassen sich Methoden implementieren, die ganz neue Funktionen von Computern ermöglichen.
5 WIE IST EIN GEHIRN AUFGEBAUT?
6 WAS GENAU IST NUN EIN NEURONALES NETZ?
7 Neuronen (Units) 3 verschiedenen Arten von Neuronen: Input-Units: Units, die von der Außenwelt Signale (Reize, Muster) empfangen können. Hidden-Units: Units, die sich zwischen Input- und Output-Units befinden und eine interne Repräsentation der Außenwelt beinhalten. Output-Units: Units, die Signale an die Außenwelt weitergeben.
8 Verbindungen zwischen Units Die Stärke der Verbindung zwischen zwei Neuronen wird durch ein Gewicht ausgedrückt. Je größer der Absolutbetrag des Gewichtes ist, desto größer ist der Einfluss einer Unit auf eine andere Unit.
9 Wissen und Lernen Das Wissen eines neuronalen Netzes ist in seinen Gewichten gespeichert. Lernen wird bei neuronalen Netzen zumeist als Gewichtsveränderungen zwischen den Einheiten definiert. Wie die Gewichtsveränderung genau erfolgt ist abhängig von der verwendeten Lernregel.
10 Aktivierung Sender- Unit j Sender- Output a j Gewicht W j,i Netzinput Aktivierungs- Funktion g Empfänger- Unit i Aktivierungs- Level = Output Output a i Σ j a i = g( W j,i a j )
11 Aktivierungsfunktionen Binäre / Schwellenwert- Aktivierungsfunktion Sigmoid-Funktion / Logistische Funktion
12 Lernen Neuronale Netze können lernen Lernen = Gewichte der Verbindungen ändern 3 Arten von Lernen: Überwachtes Lernen Unüberwachtes Lernen Bestärkendes Lernen Lernregeln bestimmen wie die Gewichte zwischen den Neuronen modifiziert werden
13 Überwachtes Lernen Lernen durch externen Lehrer Vorgegebene Input-Output-patterns Vom Netz berechneter Output wird mit eigentlich korrektem Output verglichen Aufgrund der Differenz werden Gewichte modifiziert (durch Lernregeln) Trainings-Korpus wird mehrmals durchlaufen Fehlerrate minimieren
14 Lernregeln des überwachten Lernens Delta-Regel: Nur bei Netzen ohne Hidden Units Vergleich der berechneten Aktivität einer empfangenden Unit mit der gewünschten Berechnete Aktivität zu niedrig Erhöhung der Gewichte zur Unit Berechnete Aktivität zu hoch Verringerung der Gewichte zur Unit Aktivitätslevel gleich keine Änderung Δw ij = ε (a i (gewünscht) a i (beobachtet)) a j
15 Lernregeln des überwachten Lernens Backpropagation: Netz berechnet Output Vergleich mit gewünschtem Output Fehlerterm Fehlerterme werden rückwärts durch das Netz propagiert Veränderung der Gewichte durch Lernregel bei der der Fehlerterm eine Rolle spielt
16 Unüberwachtes Lernen Ohne vorgegebene Input-Output-Patterns Nur Input-Muster Netz versucht eigenständig Ähnlichkeiten der Input-Muster zu identifizieren Kategorien-Bildung (Musterklassen) Bsp: Self-Organizing Maps (Kohonen-Netze)
17 Bestärkendes Lernen Netz berechnet Output dem Netz wird mitgeteilt, ob Output korrekt oder inkorrekt war Netz erfährt nicht die Abweichung Wird eher selten benutzt
18 Arten von Netzen mit oder ohne hidden Units Feed-Forward-Netze Rekurrente Netze (Rückkopplungen) total vernetzt oder teilvernetzt
19 Perzeptron Sehr einfaches Netz Nur Input und Output-Schicht Kann z.b. boolsche Funktionen simulieren, wie OR und AND Kann nicht die XOR-Funktion simulieren nicht linear trennbar OR XOR
20 Rekurrente Netze unmittelbare Rückkopplung Laterale Rückkopplung Aktivierung kann dadurch verstärkt oder abgeschwächt werden Garantie, dass nur eine einzige Unit pro Schicht aktiviert wird
21 Attraktoren-Netze Bei rekurrenten Netzen Attraktoren = stabile (Output-)Zustände Netz erhält Input berechnet zwar Output aber arbeitet (durch Rückkopplungen) solange zyklisch weiter bis stabiler Zustand erreicht ist Input fällt in sogenannte Attraktor-Basins Je weiter der Output vom Attraktor entfernt ist desto mehr Zyklen braucht das Netz um stabilen Zustand zu erreichen
22 Attraktoren-Netze Nutzen: Normalerweise haben neuronale Netze die Eigenschaft ähnliche Outputmuster zu ähnlichen Inputmustern zu berechnen Durch Hinzunahme von Attraktoren sind auch arbiträre mappings möglich
23 Hopfield-Netze Einschichtig (Input = Output) komplett vernetzt in beide Richtungen aber keine direkten feedback-verbindungen Binäre Aktivierung Units beeinflussen sich ständig gegenseitig Bei Aktivierung arbeitet Netz weiter bis Ruhezustand erreicht ist
24 Hopfield-Netze Ruhezustand bedeutet: keine Änderungen der Aktivierungszustände der Units Hopfield-Netze können sich zum Bsp. Muster merken beschädigte Muster können dann wiederhergestellt werden
25 Beispiele Bsp. Für Netze, die konzipiert werden, um das Verhalten im menschlichen Gehirn zu erforschen Netze, die lesen lernen Problemstellung: Nutzen: Verschiedene Phoneme für gleiche Buchstaben Ausnahmen (z.b. brave, save, cave vs. have) Netze können beschädigt werden um z.b. Dyslexie zu erforschen Erforschung von Lernstufen
26 NETtalk NETtalk Entwickelt von Sejnowski und Rosenberg 1987 lernt Lesen berechnet ein Phonem für ein Graphem 203 input units (7x29) 80 hidden units 26 output units
27 NETtalk
28 NETtalk Aktivierungsfunktion: sigmoid Lernregel: Backpropagation Ergebnis: Relativ gutes Ergebnis für die Wörter im Trainings-Korpus auch bei Ausnahmen Konnte einigermaßen generalisieren Simulierte einige menschliche Eigenschaften (nach Beschädigung lernte das Netz schneller wieder als anfänglich menschliches Verhalten ähnlich)
29 Handschriften-Erkennung Beispiel für rein anwendungsorientierten Einsatz neuronaler Netze Input-Units 7 als Pixel
30 Einsatzbereich neuronaler Netze in vielen Bereichen häufig nur Teile eines komplexen Systems Neuronale Netze werden eingesetzt in : Bildverarbeitung Schrifterkennung Spracherkennung Robotersteuerung Regelungsaufgaben (z.b. Waschmaschine)...
31 Fazit rein anwendungs-orientierte neuronale Netze: Können Probleme lösen, die andere Systeme nicht lösen können Sind schwierig und aufwendig zu implementieren Können oft keine 100%ige Korrektheit garantieren
32 Fazit Neuronale Netze, die versuchen menschliches Verhalten zu simulieren: Simulieren menschliches Verhalten schon recht gut können Einsicht in die Verarbeitungsweise des menschlichen Gehirns geben, da NNs auf den grundliegenden Prinzipien des Gehirns basieren Aber: NNs sind immer in Größe beschränkt und können nie das ganze Spektrum des menschlichen Verhaltens erfassen (z.b. gehören zum Lesen auch Aspekte der Semantik oder phonologische Vorkenntnisse)
33 Fazit Implementation ist oft biologisch nicht plausibel (z.b. backpropagation) Bleibt trotzdem nur Simulation selbst wenn Ergebnisse von Mensch und Netz gleich Art und Weise wie die Ergebnisse erreicht werden, können sich stark unterscheiden
34 Vielen Dank für die Aufmerksamkeit!
35 Quellen de.wikipedia.org/wiki/neuronales_netz Russel, Stuard & Peter Norvig: Künstliche Intelligenz. Ein Moderner Ansatz benutzt. Pearson Studium, 2., Überarbeitete Auflage Sejnowski, T. J. & Rosenberg, C. R.: Parallel Networks that learn to pronounce English Text. In: Complex Systems 1, S TJSejnowski.pdf Software: Membrain
BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON
BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe
Hannah Wester Juan Jose Gonzalez
Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron
Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.
Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen
Künstliche neuronale Netze
Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung
Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg
Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)
Konzepte der AI Neuronale Netze
Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: [email protected] Was sind Neuronale
Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?
Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic
Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.
Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles
Künstliche Neuronale Netze
Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?
Künstliche Neuronale Netze
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung
Neuronale Netze (Konnektionismus)
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung
Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser
Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser 11.11.2008 CSM Master: Praktikum Simulationstechnik, rs034, bz003 2 Befehlsübersicht Begriffsdefinition / Neuronale Netze: / / 11.11.2008 CSM
Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004
Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron
Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012. Neuronale Netze. Von Deasy Sukarya & Tania Bellini
Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012 Neuronale Netze Von Deasy Sukarya & Tania Bellini Einführung Symbolische vs. Sub-symbolische KI Symbolische KI: Fokussierung
Lernregeln. Künstliche neuronale Netze. Professur Psychologie digitaler Lernmedien. Institut für Medienforschung Philosophische Fakultät
Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Künstliche neuronale Netze Lernregeln Überblick Definition Lernregeln Hebb-Regel Delta-Regel Gradientenabstiegsverfahren
Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)
29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein
Universität Klagenfurt
Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.
Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)
6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese
Rekurrente / rückgekoppelte neuronale Netzwerke
Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion
Neuronale Netze. Anna Wallner. 15. Mai 2007
5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente
Künstliche Neuronale Netze
Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt
Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung
11. Neuronale Netze 1
11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form
Neuronale Netze. Christian Böhm.
Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch
Konvergenz von Hopfield-Netzen
Matthias Jauernig 1. August 2006 Zusammenfassung Die nachfolgende Betrachtung bezieht sich auf das diskrete Hopfield-Netz und hat das Ziel, die Konvergenz des Verfahrens zu zeigen. Leider wird dieser Beweis
Einführung in neuronale Netze
Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze
Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien
in der Seminar Literaturarbeit und Präsentation 17.01.2019 in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de Spracherkennung???
Automatische Spracherkennung
Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.
Neuronale Netze. Seminar aus Algorithmik Stefan Craß,
Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale
Einführung in die Computerlinguistik
Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:
Selbstorganisierende Karten
Selbstorganisierende Karten Proseminar Ausgewählte Themen über Agentensysteme 11.07.2017 Institut für Informatik Selbstorganisierende Karten 1 Übersicht Motivation Selbstorganisierende Karten Aufbau &
6.2 Feed-Forward Netze
6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir
Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40
Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen
Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise
Der Sprung in die Zukunft! Einführung in neuronale Netzwerke
Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale
Grundlagen Neuronaler Netze
Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht
Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff
Adaptive Systeme Neuronale Netze: Neuronen, Perzeptron und Adaline Prof. Dr. rer. nat. Nikolaus Wulff Neuronale Netze Das (menschliche) Gehirn ist ein Musterbeispiel für ein adaptives System, dass sich
Neuroinformatik. Übung 1
Neuroinformatik Übung 1 Fabian Bürger Raum: BC419, Tel.: 0203-379 - 3124, E-Mail: [email protected] Fabian Bürger ([email protected]) Neuroinformatik: Übung 1 1 / 27 Organisatorisches Neuroinformatik:
Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003
Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung
Adaptive Resonance Theory
Adaptive Resonance Theory Jonas Jacobi, Felix J. Oppermann C.v.O. Universität Oldenburg Adaptive Resonance Theory p.1/27 Gliederung 1. Neuronale Netze 2. Stabilität - Plastizität 3. ART-1 4. ART-2 5. ARTMAP
Machine Learning - Maschinen besser als das menschliche Gehirn?
Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer
Hopfield-Netze. Abb. 7: Einfaches Hopfield-Netz mit drei Neuronen.
6 2.4 Hopfield-Netze Abb. 7: Einfaches Hopfield-Netz mit drei Neuronen. Charakteristisch für Hopfield-Netze ist, daß jede Einheit (Neuron) mit jeder anderen Einheit des Systems "symmetrisch" verbunden
Praktische Optimierung
Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze
Konnektionismus und Kognition
Markus Pospeschill Konnektionismus und Kognition Ein Einführung Verlag W. Kohlhammer Inhalt 3 Inhalt Prolog 7 1 Kognitive Prozesse 9 1.1 Modellansätze zur Erforschung kognitiver Prozesse 9 1.1.1 Kognitionspsychologie
Computational Intelligence I Künstliche Neuronale Netze
Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund [email protected] Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.
Aufbau und Beschreibung Neuronaler Netzwerke
Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser
Einführung in die Methoden der Künstlichen Intelligenz
www.is.cs.uni-fra ankfurt.de Einführung in die Methoden der Künstlichen Intelligenz Vorlesung 7 Künstliche Neuronale Netze 2. Mai 2009 Andreas D. Lattner, Ingo J. Timm, René Schumann? Aldebaran Robotics
Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt, hier ein kurzer Eindruck:
Diplomprüfung Informatik Kurs 1830 Neuronale Netze Prüfer: Prof. Dr. Helbig Beisitzer: Prodekan Prof. Dr. Hackstein Datum: 01.10.08 Note: 2,7 Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt,
Klassifikationsverfahren und Neuronale Netze
Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Seminar Künstliche Intelligenz Wintersemester 2013/14
Seminar Künstliche Intelligenz Wintersemester 2013/14 Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 31.10.2013 2 / 13 Überblick Teilgebiete der KI Problemlösen,
Einfaches Framework für Neuronale Netze
Einfaches Framework für Neuronale Netze Christian Silberbauer, IW7, 2007-01-23 Inhaltsverzeichnis 1. Einführung...1 2. Funktionsumfang...1 3. Implementierung...2 4. Erweiterbarkeit des Frameworks...2 5.
Grundlagen zu neuronalen Netzen. Kristina Tesch
Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen
Virtuelles Labor für Neuronale Netze
Universität Zürich / Wintersemester 2001/2002 Semesterarbeit Virtuelles Labor für Neuronale Netze vorgelegt von Rolf Hintermann, Dielsdorf, ZH, Schweiz, Matrikelnummer: 98-706-575 Angefertigt am Institut
Spracherkennung TAREQ HASCHEMI HAW-SEMINAR WS16
Spracherkennung TAREQ HASCHEMI HAW-SEMINAR WS16 AGENDA Grundlegendes Sprache Anwendungsbeispiele Schwierigkeit Architektur Spracherkennungssystem Hidden Markov Modell Verbesserung durch Kombination mit
Proseminar Neuronale Netze Frühjahr 2004
Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, [email protected] Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die
7. Vorlesung Neuronale Netze
Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial
Neuronale Netze (I) Biologisches Neuronales Netz
Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler
auch: Konnektionismus; subsymbolische Wissensverarbeitung
10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache
Intelligente Algorithmen Einführung in die Technologie
Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche
Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg
Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale
Rekurrente Neuronale Netze
Rekurrente Neuronale Netze Gregor Mitscha-Baude May 9, 2016 Motivation Standard neuronales Netz: Fixe Dimensionen von Input und Output! Motivation In viele Anwendungen variable Input/Output-Länge. Spracherkennung
Lernverfahren von Künstlichen Neuronalen Netzwerken
Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.
Kleines Handbuch Neuronale Netze
Norbert Hoffmann Kleines Handbuch Neuronale Netze Anwendungsorientiertes Wissen zum Lernen und Nachschlagen - vieweg INHALTSVERZEICHNIS 1 Einleitung, 1.1 Begriff des neuronalen Netzes 1 11.1 Neurophysiologie
(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.
(hoffentlich kurze) Einführung: [email protected] (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild
1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5.
Stephan Ruttloff 1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5. Verwendungsweise 6. Quellen Was sind neuronale
Grundlagen neuronaler Netzwerke
AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann [email protected]) WS 00/03 Timo Glaser [email protected]) 0.. 003 Marco Kunze [email protected]) Sebastian Nowozin [email protected])
6 Neuronale Modellierung: Der STAA-Ansatz
Bernd J. Kröger: Neuronale Sprachverarbeitung (Version 1.0.4) Seite 150 6 Neuronale Modellierung: Der STAA-Ansatz 6.1 Knoten: die STAA-Neuronensembles 6.1.1 Aktivierungslevel, Aktivierungsfunktion und
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion
Herzlich Willkommen. Spielstrategien. gehalten von Nils Böckmann
Herzlich Willkommen Spielstrategien gehalten von Nils Böckmann Agenda 1. Einführung 2. Problemstellung 3. Abgrenzung 4. Zielstellung / grober Überblick 5. Vorstellen der Konzepte 1. Umgebungslogik 2. Spielbäume
Neuronale Netze Eine Einführung
Neuronale Netze Eine Einführung Druckversion der Internetseite www.neuronalesnetz.de Inhaltsverzeichnis Grundlagen Einleitung Units Verbindungen Input Aktivität Training und Test Matrizendarstellung Zfs.
Künstliche neuronale Netze
Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche
Simulation neuronaler Netzwerke mit TIKAPP
Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?
Kohonennetze Selbstorganisierende Karten
Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden
Künstliche neuronale Netze
Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ [email protected] SS 2011 1 Softcomputing Einsatz
Case-Based Reasoning und anderen Inferenzmechanismen
Case-Based Reasoning und anderen Inferenzmechanismen Daniel Müller 21 April 2006 DM () CBR und Inferenz 21 April 2006 1 / 31 Contents 1 Einleitung 2 Inferenzmechanismen Statistische Verfahren Data Mining
Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)
6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese
Erworbene Tiefendyslexie: Simulation des Concreteness-Effekts
Erworbene Tiefendyslexie: KW²B² 1. Kognitionswissenschaftliches Simulation des Concreteness-Effekts Symposium Berlin-Brandenburg 30. Juni 2001 Erworbene Tiefendyslexie: Simulation des Concreteness-Effekts
Computational Neuroscience
Computational Neuroscience Vorlesung WS 2005/2006 Josef Ammermüller Jutta Kretzberg http://www.uni-oldenburg.de/sinnesphysiologie/ 14508.html Begriffsdefinitionen Computational Neuroscience Churchland
Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron
Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische
Universität Hamburg. Grundlagen und Funktionsweise von Künstlichen Neuronalen Netzen. Fachbereich Wirtschaftswissenschaften
Universität Hamburg Fachbereich Wirtschaftswissenschaften Institut für Wirtschaftsinformatik Hausarbeit zum Thema 0 Grundlagen und Funktionsweise von Künstlichen Neuronalen Netzen Prof. Dr. D. B. Preßmar
KNN für XOR-Funktion. 6. April 2009
KNN für XOR-Funktion G.Döben-Henisch Fachbereich Informatik und Ingenieurswissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de
Neural Networks: Architectures and Applications for NLP
Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap
