Foundations of Systems Development

Größe: px
Ab Seite anzeigen:

Download "Foundations of Systems Development"

Transkript

1 Foundations of Systems Development Vergleich und Zusammenfassung Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer WS 2007/08

2 2 Ziele Wichtige Aspekte von algebraischen Spezikationen Termersetzungssystemen Prozessalgebra Temporaler Logik zusammenfassen. Maude, CCS und TLA am Beispiel der Uhr vergleichen.

3 1. Algebraische Spezifikation der Uhr in Maude Ein algebraische Spezifikation des Datentyps der Uhr in Maude: fmod CLOCK is protecting NAT. sort State. op init : -> State [ctor]. op tick : State -> State [ctor]. op hr : State -> Nat. op min : State -> Nat. var s : State. eq min(init) = 0. eq min(tick(s)) = if min(s) < 59 then min(s) + 1 else 0 fi. eq hr(init) = 0. eq hr(tick(s)) = if min(s) < 59 then hr(s) else if hr(s) < 23 then hr(s) + 1 else 0 fi fi. endfm 3 Jeder Zustand hat die Form: tick( tick(init) ) M-mal Strukturelle Rekursion über init und tick

4 1. Algebraische Spezifikation 4 Algebraische Spezifikationen dienen zur formalen Modellierung von Datentypen (Domainmodell) und von funktionalen Eigenschaften. Eine algebraische Spezifikation (Σ, E) besteht aus einer Signatur Σ zur Angabe der Datentypen und Operationen einer Schnittstelle einer Menge E von Σ-Formeln zur Spezifikation der Eigenschaften der Operationen von Σ ; meist schränkt man sich auf Gleichungen oder bedingte Gleichungen ein. Durch Konstruktoren zeichnet man die Menge der Datenelemente aus; in zustandsbasierten Systemen beschreibt man mit Konstruktoren die Menge der möglichen Zustände. Beziehungen zwischen den Konstruktoren beschreibt man durch Gleichungen; typische Beziehungen sind Kommutativität, Assoziativität, neutrales Element, Idempotenz und Distributivität.

5 1. Algebraische Spezifikation 5 Nichtkonstruktor-Operationen definiert man typischerweise (wie in funktionalen Sprachen) mittels struktureller Rekursion über den Konstruktoren. Die Sprache Maude unterstützt die Implementierung und Simulation von ordnungssortierten Gleichungsspezifikationen.

6 6 1. Testen der algebraischen Spezifikation der Uhr in Maude Hilfsfunktion zum Generieren des Zustands gentick(s, M) generiert den Zustand nach M ticks : op gentick : State Nat -> State. var S : State. var M : Nat. eq gentick(s, 0) = S. eq gentick(s, s M) = tick(gentick(s, M)). Testbeispiele Beobachtung des Zustands nach 112 ticks ) reduce in CLOCK : min(gentick(init, 112)). rewrites: 561 in 9287ms cpu (4ms real) (60 rewrites/second) result NzNat: 52 ========================================== reduce in CLOCK : hr(gentick(init, 112)). rewrites: in ms cpu (244ms real) (0 rewrites/second) result NzNat: 1

7 7 2. Termersetzungssystem für die Uhr in Maude mod CLOCK-MACHINE is protecting NAT. including CONFIGURATION. op CLOCK : -> Cid. op min :_ : Nat -> Attribute. op hr :_ : Nat -> Attribute. op tick : -> Msg. var C : Oid. vars M M1 H H1 : Nat. crl [tick] : tick < C : CLOCK hr : H, min : M > => < C : CLOCK hr : H1, min : M1 > if M1 := (if M < 59 then M + 1 else 0 fi ) /\ H1 := (if M < 59 then H else if H < 23 then H + 1 else 0 fi fi). Gleichungsspezifikation: Beschreibt den Zustandsraum als Multimenge von Nachrichten (Msg) und Objekten <c: ClassName attribute : value > Termersetzungsregel konsumiert die Nachricht tick endm Das Ersetzungssystem spezifiziert alle möglichen Zustandsübergange der Uhr.

8 8 2. Termersetzungssysteme Termersetzungssysteme werden eingesetzt zur operationellen Beschreibung von Datenstrukturen und zur operationellen Modellierung zustandsbasierter nebenläufiger Systeme. Rewriting Logic bildet eine mathematische wohldefinierte Grundlage zur Modellierung nebenläufiger verteilter Systeme, einschließlich objektorientierter Systeme. Dynamisches Verhalten und insbesondere nebenläufige Transitionen werden mittels Termersetzungsregeln (rewrite rules) definiert. Eine Rewrite Theory (Σ, E, R) besteht aus einer Gleichungspezifikation (Σ, E) der Zustandsmenge und der Grundoperationen sowie einer Menge R von Termersetzungsregeln der Form l: t -> t if cond Verteilte Konfigurationen werden durch Terme dargestellt, wobei die Verteilungsstruktur algebraisch durch die initialen Algebren einer Gleichungstheorie definiert wird.

9 9 2. Testen des Maude Termersetzungssystems der Uhr Hilfsfunktion zum Generieren von tick op gentick : Nat -> Configuration. eq gentick(0) = none. eq gentick(s M) = tick gentick(m). Testbeispiel rewrite in CLOCK-MACHINE : gentick(137) < C : CLOCK min : 10, hr : 7 >. rewrites: 827 in ms cpu (23ms real) (0 rewrites/second) result Object: < C : CLOCK min : 27, hr : 9 >

10 10 3. Prozessalgebra Der Prozessalgebra-Ansatz dient zur Modellierung des dynamischen Verhaltens reaktiver (nebenläufiger, verteilter, mobiler) Systeme: Alles wird als Prozess aufgefasst: Die Grundoperatoren sind Konstruktoren zum Bilden von Prozessen. Der aktuelle Zustand eines Systems wird durch einen Prozess(term) beschrieben. Das Verhalten wird ebenfalls durch einen Prozess(term) (bzw. eine Menge kooperierender Prozesse) beschrieben. Systemevolution basiert auf Prozesstransformation: Ein Prozess führt eine Aktion durch und wird zu einem anderen Prozess. Die Semantik von Prozessen wird durch markierte Transitionssysteme beschrieben, die mittels strukturierter operationeller Semantik spezifiziert werden. Wichtige Prozesskalküle sind CCS (Calculus of Communicating Systems), CSP (Communicating Sequential Processes), ACP (Algebra of Communicating Processes), LOTOS (Language Of Temporal Ordering Specification) π-calculus

11 11 3. Uhr in CCS In value passing CCS wird eine einfache Uhr spezifiziert durch ein System von 3660 Prozessen; jeder dieser Prozesse ist mit einem Zeitpunkt (h,m) indiziert und gibt diesen auf dem Kanal tick aus. Zeit wird hier gesehen als logische Zeit : Immer wenn ein tick gesendet wird (bzw. mit tick interagiert wird), schreitet die Zeit voran. In value passing CCS spezifizieren wir die Menge aller möglichen (unendlichen) Abläufe der Uhr. Stottern ist nicht erlaubt.

12 Temporale Logik 4. Temporale Logik ist eine Erweiterung der mathematischen Logik um Aussagen, deren Wahrheitswert zu verschiedenen Zeitpunkten unterschiedlich sein kann Linear Temporal Logic LTL verwendet diskrete lineare Zeit und hat als grundlegende Operatoren next (X), always (G), sometime (F) und until. Model Checking von PLTL ist PSPACE-vollständig. Computational Tree Logic CTL* verwendet diskrete Zeit mit Bäumen zur Darstellung der möglichen Entwicklungen der Zukunft Hat zusätzliche Pfadquantoren für alle Pfade, es gibt einen Pfad. CTL beschränkt Quantoren auf Form EX φ, EF φ, E[φ until ψ], AX φ, Model Checking von PCTL ist polynomial (bzgl. Zeit). 12

13 13 4. TLA TLA (Temporal Logic of Actions) erweitert LTL um spezielle Formeln zur Beschreibung von Zustandsübergängen (Aktionen). Eine Aktionsformel hat typischerweise die Form [A] v ( Wenn sich eines der v ändert, wird die Aktion A ausgeführt ), wobei v eine Liste von flexiblen Variablen ist, die (globale) Zustandskomponenten repräsentieren. Eine Systemspezifikation hat i.a. die Form wobei Init die Menge der Anfangszustäde spezifiziert und Next eine Disjunktion von Aktionen und L eine Konjunktion von Fairnessbedingungen ist. Verfeinerung und Strukturierung werden in TLA durch logische Operatoren ausgedrückt: Verfeinerung entspricht der Implikation, parallele Komposition der Konjunktion und die Kapselung der Existenzquantifizierung über flexible Variable. Eine wesentliche Voraussetzung dafür ist die Stotterinvarianz von TLA-Formeln.

14 4. Uhr in TLA 14 TLA spezifiziert die Menge aller möglichen (unendlichen) Abläufe der Uhr. Dabei ist Stottern erlaubt!

15 15 Zusammenfassung der Beispiele: Maude, CCS, TLA Algebraische Spezifikation in Maude Spezifikation der möglichen Zustände der Uhr Ablesen der Zeit durch Beobachtungsfunktionen (min, hr) Verfeinerung als Wechsel der Datenstruktur Dynamisches Verhalten in Maude Spezifikation der Zustandsübergange der Uhr Testen endlicher Abläufe CCS Calculus of Communicating Systems Spezifikation eines Systems von Prozessen; jeder dieser Prozesse gibt einen Zeitpunkt auf dem Kanal tick aus. Spezifikation der unendlichen nicht-stotternden Abläufe der Uhr Prozessäquivalenz durch Bisimulation oder Trace-Äquivalenz (oder weitere Äquivalenzbegriffe) TLA Temporal Logic of Actions Spezifikation der Menge aller möglichen stotternden unendlichen Abläufe der Abläufe der Uhr Verfeinerung als Implikation

16 16 Vielen Dank für Ihre Aufmerksamkeit und Mitarbeit! Moritz Hammer, Axel Rauschmayer und ich wünschen Ihnen viel Erfolg in der Prüfung und eine angenehme vorlesungsfreie Zeit!

Motivation. Motivation

Motivation. Motivation Vorlesung Modellierung nebenläufiger Systeme Sommersemester 2012 Universität Duisburg-Essen Was sind nebenläufige Systeme? Ganz allgemein: Systeme, bei denen mehrere Komponenten/Prozesse nebenläufig arbeiten

Mehr

Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit

Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit 18:13:55 2015-07-14 1 [16] Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit Christoph Lüth & Martin Ring Universität Bremen Sommersemester 2015 2 [16] Organisatorisches

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Wintersemester 2009/10 Prof. Dr. Dr. h.c. Manfred Broy Unter Mitarbeit von Dr. K. Spies, Dr. M. Spichkova, L. Heinemann, P.

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur Bisher Wiederholung NFA Modellierung durch NFA Kripke-Struktur Model-Checking Modell beschrieben durch Kripke-Struktur A Spezifikation ϕ in einer Temporallogik Verifikation: Nachweis, dass die Struktur

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Test-Driven Design: Ein einfaches Beispiel

Test-Driven Design: Ein einfaches Beispiel Test-Driven Design: Ein einfaches Beispiel Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06 2 Ziele Veranschaulichung der Technik des Test-Driven Design am Beispiel eines Programms

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Gliederung. Programmierparadigmen. Sprachmittel in SCHEME. Objekte: Motivation. Objekte in Scheme

Gliederung. Programmierparadigmen. Sprachmittel in SCHEME. Objekte: Motivation. Objekte in Scheme Gliederung Programmierparadigmen D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Einführung Sprachmittel Sommer 2011, 20. Juni 2011,

Mehr

Objektorientierte Programmierung OOP

Objektorientierte Programmierung OOP Objektorientierte Programmierung OOP Objektorientierte Programmierung OOP Ronja Düffel WS2012/13 08. Oktober 2013 Objektorientierte Programmierung OOP Objektorientierte Programmierung Objektorientierte

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Grundlagen von Python

Grundlagen von Python Einführung in Python Grundlagen von Python Felix Döring, Felix Wittwer November 17, 2015 Scriptcharakter Programmierparadigmen Imperatives Programmieren Das Scoping Problem Objektorientiertes Programmieren

Mehr

Programmierparadigmen

Programmierparadigmen Programmierparadigmen D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2011, 20. Juni 2011, c 2011 D.Rösner D. Rösner PGP 2011...

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Software-Engineering SS03. Zustandsautomat

Software-Engineering SS03. Zustandsautomat Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

Programmieren II Vererbung. Programmieren II Vererbung. Programmieren II Vererbung. Programmieren II Vererbung. Einleitende Bemerkungen

Programmieren II Vererbung. Programmieren II Vererbung. Programmieren II Vererbung. Programmieren II Vererbung. Einleitende Bemerkungen Einleitende Bemerkungen Einleitende Bemerkungen Ideen hinter der objektorientierten Programmierung Objekte (/* Instanzen einer Klasse */) im Mittelpunkt Objekte bilden Einheit aus Daten (/* Attributen,

Mehr

Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel

Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel Übungen zur Vorlesung Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel Übungsblatt 3 - Lösungshilfe Aufgabe 1. Klassendiagramme (9 Punkte) Sie haben den Auftrag, eine Online-Videothek

Mehr

Fragen. f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))?

Fragen. f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))? Fragen f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))? Wozu evaluiert [f [ ], f [ ]]? Weiteres Beispiel: f [ ] y = [

Mehr

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von

Mehr

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik [email protected] Kurzvorlesung am Studieninformationstag, 13.05.2009

Mehr

Softwaretechnologie Wintersemester 2009/2010 Dr. Günter Kniesel, Pascal Bihler

Softwaretechnologie Wintersemester 2009/2010 Dr. Günter Kniesel, Pascal Bihler Übungen zur Vorlesung Softwaretechnologie Wintersemester 2009/2010 Dr. Günter Kniesel, Pascal Bihler Übungsblatt 4 Lösungshilfe. Aufgabe 1. Zustandsdiagramm (8 Punkte) Geben Sie ein Zustandsdiagramm für

Mehr

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie.

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie. GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen Teil 1: Einführung: Wissensbasis und Ontologie Was ist eine Wissensbasis? Unterschied zur Datenbank: Datenbank: strukturiert

Mehr

Übungen zur Softwaretechnik

Übungen zur Softwaretechnik Technische Universität München Fakultät für Informatik Lehrstuhl IV: Software & Systems Engineering Markus Pister, Dr. Bernhard Rumpe WS 2002/2003 Lösungsblatt 9 17. Dezember 2002 www4.in.tum.de/~rumpe/se

Mehr

DSL Entwicklung und Modellierung

DSL Entwicklung und Modellierung DSL Entwicklung und Modellierung Dipl. Inform. Rolf Hänisch Übersicht DSL, was bedeutet das für uns? Eine Anwendung aus der Automatisierungstechnik Sprachen und Werkzeuge Ergebnisse und Erfahrungen GI

Mehr

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,

Mehr

EINFÜHRUNG IN DIE WIRTSCHAFTSINFORMATIK -ÜBUNGEN- Marina Tropmann-Frick [email protected] www.is.informatik.uni-kiel.

EINFÜHRUNG IN DIE WIRTSCHAFTSINFORMATIK -ÜBUNGEN- Marina Tropmann-Frick mtr@is.informatik.uni-kiel.de www.is.informatik.uni-kiel. EINFÜHRUNG IN DIE WIRTSCHAFTSINFORMATIK -ÜBUNGEN- Marina Tropmann-Frick [email protected] www.is.informatik.uni-kiel.de/~mtr FRAGEN / ANMERKUNGEN Vorlesung Neue Übungsaufgaben MODELLIERUNG

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata]

Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Timed Automata (Zeitbeschriftete Automaten) [R. Alur: Timed Automata] Formalismus zur Behandlung von Dense Time unterstützt durch Verifikationstools, z.b. UPPAAL Transitionssysteme (Automaten) mit Zeitbeschriftungen

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne 6.2 Petri-Netze WS 06/07 mod 621 Petri-Netz (auch Stellen-/Transitions-Netz): Formaler Kalkül zur Modellierung von Abläufen mit nebenläufigen Prozessen und kausalen Beziehungen Basiert auf bipartiten gerichteten

Mehr

Print2CAD 2017, 8th Generation. Netzwerkversionen

Print2CAD 2017, 8th Generation. Netzwerkversionen Installation der Netzwerkversion Kazmierczak Software Print2CAD 2017, 8th Generation Print2CAD 2017, 8th Generation Netzwerkversionen Einführung Installationshinweise Die Programme von Kazmierczak Software

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Definition von domänenspezifischen Sprachen mit Xtext: Einführung. 19. November 2014

Definition von domänenspezifischen Sprachen mit Xtext: Einführung. 19. November 2014 Definition von domänenspezifischen Sprachen mit Xtext: Einführung 19. November 2014 Überblick Was ist zu tun, wenn wir selbst einen Ansatz für modellgetriebenen Entwicklung definieren wollen? Anforderungserfassung

Mehr

Generelle Einstellungen

Generelle Einstellungen Wie in fast jedem Programm sind auch in work4all ganz grundlegende Einstellungen und Programm- Anpassungen möglich. In diesem Kapitel gehen wir auf die verschiedenen Konfigurationsmöglichkeiten innerhalb

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik [email protected] Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

SWE5 Übungen zu Software-Engineering

SWE5 Übungen zu Software-Engineering 1 Übungen zu Software-Engineering 1) Klassen und Objekte 2) Telefonanlage 3) Objekt- und Klassendiagramme 4) Assoziationen 5) Telefonanlage (Erweiterung) 6) Fahrzeuge 7) Familien 2 Aufgabe 1: Klassen und

Mehr

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II 1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Diplomarbeit. Konzeption und Implementierung einer automatisierten Testumgebung. Thomas Wehrspann. 10. Dezember 2008

Diplomarbeit. Konzeption und Implementierung einer automatisierten Testumgebung. Thomas Wehrspann. 10. Dezember 2008 Konzeption und Implementierung einer automatisierten Testumgebung, 10. Dezember 2008 1 Gliederung Einleitung Softwaretests Beispiel Konzeption Zusammenfassung 2 Einleitung Komplexität von Softwaresystemen

Mehr

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im

Mehr

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Diplomarbeit Martin Pitt [email protected] Technische Universität Dresden 11. November 2004 1 Aufgabenstellung

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«... Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie

Mehr

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {...

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {... PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 31 Schlüsselwort: final Verhindert, dass eine Methode überschrieben wird public final int holekontostand() {... Erben von einer Klasse verbieten:

Mehr

Programmierparadigmen. Programmierparadigmen. Imperatives vs. objektorientiertes Programmieren. Programmierparadigmen. Agenda für heute, 4.

Programmierparadigmen. Programmierparadigmen. Imperatives vs. objektorientiertes Programmieren. Programmierparadigmen. Agenda für heute, 4. Agenda für heute, 4. Mai, 2006 Programmierparadigmen Imperative Programmiersprachen In Prozeduren zusammengefasste, sequentiell ausgeführte Anweisungen Die Prozeduren werden ausgeführt, wenn sie als Teil

Mehr

Dialognetze. Ziel : Beschreibung von Methoden und Beschreibungstechniken für den Entwurf und die Dokumentation von Dialogabläufen

Dialognetze. Ziel : Beschreibung von Methoden und Beschreibungstechniken für den Entwurf und die Dokumentation von Dialogabläufen Dialognetze Ziel : Beschreibung von Methoden und Beschreibungstechniken für den Entwurf und die Dokumentation von Dialogabläufen Dialogabläufe auf Fensterebene "grobe Dialogabläufe" d.h. Wechsel zwischen

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014 UserManual Handbuch zur Konfiguration einer FRITZ!Box Autor: Version: Hansruedi Steiner 2.0, November 2014 (CHF 2.50/Min) Administration Phone Fax Webseite +41 56 470 46 26 +41 56 470 46 27 www.winet.ch

Mehr

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected]

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected] Interpreter für funktionale Sprache

Mehr

Übung: Verwendung von Java-Threads

Übung: Verwendung von Java-Threads Übung: Verwendung von Java-Threads Ziel der Übung: Diese Übung dient dazu, den Umgang mit Threads in der Programmiersprache Java kennenzulernen. Ein einfaches Java-Programm, das Threads nutzt, soll zum

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Gegenüber PowerPoint 2003 hat sich in PowerPoint 2007 gerade im Bereich der Master einiges geändert. Auf Handzettelmaster und Notizenmaster gehe ich in diesen Ausführungen nicht ein, die sind recht einfach

Mehr

Was ist Logische Programmierung?

Was ist Logische Programmierung? Was ist Logische Programmierung? Die Bedeutung eines Computer-Programms kann durch Logik erklärt werden. Die Idee der logischen Programmierung besteht darin, die Logik eines Programms selber als Programm

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

HTML5. Wie funktioniert HTML5? Tags: Attribute:

HTML5. Wie funktioniert HTML5? Tags: Attribute: HTML5 HTML bedeutet Hypertext Markup Language und liegt aktuell in der fünften Fassung, also HTML5 vor. HTML5 ist eine Auszeichnungssprache mit der Webseiten geschrieben werden. In HTML5 wird festgelegt,

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Programmieren Lernen mit BYOB. Gerald Futschek 5. November 2012

Programmieren Lernen mit BYOB. Gerald Futschek 5. November 2012 Programmieren Lernen mit BYOB Informatiktag 2012 Gerald Futschek 5. November 2012 Erste Programmier Schritte in der Schule Sehr viele verschiedene Dinge zu lernen: Syntax und Semantik der Befehle, Algorithmen,

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Otto-von-Guericke-Universität Magdeburg

Otto-von-Guericke-Universität Magdeburg Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Lehrstuhl für Simulation 13. Juli 2009 Klausur Schlüsselkompetenzen I und II Gesamtzahl der erreichbaren Punkte: 100 Anzahl der Aufgaben:

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

ActiveCharts. Verknüpfung von Modellen und Code bei der modellgetriebenen Softwareentwicklung mit UML 2.0

ActiveCharts. Verknüpfung von Modellen und Code bei der modellgetriebenen Softwareentwicklung mit UML 2.0 Jens Kohlmeyer 05. März 2007 Institut für Programmiermethodik und Compilerbau ActiveCharts Verknüpfung von Modellen und Code bei der modellgetriebenen Softwareentwicklung mit UML 2.0 Seite 2 Übersicht

Mehr

Anleitung zum erstellen einer PDF-Datei aus Microsoft Word

Anleitung zum erstellen einer PDF-Datei aus Microsoft Word Anleitung zum erstellen einer PDF-Datei aus Microsoft Word 1. Vorbereitung des PCs Um dem Tutorial folgen zu können müssen folgende Programme auf Ihrem PC installiert sein: Ghostskript 8.64: Ghostskript

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Wasserfall-Ansätze zur Bildsegmentierung

Wasserfall-Ansätze zur Bildsegmentierung Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Hardware - Software - Net zwerke

Hardware - Software - Net zwerke Komprimierung der Ortho-Daten als ZIP-Archiv Dieses Dokument beschreibt die Archivierung aller Ortho-Daten als ZIP-Archiv über die MS- DOS-Eingabe-Aufforderung. Diese Information kann Ihnen zum Sichern

