Stabilisierungsschaltung mit Längstransistor
|
|
|
- Ute Friedrich
- vor 9 Jahren
- Abrufe
Transkript
1 Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: 18 V R Ω Für die Z-Diode gelten folgende Daten: U Z 12,7 V r Z 2 Ω Für den Transistor gelten folgende Daten: B 120 U BE 0,7 V r B 240 Ω 200 Ω I C I A U R I R R 1 U Z U CE V 2 I Z U A V 1 Diese Netzteilschaltung stellt eine Spannungsquelle mit Innenwiderstand dar. Bestimmen Sie den Innenwiderstand der Ersatzschaltung! 1
2 Lösung Zweckmäßigerweise setzt man anstelle des Transistors und der Z-Diode die jeweilige Ersatzschaltung ein. B r B U BE Nebenstehend ist die Ersatzschaltung eines Transistors dargestellt. Die Anschlüsse Basis, E Kollektor und Emitter sind mit B, C und E gekennzeichnet. Der Widerstand r B stellt Ersatzschaltung eines Transistors den Basis-Widerstand dar, die Spannung U BE die Schleusenspannung des Basis-Emitter-PN- Übergangs. Dieser Teil der Ersatzschaltung entspricht der Ersatzschaltung einer Diode. I C0 ist eine gesteuerte Stromquelle, die über den Basisstrom und den Stromverstärkungsfaktor B gesteuert wird, also mit I C0 B. Der Widerstand ist der Innenwiderstand dieser Stromquelle, die an der Steigung der Geraden im Ausgangskennlinienfeld des Transistors erkennbar ist. Man erhält hiermit folgende Schaltung: C U R I R R 1 r Z I Z r B U BE U Z U A Die Ersatzschaltungen für Z-Diode und Transistor sind grau hinterlegt, damit sie besser im Zusammenhang erkennbar sind. Die Schaltung kann nun schrittweise umgeformt werden. Als ersten Schritt bietet es sich an, den Spannungsteiler U Z U 1Z aus R 1 und r Z zusammen mit U BE und in eine Spannungsquelle U 1Z mit Innenwiderstand R 1Z umzuformen, Ersatzschaltung wie nebenstehend dargestellt ist. Baut man diese Umwandlung in die Gesamtschaltung ein, dann erhält man nachfolgende Schaltung. R 1 r Z R 1Z 2
3 r 1Z r B U BE U 1Z U A Berechnen wir zuerst die Werte. R 1Z R 1 r Z R 1 r 2 R 1 + r Z 150 Ω 2 Ω 150 Ω + 2 Ω R 1Z 1,974 Ω Schaut man sich die Widerstandswerte mit R Ω und r Z 2 Ω an, dann sieht man schnell, dass in der Parallelschaltung R 1 vernachlässigbar ist. Es ist R 1Z r Z. Die Spannung, die am Spannungsteiler aus R 1 und r Z anliegt, nenne ich Z. Sie besteht aus den Spannungen und U Z. Hierbei muss allerdings die Polung berücksichtigt werden. Sie liegt am Spannungsteiler von oben links bis unten an. Machen wir einen Maschenumlauf, beginnend oben links. Z + U Z 0 + U Z Z U Z Z 18 V 12,7 V Z 5,3 V Diese Spannung wird mit dem Spannungsteiler aus R 1 und r Z auf eine Spannung an r Z heruntergeteilt, die ich U rz nennen möchte. U rz r Z Z r Z + R 1 U rz 2 Ω 5,3 V 2 Ω Ω U rz 69,7 mv Die Ersatzspannung U 1Z setzt sich aus der Spannung U Z und der eben bestimmten Spannung U rz zusammen. U 1Z U Z + U rz 12,7 V + 69,7 mv 12,7697 V 3
4 Wie man sieht, kann hierin der Einfluss von U rz vernachlässigt werden. U 1Z U Z Im nächsten Vereinfachungsschritt können nun die Spannungen U 1Z und U BE zu einer einzigen Spannung zusammengefasst werden. Ich nenne diese Spannung U. Auch die Widerstände R 1Z und r B können zu einem Widerstand zusammengefasst werden. Diesen Widerstand nenne ich R. Überträgt man das auf die Schaltung, sieht diese so aus, wie nachfolgend gezeigt. R U R I rc I A U A U Berechnen wir nun die Werte für U und R. U U 1E U BE 12,7697 V 0,7 V 12,0697 V Näherungsweise ist diese Spannung der Sollwert für U A. R R 1Z + R B 1,974 Ω Ω 241,974 Ω Dieser Widerstand ist in erster Näherung gleich dem Widerstand R B. Langsam nähern wir uns der Lösung der Frage: Wie groß ist der Innenwiderstand R i der Schaltung? Zur Lösung dieser Frage gibt es (mindestens) zwei verschiedene Vorgehensweisen. Diese sind: 1. Man bestimmt für zwei unterschiedliche Belastungen die sich ergebende Ausgangsspannung und bestimmt über U A und I A den Innenwiderstand. 2. Man stellt trickreiche Überlegungen an. Methode 1: Ich bestimme U A für I A1 1 A und I A2 2 A. Der Strom I A setzt sich aus drei Strömen zusammen: I A + I C0 + I rc 4
5 Der Strom I rc kann vorab einfach bestimmt werden, wenn man voraussetzt, dass die Ausgangsspannung zumindest nährungsweise konstant bei U A 12 V bleibt. I rc U A 18 V 12 V 200 Ω 30 ma Es ist bekannt, dass I C0 um den Stromverstärkungsfaktor B größer als ist. Das setze ich in die obige Gleichung ein, um zu berechnen. I A + I C0 + I rc I A + B + I rc I rc I A I rc (1 + B) : (1 + B) I A I rc 1 + B Mit dieser Formel können wir nun die Basisströme 1 und 2 für die beiden Ausgangsströme I A1 1 A und I A2 2 A berechnen. 1 1 A 30 ma ,017 ma 2 A 30 ma 2 16,281 ma Die Ausgangsspannung setzt sich aus der Spannung U und der Spannung zusammen. Daher bestimme ich jetzt die beiden Werte für U R 1 und U R 2. U R 1 R 1 241,974 Ω 8,017 ma 200,217 mv U R 2 R 2 241,974 Ω 16,281 ma 406,602 mv Machen wir einen Maschenumlauf, beginnend in der Mitte rechts. U A U + U R 0 + U U R U A U U R Hiermit könnten nun die beiden Ausgangsspannungen für die beiden verschiedenen Belastungen berechnet werden. Letztlich benötigen wir aber nur die Differenz U A. Da in beide Werte für U A die Spannung U linear eingeht, hebt sich diese beim Bilden der Differenz wieder aus, übrig bleibt nur: U A U R 2 U R 1 406,602 mv 200,217 mv 206,385 mv Hiermit kann nun R i berechnet werden. R i U A I A 206,385 mv 1 A 206,385 mω 5
6 Methode 2: Wir haben gesehen, dass der Innenwiderstand R 1Z des Spannungsteilers aus R 1 und r Z näherungsweise r Z ist. Dazu in Reihe wirkt r B, wobei in dieser Reihenschaltung r B dominiert. Die restlichen Widerstandsanteile können vernachlässigt werden. Der Strom I re fließt in diesem Modell ständig, kann also für die Differenzen unberücksichtigt bleiben, denn es ist R i U A I A. Für jedes Milliampere Basisstrom fließt ein um den Faktor B größerer Kollektorstrom. Als Ausgangsstrom I A haben wir die Summe von und I C0, wobei hier wiederum der Basisstrom vernachlässigt werden kann. Für die Ausgangsspannungsänderung ist ausschließlich der Spannungsfall an R r B verantwortlich. Da hier ein Strom fließt, der um den Faktor B kleiner als I A ist, wirkt es für den Ausgang so, als ob ein um den Faktor B kleinerer Widerstand verantwortlich wäre. Warum? R i U A I A U A B 1 B U A 1 B U R i 1 B r B Zusammengefasst: R i r B B Vergleicht man dieses Ergebnis mit dem zuvor berechneten Ergebnis, dann kann man feststellen, dass die Abweichung nur etwa 3% beträgt. Man kann also sagen, dass bei dieser Schaltung der Widerstand r B maßgeblich für den Innenwiderstand der Schaltung verantwortlich ist. 6
Stabilisierungsschaltung mit Längstransistor
Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: = 18 V R 1 = 150 Ω Für die Z-Diode
Stabilisierungsschaltung mit Längstransistor
Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung
Projekt: Einstellbares Netzteil mit Spannungsstabilisierung
Projekt: Einstellbares Netzteil mit Spannungsstabilisierung W. Kippels 14. Januar 2016 Inhaltsverzeichnis 1 Die Aufgabenstellung 2 2 Eine mögliche Lösung 4 2.1 Die maximalen Spannung am Kondensator:.................
Wechselstrom-Gegenkopplung
// Berechnung einer Emitterschaltung mit Wechselstrom-Gegenkopplung Diese Transistor-Schaltung stellt eine Abwandlung der " Emitterschaltung mit Arbeitspunktstabilisierung durch Stromgegenkopplung " dar.
Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?
Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters
Vorbereitung zum Versuch Transistorschaltungen
Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.
Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr
// // Konstantstromquelle mit einem pnp-transistor - Berechnung Mit dieser einfachen Schaltung kann am Kollektor des Transistors ein konstanter Strom I gewonnen werden. Das Prinzip ist sehr einfach: An
Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden.
Netzwerke berechnen mit der Ersatzspannungsquelle von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials zum Impressum Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses
Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr
// // // Spannungs-Stabilisierung mit einer Z-Diode - Berechnung Diese Grundschaltung einer Spannungsstabilisierung stellt die einfachste Anwendung einer Zenerdiode dar. Die Schaltung wandelt eine schwankende
Lösungen der Übungsaufgaben zur Berechnung von Netzwerken
Lösungen der Übungsaufgaben zur Berechnung von Netzwerken W. Kippels 1. Dezember 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zu Spannungs- und Stromquellen..............
Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4
Technische Informatik Prof. Dr. M. Bogdan Institut für Informatik Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Abgabe: bis zum 06.01.2016 im weißen Briefkasten der TI Nähe Raum P 518 1 Hinweise: -
Transistor und einer Z-Diode
Berechnung einer Spannungs-Stabilisierung mit einem Transistor und einer Z-Diode Mit dieser einfachen Standard-Schaltung kann man eine unstabilisierte, schwankende Eingangsspannung in eine konstante Ausgangsspannung
Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i
Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB
NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A
Widerstände I R 20 = Ω U 5V I = R= 20 = Ω 0,25A U = R I 10 100Ω = 1kΩ ± 5% 402 100Ω = 40, 2kΩ ± 2% 1Ω = 1V 1A Widerstände U = R I 1Ω = 1V 1A 12 100 kω = 1, 2MΩ ± 5% 56 10Ω = 560Ω ± 10% 47 100Ω = 4,7kΩ
Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr
Konstantstromquelle mit einem NPN-Transistor Diese Schaltung liefert einen konstanten Strom Ikonst, welcher durch RL fließt. Dabei spielt es in gewissen Grenzen keine Rolle, wie groß RL ist. Der Konstantstrom
Laborübung, NPN-Transistor Kennlinien
15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später
Übungsserie, Bipolartransistor 1
13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.
11. Übung Grundlagen der analogen Schaltungstechnik
11. Übung Grundlagen der analogen Schaltungstechnik 1 Aufgabe (Klausur WS07/08: 40 min, 22 Punkte) - die Killeraufgabe, aber warum? Bootstrapschaltung und Kleinsignal-Transistormodell Gegeben ist die in
Gleichstromtechnik. Vorlesung 13: Superpositionsprinzip. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 13: Superpositionsprinzip Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Einige Schaltungen weisen mehr als eine Quelle auf, Beispiel Ersatzschaltbild
Stabilisierungsschaltung mit Z-Diode
Stabilisierungsschaltung mit Z-Diode Nebenstehend ist eine einfache Schaltung zur Spannungsstabilisierung mit einer Z-Diode dargestellt. Links wird die (unstabile) Spannung U E angeschlossen, rechts wird
Fachprüfung. Schaltungen & Systeme
Fachprüfung Schaltungen & Systeme 30. Juli 2007 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte gesamt
Fachprüfung. Schaltungen & Systeme BA
Fachprüfung Schaltungen & Systeme BA 15. Juli 2004 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7.8.9 Summe 1. 2. 3. 4. 5.
v p v n Diplomprüfung Elektronik SS 2006 Montag,
FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS 6 Montag, 7.7.6 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prüfung: 9 Minuten Homogene
Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Reihenschaltung von Halbleiterdioden
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Reihenschaltung von Halbleiterdioden In integrierten
Diplomvorprüfung Elektronik SS 2008
Diplomvorprüfung Elektronik Seite 1 von 6 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten Diplomvorprüfung Elektronik SS 2008 Name: Vorname:
Fachprüfung. Schaltungen & Systeme
Fachprüfung Schaltungen & Systeme 12. September 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte
Unterschrift: Hörsaal: Platz-Nr.:
FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:
Klausur Grundlagen der Schaltungstechnik WS 2007/2008 1
Klausur Grundlagen der Schaltungstechnik WS 007/008 Hinweis: Die Darstellung der Lösungswege muß vollständig, klar und kontrollierbar sein. Achten Sie dazu bitte insbesondere bei Ersatzschaltbildern auf
SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker
Dienstag, 19.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 4 Differenzverstärker 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische
Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:
Dotierter Halbleiter
FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter
Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:
Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und am
Name, Vorname: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 3 h. Zugelassene Hilfsmittel sind: Taschenrechner Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und 6132 am 10.07.1996 Matr.Nr.:
TRA - Grundlagen des Transistors
TRA Grundlagen des Transistors Anfängerpraktikum 1, 2006 Janina Fiehl Daniel Flassig Gruppe 87 Aufgabenstellung n diesem Versuch sollen wichtige Eigenschaften des für unsere nformationsgesellschaft vielleicht
1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12
Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten
Gleichstromtechnik. Vorlesung 12: Lineare Quellen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 12: Lineare Quellen Fakultät für Elektro- und nformationstechnik, Manfred Strohrmann Motivation deale Quellen sind ein stark idealisiertes Modell realer Quellen Reale Quellen
Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung
Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet
Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte)
1. PROBETEST ZU HALBLEITER-SCHALTUNGSTECHNIK, WS 2017/18 DATUM Punktemaximum: 100 Testdauer: 90 min Vorname: Nachname: Matr. Nr.: Kennzahl: Hinweis zum Test: Alle nötigen Zwischenschritte angeben! Ergebnisse
Übungsaufgaben EBG für Mechatroniker
Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:
Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,
Aufgaben zur Analogen Schaltungstechnik!
Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt
(Operationsverstärker - Grundschaltung)
Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine
Übungsserie: Diode 1
7. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 1 1 Vorbereitung Eine Zenerdiode ist so gebaut, dass der Betrieb im Durchbruchbereich sie nicht zerstört. Ihre Kennlinie ist in Abb. 1 dargestellt.
Messtechnik, Übung, Prof. Helsper
Messtechnik, Übung, Prof. Helsper Christoph Hansen [email protected] Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder
Der Bipolar-Transistor
Universität Kassel F 16: Elektrotechnik / Informatik FG FSG: Fahrzeugsysteme und Grundlagen der Elektrotechnik Wilhelmshöher Allee 73 D-34121 Kassel Prinzip des Transistors Seite: 2 Aufbau des ipolar-transistors,
Abschlussprüfung Schaltungstechnik 2
Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer
Aufgabe 2 Nichtlineares Zweitor
Name:.................................. Matrikel-Nr.:................... 5 Aufgabe Nichtlineares Zweitor (6 Punkte) Gegeben sei die Hybridbeschreibung eines nichtlinearen Zweitors H: 6 u = i U T ln β 0
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider!
15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider! 1 Na, wie sieht es aus mit Eurem Schaltungsblick? Schade, das spart Rechenarbeit, aber Sie müssen sich natürlich sicher sein. 2 Aufgabe
Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten
Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 11/12 Fach: Elektronik,
1. Diode und Transistor
1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge
Klausur "Elektrotechnik" am
Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 12.02.1999 Aufg. P max 0 2 1 7 2 12 3 10 4 9 5 18 6 11 Σ 69 N P Zugelassene
Die wichtigsten Eigenschaften von bipolaren Transistoren.
Elektronik-Kurs Die wichtigsten Eigenschaften von bipolaren Transistoren. Es gibt 2 Arten von bipolaren Transistoren: NPN-Transistoren PNP-Transistoren Diese Bezeichnung entspricht dem inneren Aufbau der
4. Übung: PLA & Schaltungen Abteilung Verteilte Systeme, Universität Ulm
Technische Informatik I 6 4. Übung: PLA & Schaltungen Technische Informatik I 6 Aufgabe : PAL und PLA a) Eine ganzzahlige Division zweier -it inärzahlen soll mit Hilfe eines PLA realisiert werden. Dabei
PROTOKOLL ZUM VERSUCH TRANSISTOR
PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 1: Gleichstrommessungen Übersicht In dieser Übung sollen die Vielfachmessgeräte (Multimeter) des Labors kennengelernt werden. In mehreren Aufgaben sollen Spannungen,
Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009
Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2
Übungsaufgaben zum 5. Versuch 13. Mai 2012
Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell
Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2013 Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Matr.-Nr.: Name,
Musterloesung. Name:... Vorname:... Matr.-Nr.:...
1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der
Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H1435. Lineare Spannungsregler 1. Note: Page 1/12
TGM Abteilung Elektronik und Technische Informatik Dokumentation und Auswertung Labor Jahrgang 3BHEL Übung Übungsbetreuer Prof. Bartos Übung am 31.01.2017 Erstellt am 10.02.2017 von Pascal Zöhrer Übungsteilnehmer
Transistor BJT II. Roland Küng, 2011
Transistor BJT II Roland Küng, 2011 1 Bias Berechnung Näherung mit i B = 0 Arbeitspunkt: engl. Bias gilt für β >>100 oder R 1, R 2
Transistorgrundschaltungen
Vorbereitung Transistorgrundschaltungen Carsten Röttele 0. Januar 202 Inhaltsverzeichnis Theoretische Grundlagen 2. Halbleiter/Dotierung.............................. 2.2 Diode......................................
7. Aufgabenblatt mit Lösungsvorschlag
+ - Grundlagen der echnertechnologie Sommersemester 200 Wolfgang Heenes. Aufgabenblatt mit Lösungsvorschlag 0.06.200 Schaltungen mit Bipolartransistoren Aufgabe : Analyse einer Schaltung mit Bipolartransistor
Diplomprüfung SS 2010
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle
RC - Breitbandverstärker
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll
a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug
Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)
LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK ETP1-1. Weitere Übungsteilnehmer: Gleichstrommessungen, Ersatzspannungsquellen
LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK Studiengruppe: Übungstag: ETP1-1 Protokollführer (Name, Vorname): Weitere Übungsteilnehmer: Professor: Testat: Gleichstrommessungen, Ersatzspannungsquellen 1 Übersicht
A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.
Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage
Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer:
Gruppe: 1/10 Versuch: C PRAKTIKM SCHALTNGSTECHNIK VERSCH C Differenzverstärker Versuchsdatum: 14.06.2006 Teilnehmer: 1. Vorbereitung 1.1 Definitionen Grossignalverhalten des idealen Differenzverstärkers
0Elementare Transistorschaltungen
Teilanfang E1 0Elementare Transistorschaltungen VERSUCH Praktikanten: Rainer Kunz Rolf Paspirgilis Links Versuch E1 Elementare Transistorschaltungen Q In diesem Protokoll: O»Einleitung«auf Seite 3 O»Transistoren«auf
ELEKTRISCHE GRUNDSCHALTUNGEN
ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der
Professur für Leistungselektronik und Messtechnik
Aufgabe 1: Diode I (leicht) In dieser Aufgabe sollen verschiedene Netzwerke mit Dioden analysiert werden. I = 1 A R = 2 Ω T = 25 C Diodenkennlinie: Abbildung 5 Abbildung 1: Stromteiler mit Diode a) Ermitteln
Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1
Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5
Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände
Fachhochschule für Technik und Wirtschaft Berlin Elektrische Grundlagen der Informationstechnik Laborprotokoll: Nichtlineare Widerstände Mario Apitz, Christian Kötz 2. Januar 21 Inhaltsverzeichnis 1 Vorbeitung...
Aufg. P max 1 12 Klausur "Elektrotechnik" am
Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene
Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten.
1. Beispiel: Kleinsignalschalter/Diodenarbeitspunkt (33Punkte) Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten. Gegeben: Boltzmann-Konstante: k=1.38*10-23 J/K
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5 Prof. Baitinger / Lammert Besrechung: 15.01.2001 b) Die Diode wird in der Schaltung nach Abb. 1-2 betrieben. Berechnen Sie jeweils die
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen
6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)
6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise
Transistor BJT I. Roland Küng, 2009
Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert
Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren
Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren Transistoren Halbleiterdiode Der Transistor Der Transistor ist ein aktives auelement, der über einen
Eine einfache Operationsverstärkerschaltung zur Bestimmung des Widerstandes eines Sensors
Eine einfache Operationsverstärkerschaltung zur Bestimmung des Widerstandes eines Sensors Dipl. Ing. Dr. Peter Fröhling Widerstandssensoren sind weit verbreitet und werden zum Beispiel zur Messung von
Diplomvorprüfung Elektronik WS 2008/09
Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten Diplomvorprüfung Elektronik WS 2008/09 Name: Vorname:
HiFi-Leistungsverstärker
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Mechatronisches Praktikum HiFi-Leistungsverstärker Skriptum zum mechatronischen Praktikum Sommersemester 2016 Saarbrücken, 2016
Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009
Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A
Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Wintersemester 2015/16 Elektronik
Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Wintersemester
Elektronik II Grosse Übung zu Foliensatz E2_F5
G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 1/25 Elektronik II Grosse Übung zu Foliensatz E2_F5 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 G. Kemnitz
Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)
Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen
Der Transistor (Grundlagen)
Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt
Transistorkennlinien und -schaltungen
ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik
Wintersemester 2012/13
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,
U L. Energie kt ist groß gegenüber der Aktivierungs-
Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen
Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03
Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:
Klausur "Elektrotechnik" am
Name, Vorname: Matr.Nr.: Klausur "Elektrotechnik" 6141 am 25.09.1997 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Aufg. P max 0 2 1 11 2 9 3 10 4 11 5 17 6 6 Σ 66 N P Zugelassene
NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = Hz).
25.10.2014_Nachlese_DB6UV Wir haben diesmal einen NF-Verstärker (Niederfrequenz-Verstärker) gebaut. NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = 18000
Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen
Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige
Arbeitspunkteinstellung
Gliederung Arbeitspunkteinstellung Ableitung der NF-Kleinsignal-Ersatzschaltung (KSE) Berechnung der NF-Kleinsignal-Parameter u, r e, r a Bestimmung des Frequenzganges und Berechnung der notwendigen Größe
Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α
Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher
Grundlagen der Elektrotechnik Teil 2
Grundlagen der Elektrotechnik Teil 2 Dipl.-Ing. Ulrich M. Menne [email protected] 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen
