Transistorschaltstufen
|
|
|
- Ingrid Gehrig
- vor 9 Jahren
- Abrufe
Transkript
1 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN Faustregeln: Transistorschaltstufen. Transistor sicher aufgesteuert bei minimaler High-Eingangspegel E(min) : Basisstrom,5 Wert gemäß Datenblatt/Kennlinie. Mit Speedup-Kondensator ggf. weniger (Versuch).. Basisspannung zum sicheren Aufsteuern (Kleinleistungstransistoren): wenigstens BEsat (typisch 0,7 V). 3. Transistor sicher gesperrt bei maximalem Low-Eingangspegel E(0max). Basisstrom praktisch Null. 4. Basisspannung zum sicheren Sperren (Kleinleistungstransistoren): typisch 0, bis -0,5 V. Schaltstufe mit Basisvorwiderstand Die einfachste Lösung. Wozu ist der Basisvorwiderstand gut? Er begrenzt den Basisstrom. Er begrenzt die Basis-Emitter-Spannung. Er verhindert, daß der Pegel des ansteuernden Signals auf die Basis-Emitter- Sättigungsspannung heruntergezogen wird. Basisvorwiderstand oder Direktanschluß? Die Basis kann unter folgenden Bedingungen direkt an den Ausgang der jeweiligen Treiberstufe (z. B. eines Logikschaltkreises) angeschlossen werden: Der Pegel im Aus-Zustand ist niedrig genug (z. B. < 0, V). Ggf. Anhebung des Massepegels (Ground Shift) beachten. m Ein-Zustand werden die Grenzwerte des Transistors nicht überschritten (maximaler Baisstrom, maximale Emitter-Basis-Spannung). Typischerweise vom nnenwiderstand der Quelle abhängig. Es hängen keine weiteren Verbraucher an der Quelle. Wenn die Basis direkt angeschlossen ist, zieht sie die Quelle (den High-Pegel) auf etwa 0,7.. V herunter. Hängen dann noch andere Einrichtungen dran, bekommen diese keinen richtigen High-Pegel mehr zu sehen.
2 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN Schaltstufe mit Spannungsteiler ( ) + E BE B 07, BE V ; also E( ) B; E() B B E A B BE A BE Q Wenn eingeschaltet (): E() + (B + Q() ) + E() B + Q() ; Q + E() B E() + B
3 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 3 Wenn ausgeschaltet (0): + Q(0) + Q(0) ; Q(0) Beides gleichgesetzt und nach aufgelöst: E() + B (E() ) + B B (E() ) (E() ) ( ) ( B ) Bedingungen für Lösung: ; E > (E() )> ( ) < E() Typische Praxiswerte ( 0,7 V; 0, V): ( 0) BE( 0) E() 07, V 0, V > 35, Die Dimensionierung wird kritisch, wenn zwischen und E() nicht genügend Abstand liegt (verbotener Bereich). Man kann dann keinen Spannungsteiler mehr bauen, der beide Anforderungen (für Low- und High-Pegel) erfüllt. m Fall des Falles ( zu nahe an ):
4 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 4 ( ) Schwellwertschaltung vorordnen, die bei E E 0 die Basisspannung absenkt (Z-Diode, Dioden in Flußrichtung o. ä.), Comparator einsetzen oder negative Hilfsspannung einführen. Berechnung von gemäß einer der obigen Formeln. Beispiel: E() 3,3 V B() ma 0,7 V 0,4 V 0, V Kontrolle: 0,7V 0, V 3,3V 0,7V < 0,4V 0,V (3,5 < 3; o.k.) E() + B ; ma 0,(3,3 0, 7) 0, 7 k 0,, 9, Ω 4 0 3,3V 0,7V,9k ma,9k + 0,7V 9, kω ;,9k 0,4V 0,V 0,V 9, kω Ansteuerung über Spannungsteiler an negativer Hilfsspannung
5 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 5 Alle Spannungen vorzeichengerecht eingeben. Wenn eingeschaltet (): Wenn ausgeschaltet (0): E() + (B + Q() ) + H E() B+ E() B + Q() ; H E() + Q() B H + Q(0) + H Q(0) ; Q(0) H H H Beides gleichgesetzt und nach aufgelöst: E() + B H H ( ) E() H + B H Bedingungen für Lösung: ( H)(E() ) + H B ( H)(E() ) ( H)( ) ( B ) ( H)( E() ) > ; E > ( BE( ) H)( E( 0) BE( 0) ) ( 0) BE( 0)
6 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 6 H H < E() nfolge der negativen Hilfsspannung H ist die Bedingung eher zu erfüllen, da der Nenner der linken Seite verhältnismäßig stärker zunimmt als der Zähler (vgl. das folgende Beispiel: statt 0,7 : 0, 3,5 5,7 : 4,8,8). Je größer der Betrag der Hilfsspannung H, desto mehr nähert sich die linke Seite dem Wert (, vernachlässigbar). Berechnung von gemäß einer der obigen Formeln. E() + B H ; H Beispiel: E V B 0,7 ma BE 0,7 V E0 0,8 V BE0-0, V H -5 V Kontrolle: 0, 7V+ 5V 0. V+ 5V < V 0, 7V 0, 8V+ 0, V (,8 <,3; o.k.) 0,7mA (-0,V + 5V)(V 0,7V) 0,7V 5V 770 0,8V + 0, V Ω V 07, V 770Ω 0,7mA 770Ω + 0,7V + 5 V 60 Ω ; 0,8V + 0,V 770Ω 60 Ω -0,V + 5V Eingangswiderstand des Transistors: BE BE β ; B BE Cmax B β Cmax
7 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 7 Der Kollektorkreis: A ist entweder der Arbeitswiderstand im eigentlichen Sinne oder die zu schaltende Last. AH, AL sind Ströme, die ggf. zu anderen Einrichtungen fließen oder von anderen Einrichtungen eingespeist werden (externe Lastströme). Arbeitswiderstand A : A Cmax Bmax ALmax ; A Bmin AHmax Hmin Kollektorstrom C (Kennwert zum Aussuchen des Transistors): C > ALmax+ Bmax A Schnelle Schaltstufen Anwendungsbeispiel: schnelle Pegelwandler Transistor nicht allzu sehr übersteuern. Speedup-Kondensator (ichtwert für Versuch): tpmin 0,7 C < t Pmin ; C < 07,. Basisspannung nicht zu hoch werden lassen (DTL). 3. Basisspannung klammern (Baker Clamp).
8 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 8 Klammerschaltung nach Baker. C E F BE E F Wenn F > F, dann BE < C. Somit kann der Transistor nicht in die Sättigung gelangen.
9 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 9 Ausgangseitigen Signalhub verringern. Ausgangsspannung klammern.. So belasten, daß Ausgangssspannung nicht allzu hoch wird (Direct Coupled Transistor Logic DCLT (z. B. Supercomputer CDC 6600)). Basisstrom ma. Ca. 0,5... 0,6 V über Basiswiderstand. Also rund ,8 V bei ma. Kollektorwiderstand also rund 4k7.
10 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 0 Transistoren mit eingebautem Basisspannungsteiler Beispiele: die sog. digitalen Transistoren von nfineon und die Bias esistor Transistors (BTs) von ON Semiconductor. Der Spannungsteiler, ist vorgegeben (s. Katalog/Datenblatt). Für welche Signalpegel ist er geeignet? Wenn eingeschaltet (): E() + (B + Q() ) + ; Q E() ( B+ ) + BE( ) B + BE( ) ( + ) Wenn ausgeschaltet (0): Q(0) + + ; Q(0) + BE( 0) BE( 0)( + ) Typische Werte: E() ma + 07, V ( + ) 0, V ( + )
11 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN Beispiele: E()min E (0)max k k,4 V 0,4 V k 0k,8 V 0, V k k 3,6 V 0,4 V k 0k 3 V 0,5 V k 47k 3 V 0, V 4k7 4k7 6, V 0,4 V 4k7 0k 5,8 V 0,3 V 4k7 47k 5,5 V 0, V 0k 0k V 0,4 V 0k 47k V 0,5 V k k 4 V 0,4 V k 47k 4 V 0,3 V 47k k 50 V 0,63 V 47k 47k 48V 0,4 V Weitere Typen haben keinen Spannungsteiler, sondern lediglich einen Basisvorwiderstand. ( ) + E BE B Beispiele ( BE 0,7 V, B ma) E()min E()min k,7 V k 3 V 0k V 47k 48 V
12 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN Gatterschaltungen mit Transistoren NAND: eihenschaltung von Transistoren. A E E Problem: Je mehr Transistoren in eihe, desto höher der ausgangsseitige Low-Pegel (n * CEsat ) NO: Parallelschaltung von Transistoren A E E Da die Emitter alle Transistoren mit Masse verbunden sind, hängt der ausgangsseitige Low- Pegel nicht von der Anzahl der Eingänge ab.
13 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 3 Begrenzer mit Transistorstufe: Wandelt x-beliebige Signalverläufe in mpulse. Aufgabe: elaistreiber für High Side Drive mit P-Kanal-FET Netzspannung V Steuertransformator: 0 % Spannungszunahme (egulation) Ausgangsspannung nach Gleichrichtung ist maximal Spitzenspannung. Annahme: V bis 35 V (50 V Netz +,5 V Spannungszunahme) *,4. Bei V mind. 0 V Abfall. Bei 35 V max. 0 V Abfall.
14 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 4 Strom: gemäß Gateladung. Datenblatt: F 960. Typische Logikpegel 4 V: min. typ. max. Low-Pegel 0,5 V,5 V Schwellspannung 6,0 V High-Pegel 5 V 35 V Dimensionierung von Schaltstufen So ansteuern, dass der Lastkreis richtig durchschaltet und nicht nur irgenwie Strom durchfließt, der die Last notfalls zum Ansprechen bringt. Beim Bipolartransistor und GBT: CEsat. Beim MOSFET: Minimaler DSon. Der Bipolartransistor muß genügend Basisstrom bekommen, der GBT und MOSFET genügend Gatespannung. Stufen mit Bipolartransistor dimensionieren für sicheres Schalten bei maximaler Last und geringster Stromverstärkung. Der Betriebsfall minimale Last und maximale Stromverstärkung ergibt dann eine starke Übersteuerung. Manchmal kann man damit leben. Sonst: Klammerung (damit die Übersteurng nicht vorkommt) oder Hilfsstromweg (damit beim Ausschalten die Ladungsträger aus der Basiszone abfließen können). Alternative: FET auch in der Vorstufe. Ansteuerung muß genügend hohen Pegel bringen.
15 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 5 Pegelwandlung Wandlung negativ > positiv Transistor in Basisschaltung Ersatzschaltung bei Low-Pegel Wandlung positiv > negativ Transistor in Basisschaltung Ersatzschaltung bei HighPegel
16 ANGEWANDTE ELEKTONK TANSSTOSCHALTSTFEN 6 Bidirektionale Wandlung zwischen verschiedenen positiven Signalpegeln
Transistorschaltungen
TANSISTOSCHALTNGEN 1 Transistorschaltungen 1. Der ipolartransistor als Schalter Einfache Transistorschaltstufen Die einfachste Schaltstufe ist ein Transistor in Emitterschaltung. Der Schaltbetrieb muß
Übungen Angewandte Elektronik Stand:
ANGEWANDTE ELEKTONK EBNGEN. Spannungsstabilisierung mit Zenerdioden. Transistorschaltstufen 3. Transistorverstärker 4. Konstantstromquellen 5. Leistungs-FETs 6. Operationsverstärker 7. Hinweise zur Klausurvorbereitung
Angewandte Elektronik AE
ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 21. 3. 2012 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 6 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 21. 3. 2012
Angewandte Elektronik AE
ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 25. 9. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 25. 9. 2015
Übungen Angewandte Elektronik Stand: 21 2. 2013
ANGEWANDTE ELEKTONK EBNGEN. Spannungsstabilisierung mit Zenerdioden. Transistorschaltstufen 3. Transistorverstärker 4. Konstantstromquellen 5. Leistungs-FETs 6. Operationsverstärker 7. Hinweise zur Klausurvorbereitung
Angewandte Elektronik AE
ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 20. 3. 2013 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 FH Dortmund FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 20. 3. 2013 Aufgaben und
1. Konstantstromquelle
ANGEWANDTE ELEKTONIK EECHNNGEN 1 1 1. Konstantstromquelle L L A S CE I L S A A I L L A S E(on) I L A A S A E(on) Der Laststrom I L hängt nur von S und A ab, nicht aber vom Lastwiderstand L. Wie groß darf
Stabilisierungsschaltung mit Längstransistor
Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung
Versuch 2 der Bipolartransistor
PRAKTIKUM ANALOGELEKTRONIK WS 2009/2010 VERSUCH 2 1 Versuch 2 der Bipolartransistor 1. Emitterschaltung Das Aufnehmen vollständiger Kennlinien wäre viel zu zeitaufwendig. Wir beschränken uns deshalb auf
Angewandte Elektronik AE
ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 20. 3. 2014 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 8 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 20. 3. 2014
Angewandte Elektronik AE
ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 26. 3. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 9 Angewandte Elektronik AE Klausur vom 26. 3. 2015 Aufgaben und Musterlösungen 1. Abb. 1 zeigt eine Operationsverstärkerschaltung
Versuch 3 Bipolar- und Feldeffekttransistoren
PRAKTIKUM ANALOGELEKTRONIK WS 2010/2011 VERSUCHSANLEITUNG 3 1 Versuch 3 Bipolar- und Feldeffekttransistoren 1. NAND und NOR mit Transistoren Bauen Sie die beiden Gatterschaltungen von Abbildung 1 nacheinander
Probeklausur Elektronik (B06)
Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:
Transistor als Analogverstärker: rker: die Emitterschaltung
Transistor als Analogverstärker: rker: die Emitterschaltung a.) Wahl der Versorgungsspannung b.) Arbeitspunkteinstellung, Wahl des Transistors c.) Temperaturabhängigkeit des Arbeitspunkts d.) Einfügen
Transistor BJT II. Roland Küng, 2011
Transistor BJT II Roland Küng, 2011 1 Bias Berechnung Näherung mit i B = 0 Arbeitspunkt: engl. Bias gilt für β >>100 oder R 1, R 2
7. Aufgabenblatt mit Lösungsvorschlag
+ - Grundlagen der echnertechnologie Sommersemester 200 Wolfgang Heenes. Aufgabenblatt mit Lösungsvorschlag 0.06.200 Schaltungen mit Bipolartransistoren Aufgabe : Analyse einer Schaltung mit Bipolartransistor
Die wichtigsten Eigenschaften von bipolaren Transistoren.
Elektronik-Kurs Die wichtigsten Eigenschaften von bipolaren Transistoren. Es gibt 2 Arten von bipolaren Transistoren: NPN-Transistoren PNP-Transistoren Diese Bezeichnung entspricht dem inneren Aufbau der
Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen
GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von
Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:
Stabilisierungsschaltung mit Längstransistor
Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: 18 V R 1 150 Ω Für die Z-Diode
Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor
Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor Oliver Neumann Sebastian Wilken 3. Mai 2006 Zusammenfassung In dieser Experimentalübung werden wir den Transistor als Spannungsverstärker für
Unterschrift: Hörsaal: Platz-Nr.:
FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:
A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.
Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage
Stabilisierungsschaltung mit Längstransistor
Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: = 18 V R 1 = 150 Ω Für die Z-Diode
Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung
Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet
Multivibrator-Grundschaltungen
Multivibrator-Grundschaltungen Multivibratoren sind Kippschaltungen, die man mit Transistoren, aber auch mit Operationsverstärkern bzw. Comparatoren aufbauen kann. Wir betrachten zunächst die elementaren
Übungsserie, Bipolartransistor 1
13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.
Transistor- und Operationsverstärkerschaltungen
Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.
6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)
6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise
Dotierter Halbleiter
FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter
Wintersemester 2012/13
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,
Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Reihenschaltung von Halbleiterdioden
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Reihenschaltung von Halbleiterdioden In integrierten
Alle drei Baugruppen gehören zu den Standardbaugruppen der Elektronik werden in der Schule häufig angewendet und eignen sich für den Einstieg ins Fach
Drei wichtige Baugruppen der Elektronik. Der Schmitt-Trigger Ein Schwellwertschalter 2. Das S Flipflop Ein Speicher 3. Der astabile Multivibrator Ein Generator Alle drei Baugruppen gehören zu den Standardbaugruppen
HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr.
HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum bistabiler Multivibrator Datum: WS/SS 201.. Gruppe: S Teilnehmer Name Matr.-Nr. 1 2 3 Testat R verwendete
Der Transistor als Schalter ein experimenteller Zugang VORANSICHT
24. Der Transistor als Schalter 1 von 14 Der Transistor als Schalter ein experimenteller Zugang Axel Donges, Isny im Allgäu Unser moderner Alltag ist heute ohne Transistoren nicht mehr denkbar. Doch wie
von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG
von Robert PAPOUSEK INHALTSVERZEICHNIS: 1.Anforderungen an Leistungsverstärker 2.Grundlagen 3.Leistungsstufen: 3.1 Parallelschalten von Transistoren 4. A- und B-Betrieb: 4.1 Eintaktverstärker 4.2 Gegentaktverstärker
Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden.
Transistoren David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden http://hobbyelektronik.de.tl/der-erste-transistor-der-welt.htm Gliederung Was ist ein Transistor Geschichte Bipolartransistor
Diplomprüfung Elektronik WS 2004/2005 Dienstag,
FH München FB 3 Maschinenbau Diplomprüfung Elektronik WS 4/5 Dienstag,..5 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: Unterschrift:
Versuch: A2 Transistorschaltungen
Versuch: A2 Transistorschaltungen Ziel dieses Versuches: Verstehen, wie Bipolartransistoren in Schaltern und Verstärkern eingesetzt werden Aufbau eines Brückengleichrichters Aufbau einer Spannungskonstanthaltung
Logikausgang Grundschaltungen in CMOS-Technik
Logikausgang Grundschaltungen in CMOS-Technik X Liers - PEG-Vorlesung WS00/0 - Institut für Informatik - FU Berlin 49 Logikausgang Grundschaltungen CS INV in CMOS-Technik (Tristate) Transistor leitet X
Schaltverhalten von Bipolartransistoren
Gruppe: 2 Team: 19 Fachhochschule Deggendorf Fachbereich Elektrotechnik PRAKTIKUM BAUELEMENTE Schaltverhalten von Bipolartransistoren VERSUCH 2 Versuchsdatum: 07.12.2005 Teilnehmer: Abgabedatum: Blattzahl
Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren
G. Kemnitz Institut für Informatik, Technische Universität Clausthal 19. November 2014 1/54 Elektronik I, Foliensatz 3 1.4 Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische
Labor. Dokumentation und Auswertung. Kaiblinger, Poppenberger, Sulzer, Zöhrer H Stromquellen. Note: Page 1/19. Übungsbetreuer Prof.
TGM Abteilung Elektronik und Technische Informatik Dokumentation und Auswertung Labor Jahrgang 3BHEL Übung Übungsbetreuer Prof. Melchart Übung am 07.03.2017 Erstellt am 11.03.2017 von Pascal Zöhrer Übungsteilnehmer
Der Transistor (Grundlagen)
Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt
4 20mA Technik Seite 1 von 13. Einleitung
4 20mA Technik Seite 1 von 13 Einleitung In der Industrie werden Sensoren und Auswerteschaltungen nicht immer am gleichen Ort verwendet. Der Sensor muss über längere Strecken sein Sensorsignal liefern,
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch
Institut für Informatik. Aufgaben zum Seminar Technische Informatik. Aufgabe Parallelschaltung von Halbleiterdioden
UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.3.1. - Parallelschaltung von Halbleiterdioden In integrierten
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch
Übungsserie, Operationsverstärker 1
1. April 1 Elektronik 1 Martin Weisenhorn Übungsserie, Operationsverstärker 1 Aufgabe 1. Komparator Die Bezeichnung Komparator steht für Vergleicher. Gegeben ist die Schaltung in Abb. 1a. Die u ref u ref
Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?
Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters
1. Diode und Transistor
1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge
Bipolartransistor- npn
Transistor gesteuertes Bauelement (transfer resistor) durch eine angelegte Spannung oder elektrischen Stromsteuerbarer elektrischer Widerstand zum Schalten oder Verstärken von elektrischen Signalen bipolar
Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren
G. Kemnitz Institut für Informatik, Technische Universität Clausthal 25. Dezember 2013 1/55 Elektronik I, Foliensatz 3 1.4 Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische
PROTOKOLL ZUM VERSUCH TRANSISTOR
PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker
Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:
Projekt: Einstellbares Netzteil mit Spannungsstabilisierung
Projekt: Einstellbares Netzteil mit Spannungsstabilisierung W. Kippels 14. Januar 2016 Inhaltsverzeichnis 1 Die Aufgabenstellung 2 2 Eine mögliche Lösung 4 2.1 Die maximalen Spannung am Kondensator:.................
AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand
Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe
Abschlussprüfung Schaltungstechnik 2
Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer
Elektronik 1, Foliensatz 3: Schaltungen mit Bipolartransistoren
G. Kemnitz Institut für Informatik, TU-Clausthal (E1F3.pdf) 16. November 2017 1/55 Elektronik 1, Foliensatz 3: Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, TU-Clausthal (E1F3.pdf)
Der Bipolar-Transistor
Universität Kassel F 16: Elektrotechnik / Informatik FG FSG: Fahrzeugsysteme und Grundlagen der Elektrotechnik Wilhelmshöher Allee 73 D-34121 Kassel Prinzip des Transistors Seite: 2 Aufbau des ipolar-transistors,
Transistor BJT I. Roland Küng, 2009
Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert
Praktikum Analog- und Digitaltechnik. Versuch A2 Transistorschaltung
Praktikum Analog- und Digitaltechnik Versuch A2 Transistorschaltung Inhalt dieses Versuches: Verständnis von bipolar Transistoren als Schalter oder Verstärker Aufbau eines Brückengleichrichters Aufbau
Grundlagen der Elektronik Übungen für die Werkstätte
Grundlagen der Elektronik Übungen für die Werkstätte Zusammengestellt von Johannes Stehlik Grundlagen der Elektronik Übung 1 Einweggleichrichtung: 1k Schaltplan: 230V 50Hz ~ ~ U m - Erstellt von Johannes
Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2013 Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Matr.-Nr.: Name,
Aufgabe 1: Transistor, Diode (ca. 15 Punkte)
Studienschwerpunkt Mechatronik/Vertiefungsrichtung Fahrzeugmechatronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2018/19 Angewandte
Laborübung, NPN-Transistor Kennlinien
15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später
3. Schaltungsentwicklung - Beispiel Taschenlichtorgel
3. - Beispiel Taschenlichtorgel Anforderungen: Drei farbige LEDs, Mikrofoneingang, Empfindlichkeitseinstellung, kleines Format, geringe Betriebsspannung und Leistung, geringster Material- und Arbeitsaufwand.
(Operationsverstärker - Grundschaltung)
Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine
U L. Energie kt ist groß gegenüber der Aktivierungs-
Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen
Humboldt-Universität zu Berlin Institut für Physik Versuch 7 Kopplung analoger und digitaler Schaltungen 1. Elektronische Schalter
Humboldt-Universität zu Berlin Institut für Physik Versuch 7 Kopplung analoger und digitaler Schaltungen 1. Elektronische Schalter Feldeffekt-Transistoren (FET) werden unter Nutzung ihres spannungssteuerbaren
Ausarbeitung. Referat
Ausarbeitung Referat über Datenblätter Von Marco Hemmerlein 1 Inhaltsverzeichnis: 1. Wozu Datenblätter... 3 2. Bauteilzusammenfassung... 3 3. Lesen und Verstehen von Datenblättern... 4 4. Fazit... 7 2
ELEKTRONIK 2 SCHALTUNGSTECHNIK L9-1/19 Prof. Dr.-Ing. Johann Siegl. L9 Arbeitspunkteinstellung von Transistoren
1 von 19 15.03.2008 11:41 ELEKTRONIK 2 SCHALTUNGSTECHNIK L9-1/19 Damit in einer Anwendung ein Transistor bestimmte, geforderte Eigenschaften aufweist, muss der Bipolartransistor oder Feldeffekttransistor
Kurseinheit 7. Spaß an Technik: Elektronik & Mikrorechner. 1. Elektronik Der Sperrschicht-Transistor. 3. Software
Spaß an Technik: Elektronik & Mikrorechner Kurseinheit 7 13.09.2012 1. Elektronik Der Sperrschicht-Transistor 2. Mikrorechnertechnik Der PWM-Ausgang 3. Software MotorEinAus: Motor schalten MotorPWM: Motor
ELEKTRONIK 2 SCHALTUNGSTECHNIK L11-1/8 Prof. Dr.-Ing. Johann Siegl. L11 Elektronische Schalter. L11 Elektronische Schalter
ELEKTRONIK 2 SCHALTUNGSTECHNIK L11-1/8 Nichtlineare Halbleiterbauelemente eignen sich dazu Spannungen und Ströme zu schalten. In Abhängigkeit der Steuergröße lassen sich Spannungs- und Stromgrößen in einem
Vorbereitung zum Versuch Transistorschaltungen
Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen
0Elementare Transistorschaltungen
Teilanfang E1 0Elementare Transistorschaltungen VERSUCH Praktikanten: Rainer Kunz Rolf Paspirgilis Links Versuch E1 Elementare Transistorschaltungen Q In diesem Protokoll: O»Einleitung«auf Seite 3 O»Transistoren«auf
RC - Breitbandverstärker
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5
Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5 Prof. Baitinger / Lammert Besrechung: 15.01.2001 b) Die Diode wird in der Schaltung nach Abb. 1-2 betrieben. Berechnen Sie jeweils die
Versuch 3 aktive Bauelemente (2)
PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 3 1 Versuch 3 aktive Bauelemente (2) 1. Das statische Verhalten des Feldeffekttransistors Wir untersuchen den FET als Leistungsschalter in Source- und Drainschaltung
Grundlagen der Digitalen Elektronik
Kapitel 1 Grundlagen der Digitalen Elektronik 1.1 Logische Grundverknüpfungen bei historischer Logik Am Beispiel einiger logischer Grundschaltungen lassen sich die logischen Grundverknüpfungen einfach
NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = Hz).
25.10.2014_Nachlese_DB6UV Wir haben diesmal einen NF-Verstärker (Niederfrequenz-Verstärker) gebaut. NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = 18000
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA
TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen
Fragenkatalog zur Übung Halbleiterschaltungstechnik
Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,
Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren
G. Kemnitz Institut für Informatik, TU-Clausthal (E1-F3) 25. November 2015 1/54 Elektronik I, Foliensatz 3 1.4 Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, TU-Clausthal (E1-F3)
Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr
// // Konstantstromquelle mit einem pnp-transistor - Berechnung Mit dieser einfachen Schaltung kann am Kollektor des Transistors ein konstanter Strom I gewonnen werden. Das Prinzip ist sehr einfach: An
Transistorschaltungen
Transistorschaltungen V DD in Volt 3 2 V Ein - UTh,P V Ein - UTh,N 1-1 0 1 2 3 U Th,P U Th,N V Ein in Volt a) Schaltung b) Übertragungsfunktion Bipolar Transistorschaltung im System I Ein C Ein? V CC I
Laborversuch Feldeffekttransistoren Mess- und Sensortechnik
Feldeffekttransistoren Ausgehend vom Ersatzschaltbild werden die wichtigsten statischen SPICE-Parameter bestimmt. Es folgt eine Einführung in die analoge Schaltungstechnik mit JFET's. Auf die Theorie wie
Transistor und einer Z-Diode
Berechnung einer Spannungs-Stabilisierung mit einem Transistor und einer Z-Diode Mit dieser einfachen Standard-Schaltung kann man eine unstabilisierte, schwankende Eingangsspannung in eine konstante Ausgangsspannung
Klausur: TI I Grundlagen der Technischen Informatik
Klausur: TI I Grundlagen der Technischen Informatik Wintersemester 2007/2008 1.Bipolarer Transistor Die Verstärkerschaltung soll mit dem im Kennlinienfeld dargestellten Arbeitspunkt konfiguriert werden.
1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12
Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten
Diplomprüfung SS 2010
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle
Inhalt. Begriffserklärung. Aufbau. Funktionsprinzip. Kennlinien. Grundschaltungen. Praxiswissen
Von Thomas Jakobi Inhalt Begriffserklärung Aufbau Funktionsprinzip Kennlinien Grundschaltungen Praxiswissen 2 Was sind Transistoren? 3 Begriffserklärung Name engl. transfer resistor veränderbarer Widerstand
