2. Vorlesung. Slide 40
|
|
|
- Timo Fischer
- vor 10 Jahren
- Abrufe
Transkript
1 2. Vorlesung Slide 40
2 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b := b - a } } return a } Slide 41
3 Was Sie können werden In vier Wochen: Programme wie das obere bezüglich einer gegeben Spezifikation verifizieren In drei Wochen: Komplexe Datentypen spezifizieren und analysieren Nächste Woche: Prädikatenlogische Sachverhalte spezifizieren und analysieren In dieser Woche: Aussagenlogische Sachverhalte spezifizieren, analysieren und systematisch lösen Slide 42
4 Was ist Logik? Slide 43
5 Logik Geht zurück auf Aristoteles Syllogistik (knapp 2500 Jahre) Syllogismen sind strukturierte logische Argumente Grundform: Aus zwei Voraussetzungen (Prämisen) wird eine Schlussfolgerung gebildet (Konklusion) Vorläufer zu den Kalkülen der Aussagenlogik Andere Logiken: Prädikatenlogik, Programmlogiken, Temporallogiken, Logiken höherer Stufe Slide 44
6 Klassische Logik/Aussagenlogik Beruft sich auf zwei Prinzipien: Prinzip der Zwei-Wertigkeit: Jede Aussage hat genau einen von zwei Wahrheitswerten. Prinzip der Extensionalität: Der Wahrheitswert jeder zusammengesetzten Aussage lässt sich aus den Wahrheitswerten der Teilaussagen ableiten. Slide 45
7 Aussagenlogik - Syntax Gegeben Menge atomare Aussagen V = {A, B, C, } Menge von Operationen OP = {,,,, } Slide 46 Syntax in BNF-Notation: Satz AtomarerSatz KomplexerSatz AtomarerSatz A B C... KomplexerSatz Satz Satz Satz Satz Satz Satz Satz Satz Satz (Satz) Bemerkung: Häufig nimmt man noch ausgezeichnete Konstantensymbole true und false hinzu.
8 Ein paar Beispiele Aussagenlogische Formeln: A A B A A A B A A Bisher nur Syntax (also was darf man sagen) Jetzt: Semantik (also was bedeutet ein Satz) Slide 47
9 Aussagenlogik - Semantik Eine Interpretation v ist eine Abbildung, die jeder atomaren Aussage einen Wahrheitswert zu ordnet. v : V {True, False} Man sagt eine Interpretation v erfüllt eine Formel φ bzw. die Formel φ ist in v gültig gdw. Phi den Wahrheitswert True hat Achtung: v redet nur über atomare Aussagen! Was passiert mit nicht atomaren Aussagen? Slide 48 Bemerkung: Falls die ausgezeichnete Konstantensymbole true und false hinzugenommen wurden, so soll für alle Interpretationen gelte v(true) = True und v(false) = False.
10 Zusammengesetzte Aussage Z.B. (A (B C)) Gegeben Interpretation v, was ist der Wert der obigen Formel in dieser Interpretation? Slide 49
11 Zusammengesetzte Formeln Prinzip der Extensionalität: Der Wahrheitswert jeder zusammengesetzten Aussage lässt sich aus den Wahrheitswerten der Teilaussagen ableiten. Notwendig: Semantik der Operatoren! Slide 50
12 Aussagenlogik - Semantik Für jeden Operator muss seine Semantik/Bedeutung auf Wahrheitswerten definiert werden z.b. mit Wahrheitswerttabellen P Q P P Q P Q P Q P Q False False True False False True True False True True False True True False True False False False True False False True True False True True True True Slide 51 Bemerkung: Es genügt für zwei Operatoren (z.b. und die Semantik festzulegen, alle anderen können abgeleitet werden)
13 Beispiel Aussagenlogische Formeln: A A B A A A B A A Interpretation: v(a) = False; v(b) = True Welche Aussagen sind in v wahr? Slide 52
14 Begriffe Erfüllbarkeit Eine Formel heißt erfüllbar, wenn es mindestens eine Interpretation der in ihr vorkommenden Atome (Satzbuchstaben) gibt, unter der die Formel wahr ist. Widerlegbarkeit Eine Formel heißt widerlegbar, wenn es mindestens eine Interpretation der in ihr vorkommenden Atome gibt, unter der die Formel falsch ist. Gültigkeit Eine Formel heißt gültig, wenn sie unter allen Interpretationen der in ihr vorkommenden Satzbuchstaben wahr ist. Unerfüllbarkeit Eine Formel heißt unerfüllbar, wenn sie unter allen Interpretationen der in ihr vorkommenden Satzbuchstaben falsch ist. Slide 53
15 Beispiel Aussagenlogische Formeln: A A B A A A B A A Welche Aussagen sind erfüllbar, unerfüllbar, gültig bzw. widerlegbar? Slide 54
16 Ein wenig Anwendung Slide 55
17 Das Orakel von Delphi Und so sprach das Orakel, wie man Delphi wieder finden könne: Wisse, wenn der mittlere Weg in die Irre führt, so gelangst du auf dem linken und dem rechten Wege nach Delphi. Der Weise erkennt, sollte vom linken und mittleren Wege höchstens einer nach Delphi führen, so führt der Rechte sicher in die Leere. Wenn der Suchende jedoch auf dem rechten oder linken Weg nach Delphi gelangt, dann führt der mittlere mit Sicherheit ins Verderben. Slide 56
18 Systematisches Lösen logischer Probleme Slide 57
19 Notwendige Schritte Spezifizieren des Problems Präzises Formulieren der Aufgabenstellung in einer formalen Sprache! Herleiten einer Lösung Möglichkeiten in der Aussagenlogik Wahrheitswertetabelle Davis-Puttnam-Algorithmus (schrittweise Einsetzen) Verwendung eines Kalküls Slide 58
20 Möglichkeiten des Beweisens Per Wahrheitswertetabelle Tabelle für jedes Atom jeden Operator Schrittweise Ausfüllen der Tabelle Slide 59
21 Davis-Putnam Grundidee: φ ist erfüllbar, gdw. falls φ A true Ç φ A false erfüllbar ist Vorgehen: Ersetze rekursiv Atome durch true bzw. false und vereinfache die Formel. Entsteht eine wahre Aussage ist die Formel erfüllbar. Resultat: Eine erfüllende Belegung lässt sich aus dem Weg der Rekursion ableiten. Führen alle Wege zu wahren Aussagen, so ist die Formel allgemeingültig. Slide 60
22 Beweisen per Kalkül Per Wahrheitswertetabelle Per Kalkül (logische Herleitung) Whitehead/Russel Kalkül (A Ç A) A A (B Ç A) (A Ç B) (B Ç A) (A Ç (B Ç C)) (B Ç (A Ç C)) (A B) ((C Ç A) (C Ç B)) Dieser Kalkül ist vollständig und korrekt! Slide 61
23 Kalküle Kalküle stellen eine Reihe von Regeln (Axiomen) zur Verfügung, mit denen Formeln in einander überführt werden können. Ein Beweis/eine Herleitung einer Formel φ ist ein Folge von Axiomen, die von einer wahren Aussage beginnt und bei φ endet. Allgemeiner: φ ist aus ψ herleitbar Slide 62 Notation: - herleitbar ( etwas ist beweisbar ) = ist Modell von ( etwas ist wahr )
24 Kalküle Ein Kalkül heißt vollständig, wenn jede wahre Aussage auch herleitbar ist. korrekt, wenn jede herleitbare Aussage auch wahr ist. Slide 63
25 Der Sequenzenkalkül Schreibweise: Leserichtung: Was unten (Konklusion) steht folgt aus der Gesamtheit dessen, was oben steht (Prämisen) Folgerung: Komma links bedeutet und Komma rechts bedeutet oder Leere Menge links bedeutet true Leere Menge rechts bedeutet falls Slide 64
26 Regeln des Sequenzenkalküls Slide 65
27 Grundidee des Beweisens Versuche eine gegebene Aussage durch Regeln so in Teilaussagen zu zerlegen, dass nur noch Axiome übrig bleiben! Entspricht dem mathematischen Beweisen! In der Übung Toolsupport. Bitte VMWare-Player installieren und Image herunterladen! Slide 66
28 Das Orakel von Delphi Und so sprach das Orakel, wie man Delphi wieder finden könne: Wisse, wenn der mittlere Weg in die Irre führt, so gelangst du auf dem linken und dem rechten Wege nach Delphi. Der Weise erkennt, sollte vom linken und mittleren Wege höchstens einer nach Delphi führen, so führt der Rechte sicher in die Leere. Wenn der Suchende jedoch auf dem rechten oder linken Weg nach Delphi gelangt, dann führt der mittlere mit Sicherheit ins Verderben. Slide 67
29 Ein Beispiel aus der Ingenieurinformatik (für die Übung) Konstrukteur Trurl will aus einem Haufen Schrott zwei Geräte (einen probabilistischen Fluxgenerator und eine universelle Drachenfalle) konstruieren. Die wichtigsten Bauteile, die er zur Verfügung hat, sind ein Wahrscheinlichkeitsverstärker und ein Fahrrad. Sein Kollege Klapauzius fragt: Stimmt es, dass wenn du das Fahrrad für den probabilistischen Fluxgenerator brauchst und den Wahrscheinlichkeitsverstärker genau dann für die Drachenfalle benötigst, wenn du auch das Fahrrad dafür brauchst, du dann den Verstärker nicht in den Fluxgenerator einbauen musst? Trurl überlegt: Wenn die Aussage wahr ist, dann brauche ich das Fahrrad für genau eines der Geräte, und genauso verhält es sich mit dem Wahrscheinlichkeitsverstärker. Andererseits, wenn ich das Fahrrad überhaupt brauche, dann muss die Aussage falsch sein. Auf jeden Fall aber brauche ich nicht beide Bauteile für beide Geräte. Welches Bauteil wird nun eigentlich für welches Gerät benötigt? Zeigen Sie, dass eine eindeutige Lösung existiert. Wie lautet sie? Slide 68
Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur
Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik [email protected] Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Semantik von Formeln und Sequenzen
Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Erfüllbarkeit und Allgemeingültigkeit
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)
Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt
Logik. A.3 Logik und Mengenlehre A.32 A.32. Logik und Mengenlehre. Logik. 2001 Prof. Dr. Rainer Manthey Informatik I 21
Logik und Mengenlehre.3 Logik und Mengenlehre 2001 Prof. Dr. Rainer Manthey Informatik I 21 Logik Logik 2001 Prof. Dr. Rainer Manthey Informatik I 22 Logik: egriff, edeutung und Entwicklung Logik ist die
Logische Folgerung. Definition 2.11
Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Diana Lange. Generative Gestaltung Operatoren
Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden
Wie halte ich Ordnung auf meiner Festplatte?
Wie halte ich Ordnung auf meiner Festplatte? Was hältst du von folgender Ordnung? Du hast zu Hause einen Schrank. Alles was dir im Wege ist, Zeitungen, Briefe, schmutzige Wäsche, Essensreste, Küchenabfälle,
Was ist das Budget für Arbeit?
1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in
Wir machen neue Politik für Baden-Württemberg
Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in
Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert.
Der Gutachtenstil: Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert. Das Ergebnis steht am Schluß. Charakteristikum
Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.
Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:
Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel
Sehr vielen Mitarbeitern fällt es schwer, Serienbriefe an Kunden zu verschicken, wenn sie die Serienbrieffunktion von Word nicht beherrschen. Wenn die Kunden mit Excel verwaltet werden, genügen nur ein
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30
Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion
Prüfung Computation, Programming
Prüfung Computation, Programming 1. Computation: Reguläre Ausdrücke [5 Punkte] Zusammenfassung reguläre Ausdrücke a Das Zeichen a. Ein beliebiges Zeichen [abc] Ein beliebiges Zeichen aus der Menge {a,
1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden.
Der Serienversand Was kann man mit der Maske Serienversand machen? 1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. 2. Adressen auswählen,
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral!
Beitrag: 1:43 Minuten Anmoderationsvorschlag: Unseriöse Internetanbieter, falsch deklarierte Lebensmittel oder die jüngsten ADAC-Skandale. Solche Fälle mit einer doch eher fragwürdigen Geschäftsmoral gibt
Informationen zum Ambulant Betreuten Wohnen in leichter Sprache
Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Arbeiterwohlfahrt Kreisverband Siegen - Wittgenstein/ Olpe 1 Diese Information hat geschrieben: Arbeiterwohlfahrt Stephanie Schür Koblenzer
Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung
Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und
4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:
4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.
I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten
Kompetenzen und Aufgabenbeispiele Englisch Schreiben
Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Englisch Schreiben Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?
2.1 Präsentieren wozu eigentlich?
2.1 Präsentieren wozu eigentlich? Gute Ideen verkaufen sich in den seltensten Fällen von allein. Es ist heute mehr denn je notwendig, sich und seine Leistungen, Produkte etc. gut zu präsentieren, d. h.
http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen
2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG
Frist berechnen BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Sie erwägen die Kündigung eines Mitarbeiters und Ihr Unternehmen hat einen Betriebsrat? Dann müssen Sie die Kündigung
1 Aussagenlogik und Mengenlehre
1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres
Der Vollstreckungsbescheid. 12 Fragen und Antworten
Der Vollstreckungsbescheid 12 Fragen und Antworten Was bewirkt der Vollstreckungsbescheid eigentlich? Anerkennung der Schuld durch eine neutrale, eine richterliche Instanz Kein späterer Widerspruch möglich
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Säuglingsanfangsnahrung und Folgenahrung Was ändert sich? Was bleibt?
Säuglingsanfangsnahrung und Folgenahrung Was ändert sich? Was bleibt? Begleitinformationen: Handout für das Verkaufspersonal im Handel Bei Rückfragen sprechen Sie uns bitte gerne an: DIÄTVERBAND e. V.
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
Studienplatzbeschaffung
Studienplatzbeschaffung - Einklagen www.asta.haw-hamburg.de Hintergrund Alle Unis und Hochschulen unterliegen dem Kapazitätsausschöpfungsgebot Sie müssen alle ihnen zur Verfügung stehenden Plätze vergeben!
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen
Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke
Ist Fernsehen schädlich für die eigene Meinung oder fördert es unabhängig zu denken?
UErörterung zu dem Thema Ist Fernsehen schädlich für die eigene Meinung oder fördert es unabhängig zu denken? 2000 by christoph hoffmann Seite I Gliederung 1. In zu großen Mengen ist alles schädlich. 2.
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Papa - was ist American Dream?
Papa - was ist American Dream? Das heißt Amerikanischer Traum. Ja, das weiß ich, aber was heißt das? Der [wpseo]amerikanische Traum[/wpseo] heißt, dass jeder Mensch allein durch harte Arbeit und Willenskraft
Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen. Von Florian Raith, Fürstenzell VORANSICHT
Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen Von Florian Raith, Fürstenzell Alltagsgegenstände sind gut greifbar so werden beim Rechnen mit ihnen Größen begreifbar.
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Rundung und Casting von Zahlen
W E R K S T A T T Rundung und Casting von Zahlen Intrexx 7.0 1. Einleitung In diesem Werkstattbeitrag erfahren Sie, wie Zahlenwerte speziell in Velocity, aber auch in Groovy, gerundet werden können. Für
Access [basics] Rechnen in Berichten. Beispieldatenbank. Datensatzweise berechnen. Berechnung im Textfeld. Reporting in Berichten Rechnen in Berichten
Berichte bieten die gleichen Möglichkeit zur Berechnung von Werten wie Formulare und noch einige mehr. Im Gegensatz zu Formularen bieten Berichte die Möglichkeit, eine laufende Summe zu bilden oder Berechnungen
Logik für Informatiker
Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:
Wärmebildkamera. Arbeitszeit: 15 Minuten
Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch
Theorie der Informatik
Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax
Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen
Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen von Frank Rothe Das vorliegende Übungsblatt ist als Anregung gedacht, die Sie in Ihrer Klasse in unterschiedlicher Weise umsetzen können. Entwickelt
Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln
Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Erwin Grüner 09.02.2006
FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
Ein süsses Experiment
Ein süsses Experiment Zuckerkristalle am Stiel Das brauchst du: 250 Milliliter Wasser (entspricht etwa einer Tasse). Das reicht für 4-5 kleine Marmeladengläser und 4-5 Zuckerstäbchen 650 Gramm Zucker (den
9. Übung Formale Grundlagen der Informatik
Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs ([email protected]) Reinhard Riedl ([email protected]) Nadine Korolnik ([email protected])
EINFACHES HAUSHALT- KASSABUCH
EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)
Mediator 9 - Lernprogramm
Mediator 9 - Lernprogramm Ein Lernprogramm mit Mediator erstellen Mediator 9 bietet viele Möglichkeiten, CBT-Module (Computer Based Training = Computerunterstütztes Lernen) zu erstellen, z. B. Drag & Drop
FuxMedia Programm im Netzwerk einrichten am Beispiel von Windows 7
FuxMedia Programm im Netzwerk einrichten am Beispiel von Windows 7 Die Installation der FuxMedia Software erfolgt erst NACH Einrichtung des Netzlaufwerks! Menüleiste einblenden, falls nicht vorhanden Die
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Info-Veranstaltung zur Erstellung von Zertifikaten
Info-Veranstaltung zur Erstellung von Zertifikaten Prof. Dr. Till Tantau Studiengangsleiter MINT Universität zu Lübeck 29. Juni 2011 Gliederung Zertifikate Wer, Wann, Was Ablauf der Zertifikaterstellung
SEK II. Auf den Punkt gebracht!
SEK II Profil- und Kurswahl Einbringungspflicht Abitur-Bestimmungen Gesamtqualifikation Auf den Punkt gebracht! 1 Inhaltsverzeichnis Sinn und Zweck dieses Dokuments...3 Profil- und Kurswahl für den 11.
Lichtbrechung an Linsen
Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen
Der Kunde zahlt die Gehälter.
Der Kunde zahlt die Gehälter. Hat man das erst einmal verstanden wird es leicht zufriedene Kunden zu gewinnen. E r f o l g s r e z e p t : Wann ist ein Kunde zufrieden? Wenn er merkt das wir zuhören Wenn
Schritt 1. Anmelden. Klicken Sie auf die Schaltfläche Anmelden
Schritt 1 Anmelden Klicken Sie auf die Schaltfläche Anmelden Schritt 1 Anmelden Tippen Sie Ihren Benutzernamen und Ihr Passwort ein Tipp: Nutzen Sie die Hilfe Passwort vergessen? wenn Sie sich nicht mehr
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
Markus 13,24-33. Wie ist es, wenn die Welt aufhört? Und wenn die neue Welt von Gott anfängt.
Markus 13,24-33 Leichte Sprache Jesus erzählt von der neuen Welt von Gott Einmal fragten die Jünger Jesus: Wie ist es, wenn die Welt aufhört? Und wenn die neue Welt von Gott anfängt. Jesus sagte: Wenn
Mathematische Grundlagen
Mathematische Grundlagen für Wirtschaftsinformatiker Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem
PHP - Projekt Personalverwaltung. Erstellt von James Schüpbach
- Projekt Personalverwaltung Erstellt von Inhaltsverzeichnis 1Planung...3 1.1Datenbankstruktur...3 1.2Klassenkonzept...4 2Realisierung...5 2.1Verwendete Techniken...5 2.2Vorgehensweise...5 2.3Probleme...6
SUDOKU - Strategien zur Lösung
SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected]
Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected] Interpreter für funktionale Sprache
Die richtigen Partner finden, Ressourcen finden und zusammenführen
Kongress Kinder.Stiften.Zukunft Workshop Willst Du mit mir gehen? Die richtigen Partner finden, Ressourcen finden und zusammenführen Dr. Christof Eichert Unsere Ziele: Ein gemeinsames Verständnis für die
Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich?
Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich? Was verkaufen wir eigentlich? Provokativ gefragt! Ein Hotel Marketing Konzept Was ist das? Keine Webseite, kein SEO, kein Paket,. Was verkaufen
Info zum Zusammenhang von Auflösung und Genauigkeit
Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die
Modellbildungssysteme: Pädagogische und didaktische Ziele
Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler
Downloadfehler in DEHSt-VPSMail Workaround zum Umgang mit einem Downloadfehler Downloadfehler bremen online services GmbH & Co. KG Seite 2 Inhaltsverzeichnis Vorwort...3 1 Fehlermeldung...4 2 Fehlerbeseitigung...5
Krippenspiel für das Jahr 2058
Ev.-Luth. Landeskirche Sachsens Spielen & Gestalten Krippenspiel für das Jahr 2058 Krippenspiel für das Jahr 2058 K 125 Impressum Weihnachtsspielangebot 2009 Krippenspiel für das Jahr 2058 K 125 Die Aufführungsrechte
BELIEBIG GROßE TAPETEN
MODERNERES DESIGN 2 HTML-AUSGABEN 3 GESCHWINDIGKEIT 3 BELIEBIG GROßE TAPETEN 3 MULTIGRAMME 3 AUSGABEPFADE 3 INTEGRIERTER FORMELEDITOR 4 FEHLERBEREINIGUNGEN 5 ARBEITSVERZEICHNISSE 5 POWERPOINT 5 HINWEIS
