Objekt Attributwerte Klassifizierung X Y

Größe: px
Ab Seite anzeigen:

Download "Objekt Attributwerte Klassifizierung X Y"

Transkript

1 AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B C 2 D E F 3 G H I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie die zwei möglichen Entscheidungsbäume für die Klassifizierung der bjekte A bis I. 2) Wie klassifizieren diese Entscheidungsbäume die bjekte J, K und L? Welcher Klassifizierung geben Sie den Vorzug, und warum? 3) Welcher der beiden Bäume wird durch das ID3-Verfahren gewählt? [Berechnung der Entropieabnahme für den ersten Entscheidungsschritt!] Prüfung Neuronale Netzwerke 0. ktober 200 Seite

2 AUFGABE 2: Perceptron Betrachten Sie ein Perceptron mit 2 Inputneuronen, einer Schwelle und einem utputneuron, W 0 W 2 W I 0 I I 2 = sign (W0 I0 + W I + W2 I2 ), + sign(x) = falls falls x 0 x < 0 und die folgenden 3 Lernbeispiele (D = gewünschter utput): Lernbeispiel I I 2 D a + + b 0 c 0 + ) Wählen Sie als Anfangsgewichte W 0 =, W =.5 und W 2 = 3. Präsentieren Sie dann die 3 Lernbeispiele je einmal [Reihenfolge a, b, c], und ändern Sie die Gewichte jedesmal gemäss dem Perceptron-Lernverfahren [mit η = ¼]. 2) Klassifiziert der so erhaltene Satz von Gewichten bereits alle Lernbeispiele richtig? 3) Stellen Sie die Klassifizierung des entsprechenden Perceptrons in der (I, I 2 ) Ebene graphisch dar. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 2

3 AUFGABE 3: Feedforward-Netzwerk Betrachten Sie das folgende Feedforward-Netzwerk: = sign( ) - -2 S S = sign( ) - I 0 I I 2 ) Zeigen Sie, dass dieses Netzwerk das XR-Problem löst. [D = gewünschter utput] XR: I I 2 D ) Bestimmen Sie die Bereiche im Inputraum [ < I, I 2 < + ], in denen der utput den Wert + annimmt, und stellen Sie diese auch graphisch dar. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 3

4 AUFGABE 4: Error-Backpropagation Gegeben sei das folgende Feedforward-Netzwerk: = f (W 3 I + W 4 S) f(v) W 3 W 4 S S = f (W I + W 2 I 2 ) f(u) W W 2 f(x) = + e x I I 2 ) Bestimmen Sie mit Hilfe des Backpropagation-Algorithmus und der Fehlerfunktion F = D ln D D + ( D) ln [ D = gewünschter utput] einen analytischen Ausdruck für die Gewichtsänderung W. df =, dx Hinweis: Beachten Sie, dass f(x) [ f(x) ] d ds d.h.: = ( ), = S ( S). dv du ) Vergleichen Sie diesen Ausdruck für W mit demjenigen, den Sie bei Verwendung der üblichen quadratischen Fehlerfunktion erhalten, d.h. wenn F = (D ) 2 2. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 4

5 AUFGABE 5: Hopfield-Netzwerk Betrachten Sie das folgende Hopfield-Netzwerk: S S 2 S 3 S 4 Benutzen Sie die Hebb sche Lernregel, um in diesem Netzwerk die drei Muster A, B und C zu speichern: A B C ( wobei: : S i =, : S i = - ) ) Welche Werte ergeben sich für die Gewichte der 6 Verbindungen? 2) Zeigen Sie, dass mit diesen Gewichtswerten die Muster B und C keine stabilen Zustände des Netzwerks sind. 3) Vergleichen Sie die Energien dieser Muster mit der Energie des stabilen Musters A. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 5

6 AUFGABE 6: Stochastische Neuronen Im folgenden Feedforward-Netzwerk 2W S W W W X 0 X bezeichnen und S die Zustandsvariablen von stochastischen Neuronen, welche die Werte oder 0 annehmen können: bzw. S = 0 mit mit Wahrscheinlichkeit Wahrscheinlichkeit p p wobei p = + exp( Input) ) Bestimmen Sie P( = ), d.h. die Wahrscheinlichkeit, dass den Wert annimmt, als Funktion von X und W. 2) Skizzieren Sie den Verlauf von P( = ) als Funktion von X ( < X < + ) im Limes W +. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 6

7 AUFGABE 7: Winner-Take-All Netzwerke ) Wie werden in einem sogenannten Winner-Take-All Netzwerk die Werte der utput-neuronen berechnet? 2) Wie werden bei einem (einfachen!) kompetitiven Lernverfahren die Gewichte eines Winner-Take-All Netzwerks verändert? 3) Betrachten Sie das folgende Winner-Take-All Netzwerk, S S 2 S 3 S 4 S 5 W W 52 X X 2 W = 0. W 2 = 0. W 3 = 0.5 W 4 = 0.9 W 5 = 0.9 W 2 = 0.9 W 22 = 0.3 W 32 = 0.7 W 42 = 0.3 W 52 = 0.9 und bestimmen Sie (graphisch) die Winner-Gebiete der 5 utputneuronen im Inputraum [0 < X, X 2 <]. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 7

8 AUFGABE 8: Design eines neuronalen Netzwerks Ein Spital will für den Entscheid über die Behandlung von Patienten mit Bauchschmerzen ein neuronales Netzwerk einsetzen. Es wird ein Feedforward-Netzwerk gewählt, das mit dem Backpropagation-Lernalgorithmus trainiert werden soll. Jedes Trainingsbeispiel (existierende Patientendaten) enthält die folgenden Informationen: Input-Daten: Körpertemperatur ( C) Blutdruck ( ) Anzahl Leucozyten ( pro µl) Stärke der Schmerzen (stark, mittel, schwach) rt der Schmerzen (links, Mitte, rechts) Behandlungsentscheid: 3 Möglichkeiten: operieren medikamentöse Behandlung keine Behandlung Diskutieren Sie die folgenden Aspekte beim Design des neuronalen Netzwerks: ) Vorverarbeitung der kontinuierlichen Inputdaten (Körpertemperatur, Blutdruck, Anzahl Leucozyten). 2) Codierung der diskreten Inputdaten (Stärke und rt der Schmerzen): Anzahl Inputneuronen?, Vor- und Nachteile verschiedener Alternativen? 3) Der Behandlungsentscheid wird durch 3 kontinuierliche utputneuronen dargestellt [0, 2, 3 ]. Wie interpretieren Sie die folgenden utput-beispiele? Machen Sie einen Vorschlag für die Interpretation der utputdaten, bei dem auch ein Nullentscheid ( weitere Untersuchungen ) zugelassen ist, z.b. operieren falls Regel (, 2, 3 ), etc. Prüfung Neuronale Netzwerke 0. ktober 200 Seite 8

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back )

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) A: Schrittweise vorwärts-gerichtete Abbildung: Eingangssignal (Input) r in Ausgansgsignal (Output) r out Überwachtes Lernen (wie z.b.

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Konvergenz von Hopfield-Netzen

Konvergenz von Hopfield-Netzen Matthias Jauernig 1. August 2006 Zusammenfassung Die nachfolgende Betrachtung bezieht sich auf das diskrete Hopfield-Netz und hat das Ziel, die Konvergenz des Verfahrens zu zeigen. Leider wird dieser Beweis

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Von schwachen zu starken Lernern

Von schwachen zu starken Lernern Von schwachen zu starken Lernern Wir nehmen an, dass ein schwacher Lernalgorithmus L mit vielen Beispielen, aber großem Fehler ε = 1 2 θ gegeben ist. - Wie lässt sich der Verallgemeinerungsfehler ε von

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt 7. Aufgabe : Summe {} Man sieht leicht ein, dass ein einzelnes Perzeptron mit Gewichten c, c 2, c 3 und Schwelle θ das Problem nicht lösen

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Mehrere Neuronen, Assoziative Speicher und Mustererkennung Prof. Dr. rer. nat. Nikolaus Wulff Modell eines Neuron x x 2 x 3. y y= k = n w k x k x n Die n binären Eingangssignale x k {,}

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Virtuelles Labor für Neuronale Netze

Virtuelles Labor für Neuronale Netze Universität Zürich / Wintersemester 2001/2002 Semesterarbeit Virtuelles Labor für Neuronale Netze vorgelegt von Rolf Hintermann, Dielsdorf, ZH, Schweiz, Matrikelnummer: 98-706-575 Angefertigt am Institut

Mehr

ONKOLEIT. Ein medizinisches Expertensystem zum Therapiemonitoring von Krebserkrankungen. ITG-Workshop Usability,

ONKOLEIT. Ein medizinisches Expertensystem zum Therapiemonitoring von Krebserkrankungen. ITG-Workshop Usability, ONKOLEIT Ein medizinisches Expertensystem zum Therapiemonitoring von Krebserkrankungen ITG-Workshop Usability, 03.06.2016 Dr.-Ing. Yvonne Fischer yvonne.fischer@iosb.fraunhofer.de +49 (0)721 6091-571 Prof.

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI Thermodynamik G. eschke FS 011 Musterlösung zu Übung 7 (8. April 011) Aufgabe 1 (a) Die Shomate-Gleichung (Script (153)) lautet: C p (gas, T ) A + BT + CT + DT 3 + E T (1) Für das Kohlenstoffmonooxid

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Hopfield Netze. Neuronale Netze WS 2016/17

Hopfield Netze. Neuronale Netze WS 2016/17 Hopfield Netze Neuronale Netze WS 2016/17 Rekursive Netze Definition: Ein rekursives Netz enthält mindestens eine Feedback-Schleife Gegensatz: Feedforward-Netze Beispiel: Hopfield-Netze, Boltzmann-Maschinen

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

Lernende Vektorquantisierung

Lernende Vektorquantisierung Lernende Vektorquantisierung (engl. Learning Vector Quantization) Rudolf Kruse Neuronale Netze 5 Motivation Bisher: festes Lernen, jetzt freies Lernen, d.h. es existieren keine festgelegten Klassenlabels

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Instanzenbasiertes Lernen: Übersicht

Instanzenbasiertes Lernen: Übersicht Instanzenbasiertes Lernen: Übersicht k-nearest Neighbor Lokal gewichtete Regression Fallbasiertes Schließen Lernen: Lazy oder Eager Teil 11: IBL (V. 1.0) 1 c G. Grieser Instanzenbasiertes Lernen Idee:

Mehr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 03/04, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

2.4.4 Die Fraktale Dimension

2.4.4 Die Fraktale Dimension 2.4.4 Die Fraktale Dimension Ausgehend vom euklidischen Dimensionsbegriff (Punkt = 0, Linie = 1, Fläche = 2...) lässt sich einem fraktalen Gebilde eine fraktale Dimension d f zuordnen. Wir verwenden die

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable

Mehr

Seminar K nowledge Engineering und L ernen in Spielen

Seminar K nowledge Engineering und L ernen in Spielen K nowledge Engineering und Lernen in Spielen Neural Networks Seminar K nowledge Engineering und L ernen in Spielen Stefan Heinje 1 Inhalt Neuronale Netze im Gehirn Umsetzung Lernen durch Backpropagation

Mehr

Neuronale Neize. Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke ADDISON-WESLEY PUBLISHING COMPANY

Neuronale Neize. Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke ADDISON-WESLEY PUBLISHING COMPANY Helge Ritter/Thomas Marrineiz/Klaus Schulten Neuronale Neize Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke Technische Hochschule Darmstadt FACHBEREICH INFORMATIK B! B k±ojjtlus

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Sommersemester 2010 10.8.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Einführung Lineare Klassifikatoren trennen Klassen durch eine lineare Hyperebene (genauer: affine Menge) In hochdimensionalen Problemen trennt schon eine lineare

Mehr

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock.

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock. Seite 1 Optimierung der Verbindungsstrukturen in Digitalen Neuronalen Netzwerken Workshop on Biologically Inspired Methods on Modelling and Design of Circuits and Systems 5.10.2001 in Ilmenau, Germany

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

8. Vorlesung Neuronale Netze

8. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 8. Vorlesung Neuronale Netze Lernverfahren 8. Vorlesung im Aufbau der Vorlesung 1. inführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Objekterkennung mit künstlichen neuronalen Netzen

Objekterkennung mit künstlichen neuronalen Netzen Objekterkennung mit künstlichen neuronalen Netzen Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar,

Mehr

12. Übung Künstliche Intelligenz Wintersemester 2006/2007

12. Übung Künstliche Intelligenz Wintersemester 2006/2007 12. Übung Künstliche Intelligenz Wintersemester 2006/2007 1. Contraints und Heuristiken Prof. Dr. Gerd Stumme, Miranda Grahl Fachgebiet Wissensverarbeitung 09.02.2006, mgr@cs.uni-kassel.de a) Beschreibe

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen

Mehr

Effiziente Näherungsverfahren 2

Effiziente Näherungsverfahren 2 Effiziente Näherungsverfahren 2 D. Rücker S. Major Hochschule Zittau-Görlitz 21. Juni 2009 Überblick DNA Computing evolutionäre Algorithmen Neuronale Netze Effiziente Näherungsverfahren 2 DNA Computing

Mehr

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser 11.11.2008 CSM Master: Praktikum Simulationstechnik, rs034, bz003 2 Befehlsübersicht Begriffsdefinition / Neuronale Netze: / / 11.11.2008 CSM

Mehr

Kapitel 4: Netzplantechnik Gliederung der Vorlesung

Kapitel 4: Netzplantechnik Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien in der Seminar Literaturarbeit und Präsentation 17.01.2019 in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de Spracherkennung???

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Wasserwirtschaftliche Planungsmethoden

Wasserwirtschaftliche Planungsmethoden Wasserwirtschaftliche Planungsmethoden 6. Optimierungsverfahren o.univ.prof. Dipl.Ing. Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau 6 Optimierungsverfahren

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Neuronale Netze zur Prognose und Disposition im Handel

Neuronale Netze zur Prognose und Disposition im Handel Sven F. Crone Neuronale Netze zur Prognose und Disposition im Handel Mit einem Geleitwort von Prof. Dr. Dr. h. c. Dieter B. Preßmar GABLER RESEARCH Inhalt XI Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer *Entscheidungsbäume Gliederung 1. Einführung 2. Induktion 3. Beispiel 4. Fazit Einführung 1. Einführung a. Was sind Decision Trees?

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Sommtersemester 2013 6.8.2013 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Künstliche Intelligenz. Neuronale Netze

Künstliche Intelligenz. Neuronale Netze Künstliche Intelligenz Neuronale Netze Richard Schorpp Version. -- 3.8.7 INHALTVERZEICHNIS Inhaltverzeichnis...2. Versionsverwaltung...2 2 Das Neuron... 3 2. Naturbeobachtung...3 2.2 Nachbildung der Natur...4

Mehr

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Neuronale Netze: Neuronen, Perzeptron und Adaline Prof. Dr. rer. nat. Nikolaus Wulff Neuronale Netze Das (menschliche) Gehirn ist ein Musterbeispiel für ein adaptives System, dass sich

Mehr

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfer: Prof.Dr.Johann Boos Datum: 29.08.2001 Dauer: 30min Note: 1.0 So Sie wollten uns was über zweischichtige neuronale Feed-Forward

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Einführung in die Methoden der Künstlichen Intelligenz

Einführung in die Methoden der Künstlichen Intelligenz www.is.cs.uni-fra ankfurt.de Einführung in die Methoden der Künstlichen Intelligenz Vorlesung 7 Künstliche Neuronale Netze 2. Mai 2009 Andreas D. Lattner, Ingo J. Timm, René Schumann? Aldebaran Robotics

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Topologische Objektrepräsentationen und zeitliche Korrelation

Topologische Objektrepräsentationen und zeitliche Korrelation Topologische Objektrepräsentationen und zeitliche Korrelation Frank Michler Fachbereich Physik, AG NeuroPhysik Outline 1 2 Stimuli -Neuron und Architektur Lernregel 3 Selektivitäts-Karten Invariante Repräsentation

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Selbstorganisierende Merkmalskarten

Selbstorganisierende Merkmalskarten Selbstorganisierende Merkmalskarten Motivation (Gehirn) Architektur Topographische Merkmalskarten Selbstorganisierende Merkmalskarte (Kohonen-Lernregel) Anwendungsbeispiele (Folien: Holger Arndt) Motivation:

Mehr

Mathematik 1 Probeprüfung 1

Mathematik 1 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 1 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Neuronale Netze. Seminar aus Algorithmik Stefan Craß,

Neuronale Netze. Seminar aus Algorithmik Stefan Craß, Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze

Mehr