Statistische Verfahren in der Computerlinguistik

Größe: px
Ab Seite anzeigen:

Download "Statistische Verfahren in der Computerlinguistik"

Transkript

1 Statistische Verfahren in der Computerlinguistik Zweiter Teil Einführung in die Computerlinguistik Sommersemester 2009

2 Übersicht Statistische vs. symbolische Verfahren in der CL Statistik beschreibende Statistik uni- und multivariate Deskription von Daten schließende Statistik Wahrscheinlichkeitsrechnung bedingte Wahrscheinlichkeit Modell des gestörten Kanals, Satz von Bayes Markov-Modelle

3 Bedingte Wahrscheinlichkeit P(B A)

4 Bedingte Wahrscheinlichkeit P(B A) Wort ist Kompositum Wort ist länger als 10 Buchstaben

5 Bedingte Wahrscheinlichkeit P(B A) Wie wahrscheinlich ist B, wenn wir A beobachtet haben? a posteriori-wahrscheinlichkeit (wir wissen, dass A bereits eingetreten ist)

6 gestörter Kanal P(B A) modelliert gestörten Übertragungskanal: B A Wir sitzen am Ausgang des Kanals und beobachten A Wie hoch ist die Wahrscheinlichkeit, dass B die Ursache für A war (und nicht C, D, E,...)? Dekodierung: dasjenige X finden, für das P(X A) maximal ist

7 gestörter Kanal Wie berechnet man P(X A)? Satz von Bayes: P(X) P(A X) P(X A) = P(A)

8 gestörter Kanal Beispielanwendung: maschinelle Übersetzung X A: Good Morning Übersetzung Englisch Deutsch Gegeben: englischer Ausdruck (Ereignis A) Gesucht: dasjenige X, das A verursacht hat dasjenige X, für das P(X A) maximal ist

9 gestörter Kanal deutlichere Notation: P(X A) P(D e) als Werte für Variable D kommen alle deutschen Ausdrücke in Frage: d 1 : Guten Tag d 2 : Gesundheit d 3 : Schönes Wetter heute d 4 : Zu Risiken und Nebenwirkungen fragen Sie Ihren Arzt oder Apotheker d 5 : Guten Morgen

10 gestörter Kanal für welches d i wird P(D=d i e) maximal? P(D) P(e D) d max = argmax di P(e) P(d 1 e) = (P(d 1 ) P(e d 1 )) / P(e) P(d 2 e) = (P(d 2 ) P(e d 2 )) / P(e) P(d 3 e) = (P(d 3 ) P(e d 3 )) / P(e)...

11 gestörter Kanal für welches d i wird P(D=d i e) maximal? P(D) P(e D) d max = argmax di P(e) P(d 1 e) = (P(d 1 ) P(e d 1 )) / P(e) P(d 2 e) = (P(d 2 ) P(e d 2 )) / P(e) P(d 3 e) = (P(d 3 ) P(e d 3 )) / P(e)... Nenner immer gleich

12 gestörter Kanal für welches d i wird P(D=d i e) maximal? d max = argmax di P(D) P(e D)

13 gestörter Kanal für welches d i wird P(D=d i e) maximal? d max = argmax di P(D) P(e D) modelliert Übertragungsweg deutsch englisch über gestörten Kanal Wahrscheinlichkeit des zugrunde liegenden deutschen Satzes P(D e) wird in zwei Faktoren zerlegt

14 gestörter Kanal Übertragungswahrscheinlichkeit P(e D) wird aus parallelen Korpora gelernt modelliert z.b. dass P( good Guten ) > P( good Apotheker ) und dass P( morning Morgen ) > P( morning Tag ) P( good morning Guten Morgen ) = P( good Guten ) P( morning Morgen ) Problem: P( good morning ) = P( morning good ) Wie erkenne ich, dass Guten Morgen richtiger ist als Morgen Guten?

15 gestörter Kanal Wie erkenne ich, dass Guten Morgen richtiger ist als Morgen Guten? zweiter Faktor: P(D) P(D) gibt Wahrscheinlichkeit eines Satzes an grammatische Sätze sollen höhere Wahrscheinlichkeit bekommen als ungrammatische: P( Guten Morgen ) > P( Morgen Guten )

16 statistisches Sprachmodell Wahrscheinlichkeit eines Satzes P(D) = Wahrscheinlichkeit einer Folge von Wörtern w 1,..., w k : P(w 1,..., w k ) = P(w 1 ) P(w 2 w 1 ) P(w 3 w 1 w 2 )... Auftretenswahrscheinlichkeit eines Wortes w i hängt von allen vorangehenden Wörtern w 1,..., w i-1 ab: z.b.: das bewachte Haus ist eingestürzt P(eingestürzt das bewachte Haus ist) Keine Treffer in Google für das bewachte Haus ist zuviele Parameter!

17 statistisches Sprachmodell Keine Treffer in Google für das bewachte Haus ist P(eingestürzt das bewachte Haus ist) = 0 P( das bewachte Haus ist eingestürzt ) = 0 obwohl Satz plausibel und grammatisch Markov-Annahme: Wahrscheinlichkeit von w i hängt nur von den n-1 vorangehenden Wörtern ab

18 statistisches Sprachmodell Markov-Annahme: Wahrscheinlichkeit von w i hängt nur von den n-1 vorangehenden Wörtern ab statistisches Sprachmodell = n-gramm-modell = Markov-Modell n-ter Ordnung Bigramm-Modell = Markov-Modell 2. Ordnung, Wahrscheinlichkeit von w i hängt nur vom direkt vorangehenden Wort ab Trigramm-Modell = Markov-Modell 3. Ordnung, Wahrscheinlichkeit von w i hängt nur von den beiden direkt vorangehenden Wörtern ab

19 statistisches Sprachmodell Bigramm-Modell: d: das bewachte Haus ist eingestürzt P(d) = P(das) P(bewachte das) P(Haus bewachte) P(ist Haus) P(eingestürzt ist) Wie berechnet man P(Haus bewachte)? Wie wahrscheinlich ist, dass Haus auftritt, wenn zuvor bewachte aufgetreten ist? =Wie wahrscheinlich ist Wortfolge bewachte Haus? 266 Treffer in Google für bewachte Haus

20 statistisches Sprachmodell Wie wahrscheinlich ist Wortfolge bewachte Haus? 266 Treffer in Google für bewachte Haus P(Haus bewachte) = H( bewachte Haus ) / H( bewachte ) Treffer für bewachte P(Haus bewachte) = 266 / Parameterbestimmung ( Trainieren des Modells): Worthäufigkeiten und Bigrammhäufigkeiten im Korpus zählen

21 statistisches Sprachmodell Problem: angenommen Google liefert 0 Treffer für bewachte Haus : P(d) = 0 P(Haus bewachte) = 0 / = 0 Lösung: Glätten der Wahrscheinlichkeiten (engl. smoothing) z.b. wenn ein Bigramm nicht im Korpus, stattdessen Produkt der Einzelworthäufigkeiten (backoff) oder add-one-smoothing: zu jeder Bigramm-Wahrscheinlichkeit z.b. 0,001 dazuaddieren

22 statistisches Sprachmodell Perplexität = - log 2 (P(d)) / N wie überrascht ist das Modell von einem Satz? statistische Satz-Generierung: gegebene Wörter zu einem grammatischen Satz anordnen: Wie froh ich bin, daß ich weg bin! 99,06 weg! bin ich froh, Wie daß ich bin 327,19 Wie bin ich froh daß, bin ich weg! 546,65, froh daß weg bin ich Wie ich! bin 856,54

23 statistisches Sprachmodell Nachteil statistischer n-gramm-modelle: Fernabhängigkeiten nicht erfassbar Ich fahre wohl morgen früh um viertel nach drei um. Perplexität = 2966 Ich fahre wohl morgen früh um viertel nach drei los. Perplexität = 4267

24 statistisches Sprachmodell Nachteil statistischer n-gramm-modelle: Fernabhängigkeiten nicht erfassbar Die alten Tücher 109,67 Die alten Tuch 386,04 Die alten, nach Öl stinkenden, Tücher 3734,32 Die alten, nach Öl stinkenden, Tuch 3115,87

25 statistisches Sprachmodell Chomsky (1969): It must be recognized that the notion of a 'probability of a sentence' is an entirely useless one, under any interpretation of this term.

26 statistisches Sprachmodell (1) Colorless green ideas sleep furiously. (2) Furiously sleep ideas green colorless. It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical model for grammaticalness, these sentences will be ruled out on identical grounds as equally `remote' from English.) [Chomsky 1957]

27 statistisches Sprachmodell [Pereira 2002] verwendet klassenbasiertes Bigramm-Sprachmodell, trainiert auf Zeitungstext, und findet: p(colorless green ideas sleep furiously) p(furiously sleep ideas green colorless)

28 Modell vom gestörten Kanal weitere Anwendungen: Spracherkennung OCR (Optical Character Recognition) Tippfehlerkorrektur PoS-Tagging...

29 Literatur Chris Manning u. Hinrich Schütze (1999): Foundations of Statistical Natural Language Processing. MIT Press. Kevin Knight (1999): A Statistical MT Tutorial Workbook. Fernando Pereira (2002): Formal grammar and information theory: together again? In The Legacy of Zellig Harris, Hrsg. v. B.E. Nevin u. S.B. Johnson. John Benjamins. Noam Chomsky (1957): Syntactic structures. Mouton. Noam Chomsky (1969): Quine's Empirical Assumptions. In Words and Objections, Hrsg. v. D. Davidson u. J. Hintikka. Reidel.

Grammatik und Stochastik

Grammatik und Stochastik Grammatik und Stochastik Gerhard Jäger ZAS/Uni Potsdam Der Generativist: Evidently, one s ability to produce and recognize grammatical utterances is not based on notions of statistical approximation and

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de 5. Mai 2017 Human Language Technology and Pattern Recognition Lehrstuhl

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Grundlagen Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 21 Diskrete Wahrscheinlichkeitsräume (1) Carstensen et al. (2010), Abschnitt

Mehr

Dialogsysteme. Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme. 12. Januar 2006, Susanne O'Shaughnessy

Dialogsysteme. Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme. 12. Januar 2006, Susanne O'Shaughnessy Dialogsysteme Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme 12. Januar 2006, Susanne O'Shaughnessy Smoothing - Glättung Problem bei Standard- n-gramm-modellen: - kein Trainingskorpus

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer, Tom Vanck, Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer, Tom Vanck, Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer, Tom Vanck, Paul Prasse Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Termin: Montags,

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Statistische Sprachmodelle

Statistische Sprachmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Statistische Sprachmodelle Tobias Scheffer Thomas Vanck Statistische Sprachmodelle Welche Sätze sind Elemente einer Sprache (durch

Mehr

Wortdekodierung. Vorlesungsunterlagen Speech Communication 2, SS Franz Pernkopf/Erhard Rank

Wortdekodierung. Vorlesungsunterlagen Speech Communication 2, SS Franz Pernkopf/Erhard Rank Wortdekodierung Vorlesungsunterlagen Speech Communication 2, SS 2004 Franz Pernkopf/Erhard Rank Institute of Signal Processing and Speech Communication University of Technology Graz Inffeldgasse 16c, 8010

Mehr

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15.

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15. SEMINAR KLASSIFIKATION & CLUSTERING WINTERSEMESTER 2014/15 STATISTISCHE GRUNDLAGEN Stefan Langer stefan.langer@cis.uni-muenchen.de Frequenz & Häufigkeit: Übersicht Absolute Häufigkeit Relative Häufigkeit

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Paul Prasse Michael Großhans

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Paul Prasse Michael Großhans Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Paul Prasse Michael Großhans Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. 6 Leistungspunkte

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Diskrete Wahrscheinlichkeitsräume (1) Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Wintersemester 2011/2012 In vielen Bereichen der CL kommt

Mehr

Moderne IR / Language Models / Page Ranking

Moderne IR / Language Models / Page Ranking Moderne IR / Language Models / Page Ranking Paul Raab 10.11.2011 Paul Raab () Moderne IR / Language Models / Page Ranking 10.11.2011 1 / 14 Überblick Statistische Methoden auf Sprachmodelle angewandt sind

Mehr

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong Part-of-Speech Tagging Friedrich-Alexander-Universität Professur für Computerlinguistik Nguyen Ai Huong 15.12.2011 Part-of-speech tagging Bestimmung von Wortform (part of speech) für jedes Wort in einem

Mehr

Der VITERBI-Algorithmus

Der VITERBI-Algorithmus Der VITERBI-Algorithmus Hauptseminar Parsing Sommersemester 2002 Lehrstuhl für Computerlinguistik Universität Heidelberg Thorsten Beinhorn http://janus.cl.uni-heidelberg.de/~beinhorn 2 Inhalt Ziel des

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

Elementare Wahrscheinlichkeitslehre

Elementare Wahrscheinlichkeitslehre Elementare Wahrscheinlichkeitslehre Vorlesung Computerlinguistische Techniken Alexander Koller 13. November 2015 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen?

Mehr

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Statistische Verfahren in der Computerlinguistik Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Übersicht Statistische vs. symbolische Verfahren in der CL Statistik beschreibende Statistik

Mehr

Wissensrepräsentation

Wissensrepräsentation Wissensrepräsentation Vorlesung Sommersemester 2008 8. Sitzung Dozent Nino Simunic M.A. Computerlinguistik, Campus DU (Fortsetzung LC-/Chart-Parsing) Statistische Verfahren in der KI Impliziert Maschinelles

Mehr

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar

Mehr

Vorbesprechung Mathe III

Vorbesprechung Mathe III Vorbesprechung Mathe III Dr. Vera Demberg, Prof. Dr. Enrico Lieblang (HTW) Universität des Saarlandes April 19th, 2012 Vera Demberg (UdS) Vorbesprechung Mathe III April 19th, 2012 1 / 20 Formalien Pflichtveranstaltung

Mehr

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW)

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW) Martin Kappus (ZHAW) Ablauf: Warum sprechen wir heute über maschinelle Übersetzung? Geschichte und Ansätze Eingabe-/Ausgabemodi und Anwendungen 2 WARUM SPRECHEN WIR HEUTE ÜBER MASCHINELLE ÜBERSETZUNG?

Mehr

Unsicherheit * M RS = 6

Unsicherheit * M RS = 6 Informationstheorie Gegenstand Unsicherheit Überraschung Entropie Relative und maximale Entropie, Redundanz Konditionale Entropie und Verbundentropie Wechselseitige ("Mutual") Information Gegenstand Kodierung,

Mehr

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Kursfolien Karin Haenelt 09.05002 1 Letzte Änderung 18.07002 Hidden Markov Models Besondere Form eines probabilistischen endlichen Automaten Weit verbreitet in der statistischen Sprachverarbeitung

Mehr

Der Viterbi Algorithmus

Der Viterbi Algorithmus M. 23.Juli.2007 Gliederung 1 2 3 Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes entwickelt Auf Basis von entwickelt Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes

Mehr

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Kursfolien Karin Haenelt 1 Übersicht Wahrscheinlichkeitsfunktion P Wahrscheinlichkeit und bedingte Wahrscheinlichkeit Bayes-Formeln

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 208 ) Monte Carlo Methode für numerische Integration Sei g : [0, ] R stetige Funktion; man möchte numerisch approximieren mit Hilfe von Zufallszahlen:

Mehr

Der Viterbi-Algorithmus im Part-of-Speech Tagging

Der Viterbi-Algorithmus im Part-of-Speech Tagging Der Viterbi-Algorithmus im Part-of-Speech Tagging Kursfolien Karin Haenelt 1 Themen Zweck des Viterbi-Algorithmus Hidden Markov Model Formale Spezifikation Beispiel Arc Emission Model State Emission Model

Mehr

Sharon Goldwater & David McClosky. Sarah Hartmann Advanced Topics in Statistical Machine Translation

Sharon Goldwater & David McClosky. Sarah Hartmann Advanced Topics in Statistical Machine Translation Sharon Goldwater & David McClosky Sarah Hartmann 13.01.2015 Advanced Topics in Statistical Machine Translation Einführung Modelle Experimente Diskussion 2 Einführung Das Problem Der Lösungsvorschlag Modelle

Mehr

Hidden Markov Models in Anwendungen

Hidden Markov Models in Anwendungen Hidden Markov Models in Anwendungen Prof Dr. Matthew Crocker Universität des Saarlandes 18. Juni 2015 Matthew Crocker (UdS) HMM Anwendungen 18. Juni 2015 1 / 26 Hidden Markov Modelle in der Computerlinguistik

Mehr

Maschinelle Sprachverarbeitung: N-Gramm-Modelle

Maschinelle Sprachverarbeitung: N-Gramm-Modelle HUMBOLD-UNIVERSIÄ ZU BERLIN Institut für Informatik Lehrstuhl Wissensmanagement Maschinelle Sprachverarbeitung: N-Gramm-Modelle obias Scheffer, Ulf Brefeld Statistische Sprachmodelle Welche Sätze sind

Mehr

Hidden Markov Models in Anwendungen

Hidden Markov Models in Anwendungen Hidden Markov Models in Anwendungen Dr. Vera Demberg Universität des Saarlandes 31. Mai 2012 Vera Demberg (UdS) HMM Anwendungen 31. Mai 2012 1 / 26 Hidden Markov Modelle in der Computerlinguistik Table

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Informationstheorie. 20. Juni /1

Mathe III. Garance PARIS. Mathematische Grundlagen III. Informationstheorie. 20. Juni /1 Mathematische Grundlagen III Informationstheorie 20 Juni 20 / Informationstheorie Ein Gerüst, um über den Informationsgehalt von (linguistischen) Ereignissen nachzudenken Einige Beispiele für Anwendungen:

Mehr

Elementare Grundlagen der Wahrscheinlichkeitstheorie

Elementare Grundlagen der Wahrscheinlichkeitstheorie Kursfolien Karin Haenelt Oktober 2000 Inhalt Ereignisraum Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeiten Theorem von Bayes 2 Ereignisraum W Ergebnismenge (sample space) Menge der möglichen W = {nom,gen,dat,acc}

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Crocker/Demberg/Staudte Sommersemester 2014 17.07.2014 1. Sie haben 90 Minuten Zeit zur Bearbeitung der Aufgaben.

Mehr

Die bedingte Wahrscheinlichkeit in der Spracherkennung. Wie rechnet man mit...?

Die bedingte Wahrscheinlichkeit in der Spracherkennung. Wie rechnet man mit...? Die bedingte Wahrscheinlichkeit in der Spracherkennung Florian Schiel Was ist...? Münchner Winterwetter Beispiele Statistik! Wozu braucht man...? Automatische Spracherkennung Wie rechnet man mit...? Florian

Mehr

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015 n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015 Statistische Modelle Wir möchten W.theorie verwenden, um ein Modell eines generativen Prozesses aus Beobachtungen

Mehr

Elementare Grundlagen der Wahrscheinlichkeitstheorie

Elementare Grundlagen der Wahrscheinlichkeitstheorie Kursfolien Karin Haenelt Oktober 2000 Inhalt Ereignisraum Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeiten Theorem von Bayes 2 Ereignisraum W Ergebnismenge (sample space) Menge der möglichen W = {nom,gen,dat,acc

Mehr

3. Grundbegriffe der Wahrscheinlichkeitstheorie

3. Grundbegriffe der Wahrscheinlichkeitstheorie 03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan Rosendahl, Jan-Thorsten Peter, Andreas Guta max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 6. Aufgabe 14. Juli 2017 Human Language Technology

Mehr

Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio

Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio Claes Neuefeind Fabian Steeg 17. Juni 2010 Klassifikation im Text-Mining Klassifikation Textkategorisierung Naive Bayes Beispielrechnung Rocchio

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Informationstheorie Vera Demberg Universität des Saarlandes 26. Juni 202 Vera Demberg (UdS) Mathe III 26. Juni 202 / 43 Informationstheorie Entropie (H) Wie viel Information

Mehr

Hidden Markov Models Erläuterung der Bestimmung der Wahrscheinlichkeit einer Beobachtung

Hidden Markov Models Erläuterung der Bestimmung der Wahrscheinlichkeit einer Beobachtung Hidden Markov Models Erläuterung der estimmung der Wahrscheinlichkeit einer eobachtung Kursfolien Karin Haenelt Karin Haenelt Hidden Markov-Modelle 9.66 2.64 Hidden Markov Model HMM: eschreibung Ein Hidden

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 4 Maschinelles Lernen und Spracherkennung

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 4 Maschinelles Lernen und Spracherkennung Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 216 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 4 Maschinelles Lernen und Spracherkennung Aufgabe

Mehr

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Erich Schubert 6. Juli 2003 LMU München, Institut für Informatik, Erich Schubert Zitat von R. P. Feynman Richard P. Feynman (Nobelpreisträger

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Automatisches Verstehen gesprochener Sprache

Automatisches Verstehen gesprochener Sprache Automatisches Verstehen gesprochener Sprache 3. Sprachmodellierung Martin Hacker Bernd Ludwig Günther Görz Professur für Künstliche Intelligenz Department Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Mehr

LI07: Hidden Markov Modelle und Part-of-Speech Tagging

LI07: Hidden Markov Modelle und Part-of-Speech Tagging LI07: Hidden Markov Modelle und Part-of-Speech Tagging sumalvico@informatik.uni-leipzig.de 18. Mai 2017 Wiederholung: Statistisches Sprachmodell Ein statistisches Sprachmodell besteht allgemein aus: einer

Mehr

Einführung in die Computerlinguistik Überblick

Einführung in die Computerlinguistik Überblick Einführung in die Computerlinguistik Überblick Hinrich Schütze & Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 2015-10-12 Schütze & Zangenfeind: Überblick 1 / 19 Was

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2016/2017

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2016/2017 Bezeichnung der sleistung Studienabschnitt: Pflichtbereich (nach ) LS1a Einführung in die Linguistik Introduction to Linguistics Dr. Christel Stolz 9 Allgemeine und Vergleichende Sprachwissenschaft General

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

NLP - Analyse des Wissensrohstoffs Text

NLP - Analyse des Wissensrohstoffs Text NLP - Analyse des Wissensrohstoffs Text Dr. Andreas Hotho Dominik Benz Beate Krause Sommersemester 2008 Folie: 1 Organisatorisches Vorlesung Beginn: 8. April 2008 Dienstag 10.15 h - 11.45 h, in Raum 1607

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II

Allgemeine diskrete Wahrscheinlichkeitsräume II 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume I

Allgemeine diskrete Wahrscheinlichkeitsräume I 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2018 S. Constantin (stefan.constantin@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 4 Maschinelles Lernen und Spracherkennung Abgabe

Mehr

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining 6. Data Mining Inhalt 6.1 Motivation 6.2 Klassifikation 6.3 Clusteranalyse 6.4 Asszoziationsanalyse 2 6.1 Motivation Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse (actionable

Mehr

1 Erkennung von Wortfolgen. 2 Bewertung von Wortfolgen. 3 Sprachmodelle in der Praxis. Erkennung von Wortfolgen

1 Erkennung von Wortfolgen. 2 Bewertung von Wortfolgen. 3 Sprachmodelle in der Praxis. Erkennung von Wortfolgen Automatisches Verstehen gesprochener Sprache. Sprachmodellierung Martin Hacker Bernd Ludwig Günther Görz Professur für Künstliche Intelligenz Department Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Mehr

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2018/2019

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2018/2019 Bezeichnung der sleistung Studienabschnitt: Pflichtbereich (nach ) LS1a Einführung in die Linguistik Introduction to Linguistics of. Dr. Thomas Stolz 9 Allgemeine und Vergleichende Sprachwissenschaft General

Mehr

NLP - Analyse des Wissensrohstoffs Text

NLP - Analyse des Wissensrohstoffs Text NLP - Analyse des Wissensrohstoffs Text Vorlesung Beginn: 8. April 2008 Dienstag 10.15 h - 11.45 h, in Raum 1607 oder 0443 Übungen Dr. Andreas Hotho Dominik Benz Beate Krause Sommersemester 2008 Beginn:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (32 Punkte) In einer medizinischen Studie werden zwei Tests zur Diagnose von Leberschäden verglichen. Dabei wurde folgendes festgestellt: Test 1 erkennt

Mehr

Stochastik Musterlösung 2

Stochastik Musterlösung 2 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 2 1. Wir betrachten folgende vier Wettersituationen. Es regnet nur am Morgen; Es

Mehr

Modern Foreign Languages

Modern Foreign Languages MFL1: To understand the verb werden and to be able to talk about future plans A) Match the English answers to the German. German Correct Answer English Ich werde spielen Du wirst spielen You will play

Mehr

Tagging mit Hidden Markov Models und Viterbi-Algorithmus

Tagging mit Hidden Markov Models und Viterbi-Algorithmus Tagging mit Hidden Markov Models und Viterbi-Algorithmus Annelen Brunner, Stephanie Schuldes, Nicola Kaiser, Olga Mordvinova HS Parsing SoSe 2003 PD Dr. Karin Haenelt Inhalt Ziel des Seminarprojekts Theorie:

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Projektgruppe. Text Labeling mit Sequenzmodellen

Projektgruppe. Text Labeling mit Sequenzmodellen Projektgruppe Enes Yigitbas Text Labeling mit Sequenzmodellen 4. Juni 2010 Motivation Möglichkeit der effizienten Verarbeitung von riesigen Datenmengen In vielen Bereichen erwünschte automatisierte Aufgabe:

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

Hidden Markov Models (HMM)

Hidden Markov Models (HMM) Hidden Markov Models (HMM) Kursfolien Karin Haenelt 1 Themen Definitionen Stochastischer Prozess Markow Kette (Visible) Markov Model Hidden Markov Model Aufgaben, die mit HMMs bearbeitet werden Algorithmen

Mehr

Einführung in die Pragmatik und Texttheorie Übungsblatt: Informations-Struktur

Einführung in die Pragmatik und Texttheorie Übungsblatt: Informations-Struktur Einführung in die Pragmatik und Texttheorie Übungsblatt: Informations-Struktur (Note: Words printed in capitals are stressed, i.e., carry a pitch accent. Other words are not stressed.) Question 1. What

Mehr

7 p X 3 B 7 0,4 3 0,4 0,6 0,29 3

7 p X 3 B 7 0,4 3 0,4 0,6 0,29 3 Aufgabe C1 Landesabitur Hessen 2012 GK Aufgabe 1.1 2 BE X ist die Anzahl der Regentage in einer Woche im Juni. X ist binomialverteilt mit p = 0,4 und n = 7. Die Anwendung der Binomialverteilung erfordert

Mehr

Produktdifferenzierung und Markteintritte?

Produktdifferenzierung und Markteintritte? 6.2.1 (3) Produktdifferenzierung und Markteintritte? Um die Auswirkungen von Produktdifferenzierung im hier verfolgten Modell analysieren zu können, sei die Nachfragefunktion wie von Dixit 66 vorgeschlagen,

Mehr

Musterlösung zur Abschlussklausur

Musterlösung zur Abschlussklausur Einführung in die Computerlinguistik Sommersemester 2012 Department Linguistik Peter Kolb 9.9.2012 Musterlösung zur Abschlussklausur 1. Aufgabe Ein Programm zum maschinellen Übersetzen verfügt über ein

Mehr

Automatentheorie und formale Sprachen reguläre Ausdrücke

Automatentheorie und formale Sprachen reguläre Ausdrücke Automatentheorie und formale Sprachen reguläre Ausdrücke Dozentin: Wiebke Petersen 6.5.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Formal language Denition A formal language L

Mehr

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number. Magic Figures Introduction: This lesson builds on ideas from Magic Squares. Students are introduced to a wider collection of Magic Figures and consider constraints on the Magic Number associated with such

Mehr

Kapitel MK:V. V. Diagnoseansätze

Kapitel MK:V. V. Diagnoseansätze Kapitel MK:V V. Diagnoseansätze Diagnoseproblemstellung Diagnose mit Bayes Evidenztheorie von Dempster/Shafer Diagnose mit Dempster/Shafer Truth Maintenance Assumption-Based TMS Diagnosis Setting Diagnosis

Mehr

Level 1 German, 2011

Level 1 German, 2011 90886 908860 1SUPERVISOR S Level 1 German, 2011 90886 Demonstrate understanding of a variety of German texts on areas of most immediate relevance 9.30 am uesday Tuesday 1 November 2011 Credits: Five Achievement

Mehr

Wie liest man Konfidenzintervalle? Teil II. Premiu m

Wie liest man Konfidenzintervalle? Teil II. Premiu m Wie liest man Konfidenzintervalle? Teil II Premiu m - Hintergrund Anderer Wahrscheinlichkeitsbegriff subjektiver Wahrscheinlichkeitsbegriff Beispiel: Was ist die Wahrscheinlichkeit dafür, dass ein Patient

Mehr

Kategorisierungsverfahren. Rocchio k-nearest neighbour (knn) Naive Bayes Support Vector Machines n-gramm-sprachmodelle

Kategorisierungsverfahren. Rocchio k-nearest neighbour (knn) Naive Bayes Support Vector Machines n-gramm-sprachmodelle Kategorisierung deduktiver Schluss, Schema: Alle A sind X p ist ein A p ist X logisch gültig abduktiver Schluss: p ist X Alle A sind X p ist ein A logisch nicht gültig (kann ein Fehlschluss sein) z.b.

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (28 Punkte) Die BVG will besser auf Ausfälle im S-Bahn-Verkehr eingestellt sein. Sie geht dabei von folgenden Annahmen aus: An 20% der Tage ist es besonders

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 16. März 2016, 11:21 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Statistik: Einführung 2 Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Modul (Syntax und Semantik)

Modul (Syntax und Semantik) Modul 04-006-1003 (Syntax und Semantik) Syntax: Perlmutter & Soames 1979 Donnerstag, 9h15-10h45 Sommmersemester 2009 Fabian Heck Institut für Linguistik Universität Leipzig 1. Einführung 1.1. Grundsätzliches

Mehr

3 Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitstheorie Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle

Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle Matthias Birkner & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 9. Juni 2009 1 Wiederholung: Bedingte

Mehr

Kryptographie und Datensicherheit. Universität Potsdam Institut für Informatik Almahameed Ayman

Kryptographie und Datensicherheit. Universität Potsdam Institut für Informatik Almahameed Ayman Kryptographie und Datensicherheit Universität Potsdam Institut für Informatik Almahameed Ayman almahame@uni-potsdam.de Inhalt des Vortrags Einführung Grundlagen der Wahrscheinlichkeitstheorie Begriff der

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Oktober 2007 1. Statistik Wir denken an Experimente, bei deren Durchführung die Variable X, um die es dabei geht, verschiedene Werte annehmen

Mehr

Brandbook. How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes. Version 1.0.1

Brandbook. How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes. Version 1.0.1 Brandbook How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes Version 1.0.1 Content / Inhalt Logo 4 Icon 5 QR code 8 png vs. svg 10 Smokesignal 11 2 / 12

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr