Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Größe: px
Ab Seite anzeigen:

Download "Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24."

Transkript

1 Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt 24. Mai 2006

2 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles Lernen vs. regelbasierte Verfahren Auswahl maschineller Lernverfahren Auswahl neurobiologischer Grundlagen Aufbau Neuronaler Netze Neurobiologische und Kognitive Entsprechungen Lernverfahren Auswahl von Netztypen Vor- und Nachteile Neuronaler Netze 1

3 Einführung Computersimulation biologischer Neuronenverbände Instrument für maschinelles Lernen (datengetriebenes, statistisches Lernen) alternative Begriffe: ANN, konnektionistische Modelle, parallel distributed processing Pioniere: McCulloch & Pitts (1943) 2

4 Maschinelles Lernen Ziel: Erlernen des Zusammenhangs zwischen Zielwerten (Kategorien oder kontinuierliche Werte) für Objekte und deren Eigenschaften. Beispiel: Graphem-Phonem-Konvertierung Objekte: Grapheme Eigenschaften: Graphem-Identität, umgebende Grapheme, Position des Graphems innnerhalb der Silbe Training: Erlernen des Zusammenhangs zwischen einer oder mehreren unabhängigen Variablen und einer abhängigen Variablen abhängige Variable: Phonemklasse unabhängige Variablen: Eigenschaften (s.o.) Anwendung: Vorhersage des (unbekannten) Werts der abhängigen Variablen anhand der gegebenen unabhängigen Variablen. 3

5 Objekte als Merkmalsvektoren (Featurevektoren) repräsentiert unabhängige Variablen (Attribute) für Graphem g i : < g i 1, g i, g i+1, Position von g i in Silbe> Attributwerte: <[a z],[a z],[a z], head nucleus coda> Merkmalsvektor für g in Tagtraum: <a, g, t, coda> Kategorie (abhängige Variable): Phonem /k/ 4

6 Variablenwerte kategorial oder kontinuierlich kategorial: Graphem-Identität, Position in Silbe, Phonemklasse, Wort +/ akzentuiert kontinuierlich: relative Position des Graphems im Wort, Lautdauer, F0-Wert bei neuronalen Netzen unabhängige Variablen: kontinuierlich, binär (zur Codierung kategorialer Variablen) Attribute für Graphem g i : < g i 1 = a, g i 1 = b,..., g i = a,..., posit=head,... > Attributwerte binär: < [01], [01],..., [01],..., [01],... > abhängige Variable: kontinuierlich, kategorial 5

7 Lernparadigmen Überwachtes Lernen: mit Lehrer ; Werte der abhängigen Variablen in Trainingsdaten bekannt Unüberwachtes Lernen: Werte nicht bekannt Neuronale Netze für beide Lerntypen 6

8 Maschinelles Lernen vs. regelbasierte Verfahren Vorteile des regelbasierten Ansatzes gezielter Einsatz von Fachwissen Implementierung und Überprüfung von Theorien für viele linguistische Bereiche (z.b. morphologische Analysen) erfolgreicher als statistische Methoden Vorteile des statistischen Ansatzes Verwendung größerer Datenmengen möglich weniger zeitaufwendig Standardverfahren für unterschiedlichste Problemstellungen robuster gegenüber neuen Daten adaptierbar auf andere Domänen/Sprachen automatische Aquisition von Weltwissen 7

9 Auswahl maschineller Lernverfahren Überwachtes Lernen C4.5 Entscheidungsbäume Quinlan (1993) unabhängige Variablen: kategorial, kontinuierlich abhängige Variable: kategorial Anwendungsbeispiele: Graphem-Phonem-Konvertierung, Vorhersage von Akzenten und prosodischen Phrasengrenzen CART (Classification And Regression Trees) Breiman et al. (1984) unabhängige Variablen: kategorial, kontinuierlich abhängige Variable: kategorial (classification), kontinuierlich (regression) Anwendung: Vorhersage von Lautdauern, Grundfrequenzwerten Neuronale Netze: Perzeptron, Backpropagation-Netze u.a. 8

10 Unüberwachtes Lernen Clustering: Gruppierung von Objekten anhand ihrer Ähnlichkeit unabhängige Variablen: kontinuierlich abhängige Variable: kategorial; Werte ergeben sich erst im Zuge des Lernvorgangs Neuronale Netze: selbst-organisierende Kohonen-Netze u.a. 9

11 Auswahl neurobiologischer Grundlagen Neuronenverbände: Neuronen über Synapsen miteinander verbunden Informationsübertragung zellintern: in Form von Aktionspotentialen (AP s; sich fortpflanzende Spannungsänderung an Zellmembran) zwischen Zellen: über Synapsen; ankommende AP s führen in der präsynaptischen Zelle zur Ausschüttung von Neurotransmittern in den synaptischen Spalt, die an der postsynaptischen Zelle andocken und dort erneut AP s auslösen, sofern ein nötiges Schwellenpotential überschritten wird. je niedriger das Ruhepotential der postsynaptischen Zelle (Membranpotential im Ruhezustand) und je höher die Erregungsschwelle, desto höhere präsynaptische Aktivität zur Überschreitung der Schwelle nötig. 10

12 räumliche Summation: mehrere präsynaptische Zellen konvergieren an der selben Synapse; Summierung ihrer Aktivitäten bei Auslösung der AP s in der postynaptischen Zelle neben exzitatorischen auch inhibitorische Verbindungen, d.h. erhöhte Aktivität der präsynaptischen Zelle führt zu herabgesetzter Aktivität der postsynaptischen Zelle (z.b. bei der lateralen Hemmung). Codierung der Reizstärke: AP-Frequenz, Menge der freigesetzten Neurotransmitter Lernen: basale Lerntypen: Konditionierung, Sensibilisierung, Adaptierung Konditionierung, Sensibilisierung: Stärkung der synaptischen Verbindung zwischen Neuronen, d.h. u.a.: das präsynaptische Neuron entlädt nach dem Lernvorgang eine höhere Menge an Neurotransmittern in den synaptischen Spalt. Adaptierung: Schwächung der synaptischen Verbindung (Begriff hat andere Bedeutung im Zusammenhang mit ANN s: dort gleich Anpassung an Trainingsdaten!) 11

13 Aufbau neuronaler Netze Verarbeitungseinheiten (Neuronen) mit gewichteten Verbindungen Input Layer: Neuronen, die von außen Reize (als numerische Merkmalsvektoren repräsentierte Objekte) empfangen können; ein Input-Neuron für jedes Merkmal Hidden Layers: interne Weiterverarbeitung der empfangenen Reize: Musteranalyse Output Layer: Ausgabe des entsprechenden Zielwerts des perzipierten Objekts Verbindungen: feed forward (nur in eine Richtung von Input nach Output); rekurrent (Rückkopplung) 12

14 Neurobiologische und kognitive Korrelate Wissen: Gewichte zwischen den Neuronen (als Gewichtsmatrix darstellbar) Lernen: Veränderung der Gewichte w ij zwischen Neuron i und j (Modifizierung der synaptischen Verbindungsstärke): w (k+1) ij = w (k) ij + w (k) ij (k: Iterationsindex), wobei die Berechnung von w ij vom jeweiligen Lernverfahren abhängt. 13

15 Neuronale Aktivität Input des Neurons i: I i = j a jw ij a j gleich dem Aktivitätsniveau des sendenden Neurons j w ij ist die Stärke der Verbindung (das Gewicht) zwischen j und i und entspricht der Stärke der synaptischen Verbindung positive/ negative Gewichte für exzitatorische/ inhibitorische Verbindung : räumliche Summation I i codiert die Reizstärke (vgl. Menge des ausgeschütteten Transmitters) häufig wird zum Input noch ein bias θ hinzuaddiert (entspricht dem Ruhepotential) Aktivitätsfunktionen O(I i + θ): linear, binär, sigmoid; häufig mit Schwelle: I i < Schwellwert O(I i ) = 0; beschränkt auf den Wertebereich [ 1 1] 14

16 Lernverfahren Veränderung der Gewichte w ij, um Differenz zwischen beobachtetem und gewünschtem Output zu minimieren gewünschter Output: bestimmtes Erregungsmuster im Output Layer ohne Hidden Layers: Hebb, Delta, Competitive Learning mit Hidden Layers: Backpropagation überwacht: Hebb, Delta, Backpropagation unüberwacht: Competitive Learning 15

17 Auswahl von Netztypen Perzeptrons feed forward für überwachtes und unüberwachtes Lernen Hopfield-Netze rekurrent, einschichtig für überwachtes Lernen Backpropagation-Netze feed forward, mit Hidden Layers für überwachtes Lernen Kohonen-Netze selbstorganisierende Karten für unüberwachtes Lernen 16

18 Vor- und Nachteile + häufig biologisch interpretierbar + für überwachtes und unüberwachtes Lernen geeignet + tolerant gegenüber verrauschten Daten (Mustervervollständigung) schwerer interpretierbar als Entscheidungsbäume Aufblähen des Netzes bei kategorialen Variablen (n Kategorien: Ersetzen durch n binäre Inputneuronen) Gefahr des Hängenbleibens in lokalen Optima 17

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Computational Prosody Prosodische Struktur: Linguistische und Statistische Modelle

Computational Prosody Prosodische Struktur: Linguistische und Statistische Modelle Computational Prosody Prosodische Struktur: Linguistische und Statistische Modelle Uwe D. Reichel IPSK, LMU München reichelu@phonetik.uni-muenchen.de Inhalt regelbasierte vs. statistische Modelle regelbasiert:

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Phonetische Lexika Graphem-Phonem-Konvertierung. Uwe Reichel IPS, LMU München 23. Oktober 2007

Phonetische Lexika Graphem-Phonem-Konvertierung. Uwe Reichel IPS, LMU München 23. Oktober 2007 Phonetische Lexika Graphem-Phonem-Konvertierung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 23. Oktober 2007 Inhalt Abbildungsproblem Einflußfaktoren: Graphemumgebung, Silbenstruktur,

Mehr

Sprachsynthese: Graphem-Phonem-Konvertierung

Sprachsynthese: Graphem-Phonem-Konvertierung Sprachsynthese: Graphem-Phonem- Institut für Phonetik und Sprachverarbeitung Ludwig-Maximilians-Universität München reichelu@phonetik.uni-muenchen.de 21. Dezember 2016 Table Lookup with Defaults (van den

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Neuronale Netze. Uwe Reichel IPS, LMU München 2. Juli 2008

Neuronale Netze. Uwe Reichel IPS, LMU München 2. Juli 2008 Neuronale Netze Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 2. Juli 2008 Inhalt Einführung Neurobiologische Grundlagen Neuronenmodell Aktivierungsfunktionen Lernen Netztypen Perzeptron

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2011 1 Softcomputing Einsatz

Mehr

6 Neuronale Modellierung: Der STAA-Ansatz

6 Neuronale Modellierung: Der STAA-Ansatz Bernd J. Kröger: Neuronale Sprachverarbeitung (Version 1.0.4) Seite 150 6 Neuronale Modellierung: Der STAA-Ansatz 6.1 Knoten: die STAA-Neuronensembles 6.1.1 Aktivierungslevel, Aktivierungsfunktion und

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden?

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Primäre Sinneszellen (u.a. in den Sinnesorganen) wandeln den

Mehr

Topologische Objektrepräsentationen und zeitliche Korrelation

Topologische Objektrepräsentationen und zeitliche Korrelation Topologische Objektrepräsentationen und zeitliche Korrelation Frank Michler Fachbereich Physik, AG NeuroPhysik Outline 1 2 Stimuli -Neuron und Architektur Lernregel 3 Selektivitäts-Karten Invariante Repräsentation

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back )

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) A: Schrittweise vorwärts-gerichtete Abbildung: Eingangssignal (Input) r in Ausgansgsignal (Output) r out Überwachtes Lernen (wie z.b.

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Objekt Attributwerte Klassifizierung X Y

Objekt Attributwerte Klassifizierung X Y AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B 2 3 + C 2 D 3 3 + E 2 2 + F 3 G H 4 3 + I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock.

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock. Seite 1 Implementierung Neuronaler Netze mittels Digit-Online Algorithmen Vortrag im Rahmen des 10. Symposium Maritime Elektronik 2001 M.Haase, A.Wassatsch, D.Timmermann Seite 2 Gliederung Was sind Neuronale

Mehr

Simulation neuronaler Netzwerke mit TIKAPP

Simulation neuronaler Netzwerke mit TIKAPP Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons Genaueres zu den 4 Faktoren: Faktor 1: Die so genannte Brown sche Molekularbewegung sorgt dafür, dass sich Ionen (so wie alle Materie!) ständig zufällig bewegen!

Mehr

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick M 3 Informationsübermittlung im Körper D i e N e r v e n z e l l e a l s B a s i s e i n h e i t im Überblick Beabeablog 2010 N e r v e n z e l l e n ( = Neurone ) sind auf die Weiterleitung von Informationen

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien in der Seminar Literaturarbeit und Präsentation 17.01.2019 in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de Spracherkennung???

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme

Mehr

Neuroinformatik II Theorie neuronaler Netze

Neuroinformatik II Theorie neuronaler Netze Neuroinformati II Theorie neuronaler Netze Günther Palm und Friedhelm Schwener Institut für Neuroinformati Vorlesung (3h) Übungen (1h): Di 12.00-13.30 und Fr 10.15-11.45 Uhr H21 (1.Übung: 7.5.) Schein:

Mehr

Virtuelles Labor für Neuronale Netze

Virtuelles Labor für Neuronale Netze Universität Zürich / Wintersemester 2001/2002 Semesterarbeit Virtuelles Labor für Neuronale Netze vorgelegt von Rolf Hintermann, Dielsdorf, ZH, Schweiz, Matrikelnummer: 98-706-575 Angefertigt am Institut

Mehr

Grundlagen Künstlicher Neuronaler Netze

Grundlagen Künstlicher Neuronaler Netze FernUniversität in Hagen Fachbereich Elektrotechnik und Informationstechnik Lehrgebiet Informationstechnik Seminar Computational Intelligence in der Prozessautomatisierung 7. Juli 2003 Grundlagen Künstlicher

Mehr

Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012. Neuronale Netze. Von Deasy Sukarya & Tania Bellini

Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012. Neuronale Netze. Von Deasy Sukarya & Tania Bellini Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012 Neuronale Netze Von Deasy Sukarya & Tania Bellini Einführung Symbolische vs. Sub-symbolische KI Symbolische KI: Fokussierung

Mehr

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze Ratsgymnasium Bielefeld Schuljahr 2004/2005 Facharbeit aus dem Fach Biologie Thema: Künstliche neuronale Netze Verfasser: Joa Ebert Leistungskurs: Biologie Kursleiter: Herr Bökamp Abgabetermin: 25.02.2005

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Rekurrente / rückgekoppelte neuronale Netzwerke

Rekurrente / rückgekoppelte neuronale Netzwerke Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Neuronale Netze. Seminar aus Algorithmik Stefan Craß,

Neuronale Netze. Seminar aus Algorithmik Stefan Craß, Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze

Mehr

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Neuronale Netze: Neuronen, Perzeptron und Adaline Prof. Dr. rer. nat. Nikolaus Wulff Neuronale Netze Das (menschliche) Gehirn ist ein Musterbeispiel für ein adaptives System, dass sich

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Inhaltsverzeichnis. Einführung

Inhaltsverzeichnis. Einführung Inhaltsverzeichnis Einführung 1 Das biologische Paradigma 3 1.1 Neuronale Netze als Berechnungsmodell 3 1.1.1 Natürliche und künstliche neuronale Netze 3 1.1.2 Entstehung der Berechenbarkeitsmodelle 5

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Exzitatorische (erregende) Synapsen

Exzitatorische (erregende) Synapsen Exzitatorische (erregende) Synapsen Exzitatorische Neurotransmitter z.b. Glutamat Öffnung von Na+/K+ Kanälen Membran- Potential (mv) -70 Graduierte Depolarisation der subsynaptischen Membran = Erregendes

Mehr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 03/04, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

Computational Prosody: Symbolische Beschreibung von Intonationskonturen. Uwe D. Reichel IPSK, LMU München

Computational Prosody: Symbolische Beschreibung von Intonationskonturen. Uwe D. Reichel IPSK, LMU München Computational Prosody: Symbolische Beschreibung von Intonationskonturen Uwe D. Reichel IPSK, LMU München reichelu@phonetik.uni-muenchen.de Inhalt Tonsequenzansatz Pierrehumbert (1980) Generierung der Intonationskontur

Mehr

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler

Mehr

auch: Konnektionismus; subsymbolische Wissensverarbeitung

auch: Konnektionismus; subsymbolische Wissensverarbeitung 10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache

Mehr

Einfaches Framework für Neuronale Netze

Einfaches Framework für Neuronale Netze Einfaches Framework für Neuronale Netze Christian Silberbauer, IW7, 2007-01-23 Inhaltsverzeichnis 1. Einführung...1 2. Funktionsumfang...1 3. Implementierung...2 4. Erweiterbarkeit des Frameworks...2 5.

Mehr

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung Vorlesung Einführung in die Biopsychologie Kapitel 4: Nervenleitung und synaptische Übertragung Prof. Dr. Udo Rudolph SoSe 2018 Technische Universität Chemnitz Grundlage bisher: Dieser Teil nun: Struktur

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Vorlesung Maschinelles Lernen II Dr. Theo Lettmann Oliver Kramer 22. Mai 2006 Überblick Grundlagen SOMs Anwendungen 2D-SOMs Neuronales Gas 2 Grundlagen der Neuronalen Informationsverarbeitung

Mehr

Die Anwendung von Neuronalen Netzen in der Marketingforschung

Die Anwendung von Neuronalen Netzen in der Marketingforschung Diana Rittinghaus-Mayer Die Anwendung von Neuronalen Netzen in der Marketingforschung iiiiiiiiii:;: Akademischer Verlag München 1993 Abbildungsverzeichnis VIII Tabellenverzeichnis X Abkürzungsverzeichnis

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Neuronale Kodierung sensorischer Reize. Computational Neuroscience Jutta Kretzberg

Neuronale Kodierung sensorischer Reize. Computational Neuroscience Jutta Kretzberg Neuronale Kodierung sensorischer Reize Computational Neuroscience 30.10.2006 Jutta Kretzberg (Vorläufiges) Vorlesungsprogramm 23.10.06!! Motivation 30.10.06!! Neuronale Kodierung sensorischer Reize 06.11.06!!

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser 11.11.2008 CSM Master: Praktikum Simulationstechnik, rs034, bz003 2 Befehlsübersicht Begriffsdefinition / Neuronale Netze: / / 11.11.2008 CSM

Mehr

Universität Klagenfurt

Universität Klagenfurt Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.

Mehr

Einführung in. Neuronale Netze

Einführung in. Neuronale Netze Grundlagen Neuronale Netze Einführung in Neuronale Netze Grundlagen Neuronale Netze Zusammengestellt aus: Universität Münster: Multimediales Skript Internetpräsentation der MFH Iserlohn (000) U. Winkler:

Mehr

Diskriminatives syntaktisches Reranking für SMT

Diskriminatives syntaktisches Reranking für SMT Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung

Mehr

Proseminar Neuronale Netze Frühjahr 2004

Proseminar Neuronale Netze Frühjahr 2004 Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, jg7@informatik.uni-ulm.de Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die

Mehr

postsynaptische Potentiale graduierte Potentiale

postsynaptische Potentiale graduierte Potentiale postsynaptische Potentiale graduierte Potentiale Postsynaptische Potentiale veraendern graduierte Potentiale aund, wenn diese Aenderungen das Ruhepotential zum Schwellenpotential hin anheben, dann entsteht

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Neuroinformatik II. Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik

Neuroinformatik II. Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik Neuroinformatik II Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik Vorlesung (3h) Übungen (1h): Di, Fr 10-12 Uhr H21 (1.Übung: 08.05.09) Schein: 50% der Punkte (6 übungsblätter) + aktive

Mehr

Lernregeln. Künstliche neuronale Netze. Professur Psychologie digitaler Lernmedien. Institut für Medienforschung Philosophische Fakultät

Lernregeln. Künstliche neuronale Netze. Professur Psychologie digitaler Lernmedien. Institut für Medienforschung Philosophische Fakultät Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Künstliche neuronale Netze Lernregeln Überblick Definition Lernregeln Hebb-Regel Delta-Regel Gradientenabstiegsverfahren

Mehr

7. Vorlesung Neuronale Netze

7. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Neurobiologische Grundlagen einfacher Formen des Lernens

Neurobiologische Grundlagen einfacher Formen des Lernens Professur für Allgemeine Psychologie Vorlesung im WS 2011/12 Lernen und Gedächtnis Neurobiologische Grundlagen einfacher Formen des Lernens Prof. Dr. Thomas Goschke Neurowissenschaftliche Gedächtnisforschung

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Einführung und Anwendung im Bereich der Mustererkennung Michael Pucher BG/BRG Weiz, Offenburgergasse 23 Künstliche neuronale Netze Einführung und Anwendung im Bereich der Mustererkennung

Mehr

1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5.

1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5. Stephan Ruttloff 1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5. Verwendungsweise 6. Quellen Was sind neuronale

Mehr

Adaptive Systeme. Einführung. Grundlagen. Modellierung. Prof. Rüdiger Brause WS Organisation. Einführung in adaptive Systeme B-AS-1, M-AS-1

Adaptive Systeme. Einführung. Grundlagen. Modellierung. Prof. Rüdiger Brause WS Organisation. Einführung in adaptive Systeme B-AS-1, M-AS-1 Adaptive Systeme Prof. Rüdiger Brause WS 2013 Organisation Einführung in adaptive Systeme B-AS-1, M-AS-1 Vorlesung Dienstags 10-12 Uhr, SR11 Übungen Donnerstags 12-13 Uhr, SR 9 Adaptive Systeme M-AS-2

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr