Algorithmische Bioinformatik
|
|
|
- Agnes Günther
- vor 6 Jahren
- Abrufe
Transkript
1 FREIE UNIVERSITÄT BERLIN Fachbereich Mathematik und Informatik Institut für Informatik (WE 3) FU BERLIN Freie Universität Berlin FB Mathematik und Informatik, Institut für Informatik, Takustr. 9, D Berlin Prof. Dr. Knut Reinert, Andreas Döring, Moritz Blöcker Algorithmische Bioinformatik WS 2003/04 Klausur Name, Vorname Matr.-Nr. Zur Bearbeitung der Klausur stehen Ihnen 120 Minuten zur Verfügung. Die hier gestellten Aufgaben sind jedoch für eine deutlich längere Bearbeitungszeit konzipiert. Sie werden somit vermutlich nicht sämtliche Aufgaben bearbeiten können, und dies wird auch nicht von Ihnen verlangt. Abgesehen von einem nicht-programmierbaren Taschenrechner sind keinerlei Hilfsmittel gestattet. Geben Sie auf dem Titelblatt ihren Namen und ihre Immatrikulationsnummer an. Schreiben Sie ihre Lösungen direkt auf die entsprechenden Aufgabenbögen. Sollte dort der Platz nicht ausreichen und Sie weitere Blätter benötigen, vermerken Sie dies bitte, damit wir auch den Rest ihrer Antwort finden und bei der Bewertung berücksichtigen können. Am Ende der Klausur sind sämtliche Aufgabenblätter wieder abzugeben. 15. Februar 2004 Ergebniss: Punkte max Σ 120
2 1. [8 Punkte] Beschreiben Sie einen Algorithmus, der ein Sequenzalignment (score und [15] traceback) mit linearen Gapkosten in linearem Platz berechnet. 2. [4 Punkte] Gegeben seien zwei Sequenzen der Längen 1000 und Bei einem Se- [5] quenzvergleich wird ein Alignment mit einem Score von 20 bit gefunden. Entscheiden Sie durch eine grobe Abschätzung, ob dieser Wert signifikant ist. 3. [6 Punkte] Blat hat eine seed phase und eine extend phase. [10] (a) Welche drei Strategien bietet Blat in der seed phase dafür an, mögliche seeds zu finden? [2 Punkte] (b) Geben Sie für eine dieser Strategien Formeln zur Abschätzung der Sensitivität und der Spezifizität an. [4 Punkte] 4. [6 Punkte] Schätzen Sie Zeit- und Platzbedarf (in O-Notation) für die Berechnung eines [10] multiplen Stringalignments von k Strings der Länge n mit einfachem dynamischen Programmieren und WSOP-Kostenfunktion ( weighted sum of pairs ) ab. Begründen Sie Ihre Antwort. 5. [9 Punkte] [15] (a) Beschreiben Sie die Idee des in der Vorlesung beschriebenen Algorithmus für ein exaktes MSA ( multiple sequence alignment ) nach dem Prinzip des divide and conquer. [3 Punkte] (b) Beschreiben Sie eine Methode, wie man im divide and conquer-alignment effizient gute Schnittpositionen finden kann. [3 Punkte] (c) Wie kann man es beim exakten MSA vermeiden, die gesamte dynamic programming- Matrix aufbauen zu müssen. [3 Punkte] 6. [9 Punkte] Gegeben sei das folgende HMM mit Startzustand, Endzustand und zwei [15] ausgebenden Zuständen 1 und 2. Die Werte in den Zuständen 1 und 2 entsprechen den Ausgabewahrscheinlichkeiten für die Zeichen A und B. Die Werte an den Kanten sind die Übergangswahrscheinlichkeiten. Bestimmen Sie mit dem Viterbi Algorithmus einen der wahrscheinlichsten Pfade durch das HMM vom Start bis zum Endzustand, wenn bekannt ist, dass dabei genau die Zeichenkette ABA ausgegeben wird, und geben Sie die Wahrscheinlichkeit dafür an, dass das HMM durch diesen Pfad läuft und ABA ausgibt. 7. [5 Punkte] Gegeben die folgende Distanzmatrix. Ist dies eine additive Metrik? Ist dies [8] eine Ultrametrik? Begründen Sie Ihre Antworten. A B C D A B C D
3 8. [6 Punkte] Gegeben sei folgende Distanzmatrix: [10] A B C D E A B C D 0 8 W 0 Welche Baumtopologie berechnet UPGMA für diese Distanzmatrix? Begründen Sie Ihre Antwort. 9. [8 Punkte] Gegeben sei die folgende Liste der Sequenzstücklängen eines PDP: [15] E = {3, 10, 15, 7, 18, 8} Beschreiben Sie kurz, wie der Skiena Algorithmus nach Eingabe von E eine Menge X von Restriktionsstellen berechnet, indem Sie die bei jedem Schritt berechneten Mengen von Restiktionsstellen und Stücklängen angeben. 10. [6 Punkte] Gegeben sei folgende Matrix: [10] a b c d
4 (a) Ordnen Sie die Spalten der Matrix auf eine Weise an, dass die consecutive ones property erfüllt ist. [2 Punkte] (b) Bei größeren Matrizen lässt sich nicht mehr auf den ersten Blick sagen, ob sich die consecutive ones property überhaupt durch eine Spaltenpermutation erfüllen lässt. Man möchte dann allgemeiner die Gesamtzahl der separaten Einserblöcke minimieren. Dieses Problem lässt sich als ein Travelling-Salesman-Problem formulieren. Stellen Sie die Distanzmatrix des TSPs für die oben stehende Matrix auf. [4 Punkte] 11. [6 Punkte] Geben Sie eine möglichst kurze RNA-Sequenz an, die sich zu einer Struk- [10] tur falten könnte, welche mindestens eine Wölbung (bulge) und zwei Haarnadelschleifen (hairpin loops) enthält. Zeichnen Sie diese Struktur in 2 gängigen Darstellungsweisen auf. 12. [6 Punkte] Geben Sie die fill stage (Initialisierung und Rekursionsformel) des Nussinov [10] Algorithmus an. 13. [8 Punkte] Gegeben folgendes Alignment von 4 RNAs: [15] seq 1: A C A A A seq 2: A C C U A seq 3: A U G A C seq 4: A U U A G Berechnen Sie dazu ein RNA Sequenzlogo, d.h. geben Sie zu jeder Spalte die Höhe der einzelnen Buchstaben und die Gesamthöhe aller Buchstaben der Spalte an. 14. [6 Punkte] Geben Sie die Rekursionsgleichung eines Algorithmus zur Berechnung des opti- [10] malen strukturellen Alignments von zwei Sequenzen S 1 und S 2 an, die mit Sekundärstrukturen P 1 bzw. P 2 ohne pseudo knots annotiert sind. 15. [6 Punkte] Gegeben sei ein Protein aus 100 Aminosäuren. Die Konformation des Proteins [10] sei modellhaft allein durch die Φ- und Ψ-Winkel des Rückgrates beschrieben. (a) Wie viele Freiheitsgrade bestimmen die Konformation dieses Proteinmodells? [2 Punkte] (b) Angenommen, für jeden der Φ- und Ψ-Winkel werden nur 10 diskrete Werte zugelassen. Wie viele Konformationen gibt es dann? [2 Punkte] (c) Schätzen Sie ab, wie viele Jahre ein Cluster mit 1000 Prozessoren brauchen würde, um alle möglichen Konformationen energetisch zu bewerten, wenn jede CPU 4 GF lops/s durchführen kann und pro Freiheitsgrad 200 Gleitkommaoperationen benötigt werden würde, das System aber im Schnitt nur 10% seiner theoretischen Spitzenleistung erbringt. [2 Punkte] 16. [3 Punkte] Was braucht man für die Durchführung eines Moleküldynamikexperiments? [5]
5 17. [3 Punkte] Was versteht man unter virtual screening? [5] 18. [5 Punkte] Angenommen, es werden n 1 Replikate einer Hybridisierung von wildtyp Hefe [8] und n 2 Replikate einer Hybridisierung einer Hefemutante gemacht. Wie testet man, ob sich ein Gen signifikant verändert hat? Nennen Sie mögliche Tests und geben Sie eine Teststatistik an. 19. [4 Punkte] Welche 4 Schritte werden in der Massenspektrometrie bei der Umwandlung [5] von rohen MS-Daten in Stickdaten durchgeführt, und wozu dienen diese Schritte? 20. [3 Punkte] Was sind die beiden Hauptschritte bei SCOPE? [5]
Algorithmische Bioinformatik
FREIE UNIVERSITÄT BERLIN Fachbereich Mathematik und Informatik Institut für Informatik (WE 3) FU BERLIN Freie Universität Berlin FB Mathematik und Informatik, Institut für Informatik, Takustr. 9, D-14195
Algorithmen und Datenstrukturen in der Bioinformatik Zweites Übungsblatt WS 05/06 Musterlösung
Johanna Ploog, Konstantin Clemens Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Zweites
Karlsruher Institut für Technologie. Klausur Algorithmen I
Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte
Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung
Multiple Alignments Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung http://bioinfo.wikidot.com/ Sprechstunde Mo 16-17 in OH14, R214 Sven.Rahmann -at-
Bioinformatik Für Biophysiker
Bioinformatik Für Biophysiker Sommersemester 2009 Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Wissensmanagement in der Bioinformatik Schwerpunkte Algorithmen der Bioinformatik Management
Klausur Bioinformatik für Biotechnologen
Name, Vorname: 1 Klausur Bioinformatik für Biotechnologen Studiengang Molekulare Biotechnologie TU Dresden WS 2011/2012 Prof. Michael Schroeder 15.02.2012 Die Dauer der Klausur beträgt 90 Minuten. Bitte
DAP2-Klausur
DAP2-Klausur 09.10.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik (inkl. angewandte Informatik)/ Lehramt Informatik/Informationstechnik/ Physik/Mathe/Statistik/Sonstiges: Bitte
Anwendungen dynamischer Programmierung in der Biologie
Anwendungen dynamischer Programmierung in der Biologie Überblick Algorithmus zum Finden der wahrscheinlichsten Sekundärstruktur eines RNS Moleküls Sequence Alignment Verbesserung von Sequence Alignment
RNA folding. W1-High-throughput Genomics, FU Berlin OWL RNA Bioinformatics, MPI Molgen Berlin
RNA folding W-High-throughput Genomics, FU Berlin OWL RNA Bioinformatics, MPI Molgen Berlin 3..6 Lernziele Einführung von RNA-Molekülen Konzept der RNA-Sekundärstruktur Lernen wie eine RNA-Sekundärstruktur
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 4 Maschinelles Lernen und Spracherkennung
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 216 M. Sperber ([email protected]) S. Nguyen ([email protected]) Lösungsblatt 4 Maschinelles Lernen und Spracherkennung Aufgabe
Aufgabenblatt 5. Silke Trißl Wissensmanagement in der Bioinformatik
Aufgabenblatt 5 Silke Trißl Wissensmanagement in der Bioinformatik Zuerst! FRAGEN? Silke Trißl: Bioinformatik für Biophysiker 2 Exercise 1 + 2 Modify program to compare protein sequence read substitution
Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte)
Andrew Torda Björn Hansen Iryna Bondarenko Zentrum für Bioinformatik Übung zur Vorlesung Angewandte Bioinformatik Sommersemester 2014 20./23.06.2014 Übung 4: Revision Beispielfragen zur Klausur im Modul
Kapitel 7: Sequenzen- Alignierung in der Bioinformatik
Kapitel 7: Sequenzen- Alignierung in der Bioinformatik 7.3: Paarweise Sequenzen-Alignierung 7.4: Multiple Sequenzen Alignierung VO Algorithm Engineering Professor Dr. Petra Mutzel Lehrstuhl für Algorithm
Klausur Lineare Algebra I
Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018 S. Constantin ([email protected]) S. Nguyen ([email protected]) Übungsblatt 4 Maschinelles Lernen und Spracherkennung Abgabe
Algorithmische Bioinformatik 1
Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Paarweises
Algorithmen und Datenstrukturen in der Bioinformatik Erstes Übungsblatt WS 05/06 Musterlösung
Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Erstes
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 4 Maschinelles Lernen und Spracherkennung
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018 S. Constantin ([email protected]) S. Nguyen ([email protected]) Lösungsblatt 4 Maschinelles Lernen und Spracherkennung Aufgabe
Bioinformatik. Lokale Alignierung Gapkosten. Silke Trißl / Ulf Leser Wissensmanagement in der. Bioinformatik
Bioinformatik Lokale Alignierung Gapkosten Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Ähnlichkeit Lokales und globales Alignment Gapped Alignment Silke Trißl:
Algorithmen und Datenstrukturen in der Bioinformatik Drittes Übungsblatt WS 05/06 Musterlösung
Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Drittes
Bioinformatik Für Biophysiker
Bioinformatik Für Biophysiker Wintersemester 2005 / 2006 Ulf Leser Wissensmanagement in der Bioinformatik Wissensmanagement in der Bioinformatik Lehrstuhl seit 10/2002 Schwerpunkte Algorithmen der Bioinformatik
Probeklausur Optimierung
Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)
Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr
, Klausur Diskrete Mathematik I Donnerstag, den 29.02.2008 um 14 Uhr Aufgabenblätter Füllen Sie das Deckblattvollständigaus. Prüfen Sie, ob die Klausur 8 Aufgaben enthält.. Kennzeichnen Sie alle verwendeten
Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 3.7.5 Klausur zum Fach Höhere Mathematik für Informatik Teil Bearbeitungszeit: 9 Minuten Hilfsmittel:
Übungsaufgaben zur Einführung in die Bioinformatik - Lösungen
18.01.2013 Prof. P. Güntert 1 Vorlesung BPC I: Aspekte der Thermodynamik in der Strukturbiologie Übungsaufgaben zur Einführung in die Bioinformatik - Lösungen 1. Hamming und Levenshtein Distanzen a) Was
Quantitative Methoden (CC 303)
CHAIR OF SERVICE OPERATIONS MANAGEMENT Dr. Esther Mohr Bachelor Quantitative Methoden (CC 303) Bachelor-Prüfung HWS 2014/15-16. Dezember 2014 Persönliche Daten: Name:... Vorname:... Matr.-Nr.:... Punkte:
Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen
Pairwise Alignment. Steffen Forkmann. Proseminar: BioInformatik
Pairwise Alignment Steffen Forkmann Proseminar: BioInformatik Wintersemester 2004/2005 Inhaltsverzeichnis 1 Problemstellungen 3 1.1 Rechtschreibkorrektur............................... 3 1.2 DNA- und Aminosäure-Sequenzen........................
Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Klausur Informatik 2: Algorithmen und Datenstrukturen Donnerstag, 9. März 21, 2017, 9:00 bis 12.00 Uhr Name:.....................................................................
Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................
Methoden für den Entwurf von Algorithmen
Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.
Hidden-Markov-Modelle
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene
Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 22.
Note: Name Vorname Matrikelnummer Studiengang Unterschrift der Kandidatin/des Kandidaten Hörsaal Reihe Platz Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS
Klausur Algorithmen und Datenstrukturen II 10. August 2015
Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
Sequenz Alignment Teil 2
Sequenz Alignment Teil 2 14.11.03 Vorlesung Bioinformatik 1 Molekulare Biotechnologie Dr. Rainer König Besonderen Dank an Mark van der Linden, Mechthilde Falkenhahn und der Husar Biocomputing Service Gruppe
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................
Algorithmen und Datenstrukturen in der Bioinformatik
Algorithmen und Datenstrukturen in der Bioinformatik Vorlesung von Dr. Gunnar Klau Wintersemester 2005/2006, FU Berlin [email protected] http://www.math.fu-berlin.de/~gunnar 1 Aus dem Vorlesungsverzeichnis:
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................
Klausur Algorithmen und Datenstrukturen II
Technische Universität Braunschweig Sommersemester 2017 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Arne Schmidt Klausur Algorithmen und Datenstrukturen
Name:... Matr.-Nr... Bearbeitungszeit: 120 Minuten. Lesen Sie die Aufgaben jeweils bis zum Ende durch; oft gibt es hilfreiche Hinweise!
Fakultät IV Elektrotechnik/Informatik Klausur Einführung in die Informatik I für Elektrotechniker Name:.................................... Matr.-Nr..................................... Bearbeitungszeit:
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................
Algorithmen I - Tutorium 28 Nr. 12
Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN
Hauptdiplomklausur Informatik März 2001: Internet Protokolle
Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 200: Internet Protokolle Name:... Vorname:...
RNA Faltung - II. W1-High-throughput Genomics, FU Berlin OWL RNA Bioinformatics, MPI Molgen Berlin
RNA Faltung - II W1-High-throughput Genomics, FU Berlin OWL RNA Bioinformatics, MPI Molgen Berlin 05.12.16 Nussinov Nachteilen Die Maximierung der Anzahl von Bp führt unter Umständen nicht zu biologisch
Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y
GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne
Musterklausur zur MSc-Vorlesung Entscheidungsverhalten
Dr. Moritz Lukas und Prof. Dr. Markus Nöth Institut für Versicherungsbetriebslehre und Lehrstuhl für Bankbetriebslehre und Behavioral Finance Musterklausur zur MSc-Vorlesung Entscheidungsverhalten Name,
Klausur zu Lineare Algebra I für Informatiker, SS 07
7.7.7 (. Termin Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen Name:
Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 16.03.2016 Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1 Bearbeitungszeit: 90 Minuten
Einführung in die Bioinformatik
Einführung in die Bioinformatik Ringvorlesung Biologie Sommer 07 Burkhard Morgenstern Institut für Mikrobiologie und Genetik Abteilung für Bioinformatik Goldschmidtstr. 1 Online Materialien zur Ringvorlesung:
Studiengang Informatik der FH Gießen-Friedberg. Sequenz-Alignment. Jan Schäfer. WS 2006/07 Betreuer: Prof. Dr. Klaus Quibeldey-Cirkel
Studiengang Informatik der FH Gießen-Friedberg Sequenz-Alignment Jan Schäfer WS 2006/07 Betreuer: Prof. Dr. Klaus Quibeldey-Cirkel Überblick Einführung Grundlagen Wann ist das Merkmal der Ähnlichkeit erfüllt?
Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker
TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen
Klausur zur Linearen Algebra I
Technische Universität Dortmund Wintersemester 2011/2012 Fakultät für Mathematik 23.03.2012 Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie
Klausur zur Vorlesung Informatik III Wintersemester 2007/2008
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer:
Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13
Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber
Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14
Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die
Klausur. Betriebssysteme SS 2007
Matrikelnummer: 9999999 Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2007 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre
Algorithmen auf Sequenzen
Algorithmen auf Sequenzen Fehlertolerante Mustersuche: Distanz- und Ähnlichkeitsmaße Sven Rahmann Genominformatik Universitätsklinikum Essen Universität Duisburg-Essen Universitätsallianz Ruhr Einführung
Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Viel Erfolg! Prof. Große, Dr. Jüngel BA WS 15/16 Mathe+Statistik Klausur Jena, den Matrikelnummer. Name (lesbar!
Prof. Große, Dr. Jüngel BA WS 15/16 Mathe+Statistik Klausur Jena, den 12.2.2016 Matrikelnummer Name lesbar! Unterschrift Hinweise Jedes abgegebene Blatt ist lesbar mit dem Namen und der Matrikelnummer
FOLDALIGN und sein Algorithmus. Nadine Boley Silke Szymczak
FOLDALIGN und sein Algorithmus Nadine Boley Silke Szymczak Gliederung 2 Einleitung Motivation des Ansatzes zu FOLDALIGN Sankoff-Algorithmus Globales Alignment Zuker-Algorithmus Kombination FOLDALIGN Algorithmus,
Algorithmische Bioinformatik
Algorithmische Bioinformatik Effiziente Berechnung des Editabstands Dynamische Programmierung Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Rekursive Definition des Editabstands
Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min
Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,
Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016
Heinrich-Heine-Universität Düsseldorf Institut für Informatik Prof. Dr. J. Rothe Universitätsstr. 1, D-40225 Düsseldorf Gebäude: 25.12, Ebene: O2, Raum: 26 Tel.: +49 211 8112188, Fax: +49 211 8111667 E-Mail:
High Performance Computing Blatt 7
Dr. Andreas Borchert Institut für Numerische Mathematik Prof. Dr. Stefan Funken Universität Ulm Prof. Dr. Karsten Urban Sommersemester 03 Markus Bantle, Kristina Steih High Performance Computing Blatt
Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)
Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:
Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2013/14
Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2013/14 Vorname Nachname Matrikelnummer Hinweise Für die
Fachprüfung. Nachrichtencodierung
Fachprüfung Nachrichtencodierung 23. Februar 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:
Klausur zum Fach Mathematik 1 Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
2. Klausur Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006
Kapitel 1 Parallele Modelle Wie rechnet man parallel?
PRAM- PRAM- DAG- R UND R Coles und Kapitel 1 Wie rechnet man parallel? Vorlesung Theorie Paralleler und Verteilter Systeme vom 11. April 2008 der Das DAG- Das PRAM- Das werkmodell Institut für Theoretische
Klausur Algorithmen und Datenstrukturen II 29. Juli 2013
Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen
Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 12
Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 20. Februar 2004 1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester Aufgabe Punkte
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester 2014 29.07.2014 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt: Aufgabe 1 2 3 4
Algorithmische Bioinformatik
Algorithmische Bioinformatik Multiple Sequence Alignment Sum-of-pairs Score Center-Star Score Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Multiples Sequenzalignment Sum-Of-Pair
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal
Klausur zur Vorlesung Logistik im WS 04/05
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Logistik im WS 04/05 Hinweise: Die Klausur besteht aus 14 Seiten
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 07.04.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