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt 5 1.1: VHDL 28./29.05.2009

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt 5 1.1: VHDL 28./29.05.2009 Übungen zu Architektur Eingebetteter Systeme Blatt 5 28./29.05.2009 Teil 1: Grundlagen 1.1: VHDL Bei der Erstellung Ihres Softcore-Prozessors mit Hilfe des SOPC Builder hatten Sie bereits erste Erfahrungen

Mehr

Produktskizze. 28. November 2005 Projektgruppe Syspect

Produktskizze. 28. November 2005 Projektgruppe Syspect 28. November 2005 Carl von Ossietzky Universität Oldenburg Fakultät II Department für Informatik Abteilung Entwicklung korrekter Systeme Inhaltsverzeichnis 1 Einleitung 3 2 Die graphische Oberfläche der

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Es gibt zwei Wege die elektronischen Daten aus Navision zu exportieren.

Es gibt zwei Wege die elektronischen Daten aus Navision zu exportieren. Elektronische Daten aus Navision (Infoma) exportieren Es gibt zwei Wege die elektronischen Daten aus Navision zu exportieren. 1. GDPdU 1.1 Manuelle Einrichtung der GDPdU-Definitionsgruppe und Ausführung

Mehr

Softwaretechnologie -Wintersemester 2011/2012 - Dr. Günter Kniesel

Softwaretechnologie -Wintersemester 2011/2012 - Dr. Günter Kniesel Übungen zur Vorlesung Softwaretechnologie -Wintersemester 2011/2012 - Dr. Günter Kniesel Übungsblatt 3 - Lösungshilfe Aufgabe 1. Klassendiagramme (9 Punkte) Sie haben den Auftrag, eine Online-Videothek

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Übungsklausur vom 7. Dez. 2007

Übungsklausur vom 7. Dez. 2007 Übungsklausur vom 7. Dez. 2007 Ein Lösungsmuster Teilbereiche der Softwaretechnik Software Anforderungen Software Entwurf Software Konstruktion Software Test Software Wartung Software Konfigurationsmanagement

Mehr

Verhaltensanalysegraph für Petrinetze

Verhaltensanalysegraph für Petrinetze Bachelorarbeit Carl von Ossietzky Universität Oldenburg 9. Januar 215 en 1 Gliederung en en 2 kurze gehen zurück auf Carl Adam Petri (1962). s 1 t 1 s 2 t 2 t 3 2 s 3 Abbildung : Beispiel Petrinetz...

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

Version 2.0.1 Deutsch 03.06.2014. In diesem HOWTO wird beschrieben wie Sie Ihren Gästen die Anmeldung über eine SMS ermöglichen.

Version 2.0.1 Deutsch 03.06.2014. In diesem HOWTO wird beschrieben wie Sie Ihren Gästen die Anmeldung über eine SMS ermöglichen. Version 2.0.1 Deutsch 03.06.2014 In diesem HOWTO wird beschrieben wie Sie Ihren Gästen die Anmeldung über eine SMS ermöglichen. Inhaltsverzeichnis... 1 1. Hinweise... 2 2. Konfiguration... 3 2.1. Generische

Mehr

Use Cases. Use Cases

Use Cases. Use Cases Use Cases Eigenschaften: Ein Use Case beschreibt einen Teil des Verhaltens eines Systems aus externer Sicht (Formuliert in der der Fachsprache der Anwendung) Dies geschieht, indem ein Systemdialog beschrieben

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

C++11 C++14 Kapitel Doppelseite Übungen Musterlösungen Anhang

C++11 C++14 Kapitel Doppelseite Übungen Musterlösungen Anhang Einleitung Dieses Buch wendet sich an jeden Leser, der die Programmiersprache C++ neu lernen oder vertiefen möchte, egal ob Anfänger oder fortgeschrittener C++-Programmierer. C++ ist eine weitgehend plattformunabhängige

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr