Künstliche Neuronale Netze
|
|
|
- Nikolas Schreiber
- vor 8 Jahren
- Abrufe
Transkript
1 Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann
2 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze 3. Anwendung 3.1 Schrifterkennung 4. Wie eine Maschine das Lesen lernt 4.1 nettrainer 4.2 wxocr 5. Fazit 6. Quellen Vortrag KNN Anja Bachmann 1
3 1. Motivation Probleme, menschliche Prozesse maschinell umzusetzen Frage, ob Maschinen denken können wie Menschen Rechner können schon viel, aber nicht ohne Weiteres komplexe Lernprozesse (u. a. Lesen) hier setzen künstliche neuronale Netze (KNN) an Einsatzgebiet von KNN ist u.a. die Schrifterkennung Studentenprogramme, die mittels KNN Texte verarbeiten Vortrag KNN Anja Bachmann 2
4 2. Grundlagen bisher Einscannen, um Bilder auf PC zu transferieren oder Abtippen KNN als Möglichkeit, sie einlesen zu lassen Vortrag KNN Anja Bachmann 3
5 2.1 Biologischer Hintergrund 1/2 Grundlage der KNN sind die neuronalen Netze menschliches Gehirn ist solch ein Netz aus Millionen kleiner Nervenzellen (Neuronen) winzige Berechnungseinheiten oder elementare Mini- Prozessoren Vortrag KNN Anja Bachmann 4
6 2.1 Biologischer Hintergrund 1/2 Biologischer Aufbau: Neuron besteht aus Zelle, Dendriten, Axonen und Synapsen Festgelegte Fließrichtung des Signals Vortrag KNN Anja Bachmann 5
7 2.2 Künstliche neuronale Netze 1/3 KNN = i.a. ein massiv paralleler Verbund von Neuronen zu Netzwerken KNN = mögliches System, an Probleme heranzugehen, welche zu ihrer Lösung eine Anpassung bestimmter Faktoren benötigen drei Phasen: Aufbauphase (Topologie), der Trainingsphase (das Lernen) und der Arbeitsphase (Propagation) KNN = ein Graph mit Knoten und (gewichteten) Kanten Vortrag KNN Anja Bachmann 6
8 2.2 Künstliche neuronale Netze 2/3 Parallelen zum biologischen Neuron Topologie eines KNN Dendriten = Eingabe, Zelle = Verarbeitung, Axon = Ausgang Informationsverar beitung in einem KNN verläuft mathematisch Vortrag KNN Anja Bachmann 7
9 2.2 Künstliche neuronale Netze 3/3 Knoten x 1 bis x n senden Signal zum Knoten x j Übergangungsfunktion Σ summiert die Eingangswerte w 1j bis w nj auf. Aktivierungsfunktion φ (z.b. stückweise linear, sigmoid) ermittelt Aktivierungswert Schwellwert θ j wenn überschritten, dann sendet Neuron Signale, sonst nicht Signale auf Richtigkeit prüfen Vortrag KNN Anja Bachmann 8
10 3. Anwendung von KNN Anwendung in: Medizin (Modellierung und Simulation biologischer neuronaler Netze) Informatik und Maschinenbau (Prozesssteuerung, Robotersteuerung, Sprach- oder Schrifterkennung) Wirtschaft (Risikomanagement) Mathematik (Funktionsapproximation) früher eher Forschung, heutzutage auch privat (auf Desktoprechnern bzw. KNN-Software) Vortrag KNN Anja Bachmann 9
11 3.1 Texterkennung OCR (optical character recognition) Zeichenerkennung ICR (intelligent character recognition) Kontext noch mit betrachtet IWR (intelligent word recognition) Weiterentwicklung von OCR/ICR teilweise Fließhandschrift Anwendung in der Wirtschaft: Absender anhand des Firmenlogos erkennen, Formalitätsgrad bestimmten privat: Texte vom Computer einlesen lassen, Captchas entschlüsseln Vortrag KNN Anja Bachmann 10
12 4. Wie eine Maschine das Lesen lernt nicht gänzlich ohne menschliche Hilfe möglich Eingabe- und dazugehörige Ausgabemuster erzeugen Training durch: Entwicklung neuer Verbindungen Löschen bestehender Verbindungen Anpassen der Schwellwerte der Neuronen Hinzufügen oder Löschen von Neuronen Veränderung der Aktivierungsfunktion der Neuronen oder der Lernrate des Netzes Modifikation der Gewichte der Neuronen Anwendung in vielen Programmen Vortrag KNN Anja Bachmann 11
13 4.1 nettrainer Qualität des Trainings entscheidend für die korrekte Arbeitsweise eines Netzes je öfter das Netz mit einem Symbol konfrontiert wird, desto besser erkennt es dieses auch überwachtes Lernen Vergleich von Istund Sollwerten gut trainiertes KNN soll auch für ähnliche, verzerrte, verrauschte oder unvollständige Inputs den richtigen Soll-Output liefern Vortrag KNN Anja Bachmann 12
14 4.2 wxocr 1/2 Urbild in das Programm einlesen Symbols von verschiedenen Punkten aus analysieren Netz vergleicht diese Ergebnisse dann mit seinen eigenen Erfahrungen Vortrag KNN Anja Bachmann 13
15 4.2 wxocr 2/2 das Programm wxocr beim korrekten und fehlerhaften Einlesen wenn fehlerhaft, dann erneutes Training Vortrag KNN Anja Bachmann 14
16 5. Fazit 1/2 großes Einsatzgebiet Texterkennung Alltag erleichtern, Einsparungen in Firmen, Gehirnprozesse simulieren Nachteile: Wissenserwerb nur durch Lernen möglich (langsam, abhängig von Trainingsdaten und Netz- und Lernparametern) viele ungeklärte Rätsel und alltägliche Probleme Hilfe durch Einsatz von KNN z.b. Verbesserung von Sicherheitsmaßnahmen vor allem in der Banken-Branche Vortrag KNN Anja Bachmann 15
17 5. Fazit 2/2 Durch KNN [...] erhalten wir das Tor zu bisher ungeahnter Rechnerleistung [...]. In Zukunft wird die Datenverarbeitung auf anderem Niveau stattfinden. (User Jokin in einem Forum) KNN werden uns noch oft begegnen und neue Anwendungsmöglichkeiten (von Maschinen) schaffen Vortrag KNN Anja Bachmann 16
18 6. Quellen Links: [1] [2] [3] /Neur_Netze_Kai_ ppt [4] [5] [6] [7] [8] Bücher: [9] Künstliche neuronale Netze Grundprinzipien, Hintergründe, Anwendungen, Patrick Hamilton. VDE-Verlag GmbH Berlin und Offenbach, Berlin, Vortrag KNN Anja Bachmann 17
19 Vielen Dank für eure Aufmerksamkeit! Fragen?
Künstliche neuronale Netze als Möglichkeit, Maschinen das Lesen beizubringen
Künstliche neuronale Netze als Möglichkeit, Maschinen das Lesen beizubringen Anja Bachmann Seminar Virtuelles Labor 11.12.2008 1 / 11 Abstract In dieser Arbeit soll gezeigt werden, inwieweit künstliche
Neuronale Netze. Anna Wallner. 15. Mai 2007
5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente
Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron
Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische
Was sind Neuronale Netze?
Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk
Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung
Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Johannes Schemmel Forschungsgruppe Electronic Vision(s) Lehrstuhl Prof. K. Meier Ruprecht-Karls-Universität Heidelberg Mitarbeiter:
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale
Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen
Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie
Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer
Künstliche neuronale Netze
Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung
Neuronale Netze (I) Biologisches Neuronales Netz
Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung
Kohonennetze Selbstorganisierende Karten
Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden
Hannah Wester Juan Jose Gonzalez
Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron
Grundlagen Neuronaler Netze
Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
C1/4 - Modellierung und Simulation von Neuronen
C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische
Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung
Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg
Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)
KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren
KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren Holger Rahlf; Reiner Schubert www.baw.de Künstlich Neuronales Netz Gliederung Einleitung Grundlagen Möglichkeit und Grenzen Anwendung
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und
Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion
Einführung in neuronale Netze
Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze
Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1
Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten
Einführung in Neuronale Netze
Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme
Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?
Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic
Aufbau und Beschreibung Neuronaler Netzwerke
Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen
Einführung in. Neuronale Netze
Grundlagen Neuronale Netze Einführung in Neuronale Netze Grundlagen Neuronale Netze Zusammengestellt aus: Universität Münster: Multimediales Skript Internetpräsentation der MFH Iserlohn (000) U. Winkler:
Praktische Optimierung
Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze
Künstliche neuronale Netze
Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche
Universität Klagenfurt
Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider
Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2
KNN für XOR-Funktion. 6. April 2009
KNN für XOR-Funktion G.Döben-Henisch Fachbereich Informatik und Ingenieurswissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de
Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003
Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung
Machine Learning - Maschinen besser als das menschliche Gehirn?
Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der
Netzwerktreffen. Give me Oberschule Dresden Thomas Lorenz 128.Oberschule Dresden
Netzwerktreffen Give me 5 128.Oberschule 08.05.14 1 Tagesordnung 9.00 Uhr Begrüßung 9.10 Uhr Kurzer Input Wie lernt das Gehirn? 9.30 Uhr 1.Arbeitsphase (mit ind.pausen) 12.15 Uhr Mittagessen 13.00 Uhr
Innovative Rechnerarchitekturen Matthias Jauernig (B. Sc.),
Neurocomputer-Architekturen I ti R h hit kt Innovative Rechnerarchitekturen Matthias Jauernig (B. Sc.), 12.06.07 Überblick 1. Künstliche Neuronale Netze 2. Möglichkeiten der Parallelisierung 3. Neurocomputer-Architekturen
Künstliche neuronale Netze
Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ [email protected] SS 2011 1 Softcomputing Einsatz
Eine kleine Einführung in neuronale Netze
Eine kleine Einführung in neuronale Netze Tobias Knuth November 2013 1.2 Mensch und Maschine 1 Inhaltsverzeichnis 1 Grundlagen neuronaler Netze 1 1.1 Kopieren vom biologischen Vorbild...... 1 1.2 Mensch
Realisierung von CI- Regelalgorithmen auf verschiedenen Hardwareplattformen
Realisierung von CI- Regelalgorithmen auf verschiedenen Hardwareplattformen Prof.Dr.-Ing. K.-D. Morgeneier FH Jena, FB Elektrotechnik und Informationstechnik www.fh-jena.de Gliederung 2. Einführung 3.
Neuronale Netze in der Robotik
Seminarvortrag Neuronale Netze in der Robotik Datum: 18.01.2002 Vortragende: Elke von Lienen Matrikelnummer: 302489 Studiengang: Informatik Inhaltsverzeichnis Einleitung 3 Biologisches Vorbild 4 Künstliche
Zellulare Neuronale Netzwerke
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.
CLINICAL DECISION SUPPORT SYSTEMS
CLINICAL DECISION SUPPORT SYSTEMS INHALTSVERZEICHNIS 1/2 Diagnosefindung Prävention Medikamente (Auswahl, Dosierung etc.) INHALTSVERZEICHNIS 2/2 Supervised, Unsupervised Bayes-Netzwerke Neuronale Netze
Thema 3: Radiale Basisfunktionen und RBF- Netze
Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung
Lernverfahren von Künstlichen Neuronalen Netzwerken
Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.
Exkurs Modelle und Algorithmen
Exkurs Modelle und Algorithmen Ansatz künstlich neuronaler Netze (KNN) Versuch, die Wirkungsweise menschlicher Gehirnzellen nachzubilden dabei wird auf formale mathematische Beschreibungen und Algorithmen
Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten
Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei
Intelligenz in Datenbanken. Dr. Stefan Freundt Star512 Datenbank GmbH. star512 datenbank gmbh
Intelligenz in Datenbanken Dr. Stefan Freundt Star512 Datenbank GmbH Einleitung Definition von Business! Definition von Intelligenz? Künstliche Intelligenz: Motivation Schach erfordert Intelligenz ==>
Freihand-Editieren von mathematischen Formeln
Freihand-Editieren von mathematischen Formeln Seminar Mustererkennung mit syntaktischen und graphbasierten Methoden Maria Heym, 17.01.2006 Gliederung 1.Erschwernisse bei mathematischen Formeln 2. Frühe
Simulation Neuronaler Netze. Eine praxisorientierte Einführung. Matthias Haun. Mit 44 Bildern, 23 Tabellen und 136 Literatursteilen.
Simulation Neuronaler Netze Eine praxisorientierte Einführung Matthias Haun Mit 44 Bildern, 23 Tabellen und 136 Literatursteilen expert Inhaltsverzeichnis 1 Einleitung 1.1 Über das Projekt 1 1.2 Über das
Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40
Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)
Theoretische Informatik 1
Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs
Seminar Künstliche Intelligenz Wintersemester 2013/14
Seminar Künstliche Intelligenz Wintersemester 2013/14 Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 31.10.2013 2 / 13 Überblick Teilgebiete der KI Problemlösen,
(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.
(hoffentlich kurze) Einführung: [email protected] (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild
Teil III. Komplexitätstheorie
Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein
Künstliche Neuronale Netze (KNN)
Künstliche Neuronale Netze (KNN) Die von Neuronalen Netzen ausgehende Faszination besteht darin, dass sie in der Lage sind, in einigen Fällen Probleme von hoher Kompleität mit einfachen Mitteln zu lösen.
Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009
Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache
Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.
Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles
1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5.
Stephan Ruttloff 1. Neuronale Netzwerke 2. Lernen in neuronalen Netzen 3. Überblick und Klassifizierung von Modellen 4. Eigenschaften von neuronalen Netzen 5. Verwendungsweise 6. Quellen Was sind neuronale
Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation
Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für
Was ist Informatik? Alexander Lange
Was ist Informatik? Was ist Informatik? Alexander Lange 12.11.2003 Was ist Informatik? Inhalt 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Das Wort»Informatik«Die Idee Teilgebiete der Informatik Technische Informatik
Neuronale Netze in der Farbmetrik zur Bestimmung des Farbabstandes in der Qualitätsprüfung
Neuronale Netze in der Farbmetrik zur Bestimmung des Farbabstandes in der Qualitätsprüfung Günter Faes DyStar GmbH & Co. Deutschland KG Kaiser-Wilhelm-Allee Postfach 10 04 80 D-51304 Leverkusen Telefon:
Einführung in Neuronale Netze
Einführung in Neuronale Netze Thomas Ruland Contents 1 Das menschliche Gehirn - Höchstleistungen im täglichen Leben 2 2 Die Hardware 2 2.1 Das Neuron 2 2.2 Nachahmung in der Computertechnik: Das künstliche
auch: Konnektionismus; subsymbolische Wissensverarbeitung
10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache
Massive Parallelität : Neuronale Netze
Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung
Ein Einblick in die Neurodidaktik. Referat von Bernadette Barmeyer
Ein Einblick in die Neurodidaktik Referat von Bernadette Barmeyer Warum lernt unser Gehirn? Was lernt unser Gehirn? Wie lernt unser Gehirn? Was ist Neurodidaktik? stützt sich auf Erkenntnisse der Neurowissenschaften
1.3.5 Clinical Decision Support Systems
Arzneimitteltherapie Thieme Verlag 1.3.5 Clinical Decision Support Systems Marco Egbring, Stefan Russmann, Gerd A. Kullak-Ublick Im Allgemeinen wird unter dem Begriff Clinical Decision Support System (CDSS)
Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze
Ratsgymnasium Bielefeld Schuljahr 2004/2005 Facharbeit aus dem Fach Biologie Thema: Künstliche neuronale Netze Verfasser: Joa Ebert Leistungskurs: Biologie Kursleiter: Herr Bökamp Abgabetermin: 25.02.2005
Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr.
Neuronale Netze Maschinelles Lernen Michael Baumann Universität Paderborn Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Kleine Büning WS 2011/2012 Was ist ein neuronales Netz? eigentlich: künstliches
Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)
29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein
Technische Universität. Fakultät für Informatik
Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian
Algorithmen für Computerspiele
Algorithmen für Computerspiele Künstliche Intelligenz von Manuel Bischof 3. Mai 2010 Gliederung Einleitung Was umfasst die KI? Nutzung in verschiedenen Genres Wo sind Verbesserungen notwendig? Möglichkeiten,
Herzlich Willkommen. Spielstrategien. gehalten von Nils Böckmann
Herzlich Willkommen Spielstrategien gehalten von Nils Böckmann Agenda 1. Einführung 2. Problemstellung 3. Abgrenzung 4. Zielstellung / grober Überblick 5. Vorstellen der Konzepte 1. Umgebungslogik 2. Spielbäume
Wie und wo lernen Kinder am besten welche Bedingungen brauchen sie?
Experimentelle HNO-Heilkunde Wie und wo lernen Kinder am besten welche Bedingungen brauchen sie? Prof. Dr. Holger Schulze Einführung Einige Grundlagen aus der Neurobiologie Verschiedene Hirnregionen haben
Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose
Informatik Philipp von der Born Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Bachelorarbeit Universität Bremen Studiengang Informatik Regressionsanalyse zur
Natürliche und künstliche neuronale Netze
Kapitel 2 Natürliche und künstliche neuronale Netze 2.1 Informationsverarbeitung im Gehirn In diesem Abschnitt soll ein sehr knapper und durchaus unvollständiger Überblick gegeben werden, um den Bezug
Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger
Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale
Endliche Automaten. Im Hauptseminar Neuronale Netze LMU München, WS 2016/17
Endliche Automaten Im Hauptseminar Neuronale Netze LMU München, WS 2016/17 RS- Flipflop RS-Flipflop Ausgangszustand 0 1 0 1 0 1 Set Reset neuer Zustand 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 Was ist ein endlicher
Neuronale Netze. Seminar aus Algorithmik Stefan Craß,
Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze
Modul MED-CNS008: Grundlagen der Modellierung neuronaler Systeme. VL4, , Uhr, PC-Pool, IMSID, Bachstr.18, Gebäude 1
Modul MED-CNS008: Grundlagen der Modellierung neuronaler Systeme VL4, 11.5.2012, 10.00 Uhr, PC-Pool, IMSID, Bachstr.18, Gebäude 1 Lehrender: Dirk Hoyer, [email protected], Tel. 9325795 2.2 Rückgekoppelte
Neuronale Netze mit mehreren Schichten
Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren
Eingabegeräte Eine Arbeit von Claude Martin Informatik, MM 1A Arlesheim, der 10. Januar 2001
Eingabegeräte Eine Arbeit von Claude Martin Informatik, MM 1A Arlesheim, der 10. Januar 2001 Inhaltsverzeichnis 1. Einleitung Eingabegeräte 3 2. Die Tastatur 3 2.1. Die Entstehung 3 2.2. Die Hardware 3
Selbstorganisierende Karten
Selbstorganisierende Karten Yacin Bessas [email protected] Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-
Neuronale Signalverarbeitung
neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung
Fachgruppe Informatik. Anwendungsfächer. im Bachelor-Studiengang Informatik. Fachstudienberatung Bachelor Informatik Dr.
Fachgruppe Informatik in der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen Einführungsveranstaltung zur Wahl der Anwendungsfächer im Bachelor-Studiengang Informatik Fachstudienberatung
Wolfgang Limper. Scannerpraxis. Einsatz und Anwendung moderner Scannertechnik. te-wi Verlag GmbH
Wolfgang Limper Scannerpraxis Einsatz und Anwendung moderner Scannertechnik te-wi Verlag GmbH Inhaltsverzeichnis Vorwort 11 Einleitung 17 Grundlagen für die Arbeit mit dem Scanner 21 1.1 1.2 1.2.1 1.2.2
Kleines Handbuch Neuronale Netze
Norbert Hoffmann Kleines Handbuch Neuronale Netze Anwendungsorientiertes Wissen zum Lernen und Nachschlagen - vieweg INHALTSVERZEICHNIS 1 Einleitung, 1.1 Begriff des neuronalen Netzes 1 11.1 Neurophysiologie
Künstliche Neuronale Netze. 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5.
Künstliche Neuronale Netze Wolfram Schiffmann FernUniversität Hagen Rechnerarchitektur 1. Einführung 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5. Zusammenfassung
Das Steinerbaumproblem
Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen
