Informatik 1 Programmieren in MATLAB Georg Richter
|
|
|
- Nadja Vogel
- vor 9 Jahren
- Abrufe
Transkript
1 Informatik Programmieren in MATLAB Georg Richter Aufgabe 8: Bierschaumzerfall (zum Auf- und Erwärmen) Für manch einen (selbstverständlich nicht für jeden) gilt an heißen Tagen eine maßvoll gefüllte Hopfenkaltschale als ein nicht zu unterschätzender Beitrag zur Steigerung der Lebensqualität. Der langsame Zerfallsprozess der einst stattlichen Schaumkrone dieses gesunden Getränks kennzeichnet nicht nur fortschreitende Konsumbereitschaft, sondern lässt sich sogar (im großen und ganzen) berechnen, da er mit dem radioaktiven Zerfall eine interessante Gemeinsamkeit hat: beide laufen nach derselben Gesetzmäßigkeit ab (womit die Gemeinsamkeiten aber auch schon erschöpft sein dürften). Das den Zerfallsprozess beschreibende Gesetz hat folgende Gestalt: ln t _ ende = t _ halb ( h _ ende) ln( ln( 2) ) h _ 0 ln ist dabei der natürliche Logarithmus, d.h. der Logarithmus zur Basis e. Zur Erinnerung: Die benötigte Logarithmus-Funktion heißt in MATLAB log. Weiterhin ist t_halb: Halbwertszeit, d.h. die Zeit, in der die Hälfte der Schaumkrone zerfallen ist [in s] h_0: die Anfangshöhe der Krone [in cm] h_ende: die Höhe, wenn nur noch eine Lage Bläschen übrig ist (also kurz vor dem endgültigen Aus): Meßwert 0,002 m = 0,2cm t_ende: die Zeit des Zerfalls vom Beginn mit Schaumkrone der Höhe h_0 bis Höhe h_ende In selbstlosen Freilandversuchen wurden im Dienste der Wissenschaft in Abhängigkeit von der Biersorte für sparsame 0,4-Liter-Gläser folgende Halbwertszeiten empirisch ermittelt: Weizenbier: 60 s Pils 75 s Dunkelbier 90 s Weitere Sorten konnten leider nicht berücksichtigt werden.
2 Schreiben Sie ein Programm, daß in Abhängigkeit von der gewählten Biersorte und Anfangshöhe der Schaumkrone als Ergebnis die Zerfallszeit t_ende ausgibt. Programmorganisation: Bevor die eigentliche Berechnung stattfindet, ist viel Verwaltungsarbeit zu erledigen, um das Programm einigermaßen komfortabel zu gestalten. Zunächst wird der Benutzer gefragt, welche Biersorte er wünscht. Als Auswahl stehen die drei Sorten zur Verfügung:. Weizen 2. Pils 3. Dunkel 0: er mag gar kein Bier das Programm versucht s dann gar nicht erst weiter und bricht ab. Sichern Sie bei der Auswahl so ab, dass erlaubte Eingabewerte wirklich nur die Zahlen 0,, 2 oder 3 sind. Bei falscher Eingabe also um Wiederholung bitten oder bei Eingabe 0 beenden. Sofern die Sorte gewählt wurde (diese also insbesondere von Null verschieden ist), erkundigt sich das Programm als nächstes nach der Anfangshöhe der Schaumkrone in Zentimetern. Dann ermitteln Sie (endlich) in Abhängigkeit der gewählten Sorte die dazugehörige Halbwertszeit und berechnen die Zerfallszeit. Diese geben Sie dann mit einem netten Antwortsatz aus. Zu guter Letzt fragt das Programm den Anwender auf erneuten Durchlauf. Wenn gewünscht, startet es erneut, wenn nein, wird es wie im Fall der Auswahl Sorte 0 beendet. Variation zur Aufgabenstellung (optional): Wenn in der Vorlesung bereits Function-Files besprochen worden sein sollten, lagern Sie die (der Übung wegen) die eigentliche Berechnung der Zerfallszeit in eine Funktion aus: function t = zerfall (sorte, hoehe) 2
3 Aufgabe 9 Approximation eines Widerstandes. Es ist ein MATLAB-Programm zu entwickeln, daß folgendes Problem löst: Ein beliebiger Widerstand im Bereich von 0.5 Ohm bis Megaohm soll durch folgende Schaltung aus 3 Normwiderständen (R, R, R ) hergestellt werden: 2 3 Es stehen folgende Normwiderstände der Reihe E2 zur Verfügung:.2,.5,.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 0 Ohm, usw. bis MOhm. Ihr Programm fragt den Eingeber nach dem Wunschwiderstand (in Ohm), der durch die obige Schaltung möglichst genau mittels der Normwiderstände ermittelt werden soll. Danach ermittelt es die optimale Zusammensetzung der drei Normwiderstände; optimal bedeutet, daß der Gesamtwiderstand der drei Normwiderstände möglichst dicht am Wunschwiderstand liegt. Möglichst dicht kann bedeuten, daß er etwas größer als der Wunschwiderstand ist oder etwas kleiner jedoch der Abstand dazu eben minimal ist. Diese optimale Kombination gibt das Programm aus mit der zusätzlichen Information, wie groß der Gesamtwiderstand der drei bestimmten Normwiderstände ist und wie viel die prozentuale Abweichung zum Wunschwiderstand beträgt (also Verhältnis ermittelter Gesamtwiderstand zu Wunschwiderstand). Dann fragt anschließend, ob noch ein weiterer Durchlauf gewünscht wird. Wenn nein, wird es beendet. Eine Primitivlösung ist, einfach drei Schleifen zu schreiben, die alle möglichen Kombinationen durchgeht. Diese sollen Sie hier realisieren (und damit Schleifen üben). Wenn Ihnen die langsame Lösung zu langsam ist es gibt eine Variante. Siehe nächste Aufgabe. 3
4 Aufgabe 0 (for freaks only) noch mal die Schaltung aus Aufgabe 9 Sie werden sicherlich bei Lösen der Aufgabe 9 bemerkt haben, dass die Durchlaufzeit eines Programmablaufs recht lange dauert. Daher ist eine effizientere Lösung sicher angebracht. Diese können Sie jetzt implementieren. Eine solche Lösung besteht darin, daß man das Problem zunächst auf ein analoges Teilproblem zerlegt, dieses löst und mit der ermittelten Lösung des Teilproblems zum Ausgangsproblem zurückkehrt. Eingegeben ist also der Wunschwiderstand R W ; man gibt dann einen geeigneten Wert für R vor und betrachtet R 2 und R 3 als einen kompletten Widerstand R23, d.h. im Grunde die Schaltung: : Wenn R vorgegeben ist, läßt sich mittels + 23 R R23 R W = der (exakte) Gesamtwiderstand R bestimmen. Danach betrachtet man statt des Ausgangsproblems die Teilschaltung: Welche Kombination von R 2 und R 3 ist die optimale, um möglichst dicht an R23 heranzukommen? Dies ist vergleichsweise einfach, da in Reihe geschaltete Widerstände sich addieren. Hat man eine solche Kombination von R und R 2 3 gefunden, berechnet man den Gesamtwiderstand und vergleicht diesen mit dem ursprünglichen Wunschwiderstand R W. Dann betrachtet man den nächsten Normwiderstand für R und wiederholt das Verfahren. R durchläuft also alle 4
5 Normwiderstände von einem geeigneten Startwert bis zum Maximalwert MOhm (was übrigens hier eine willkürliche Festlegung ist. Es gibt größere Normwiderstände. Wer Lust hat, kann gerne die Liste erweitern...). Als geeigneten Startwert für R kann man den Wunschwiderstand Rw wählen. Hier ist es empfehlenswert, vor der eigentlichen Programmierarbeit ein Struktogramm zu erstellen man geht sonst sehr schnell in die Irre. 5
Praktikum Ingenieurinformatik. Termin 2a. Schleifen und Verzweigungen in C und mit MATLAB
Praktikum Ingenieurinformatik Termin 2a Schleifen und Verzweigungen in C und mit MATLAB 1 1. Fibonacci-Zahlen in C 2. Fibonacci-Zahlen mit MATLAB 3. Zahlendreieck in C 4. Zahlendreieck mit MATLAB 5. Klausuraufgabe
Übung zu Einführung in die Informatik # 11
Übung zu Einführung in die Informatik # 11 Tobias Schill [email protected] 22. Januar 2016 Aktualisiert am 22. Januar 2016 um 11:36 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* Aufgabe
4. Gemischte Schaltungen
4. Einleitung Unter einer gemischten Schaltung, auch Gruppenschaltung genannt, versteht man eine Schaltung in der sowohl die eihen- als auch die Parallelschaltung vorkommt. 4.2 Die Maschen- und Knotenpunktregel
WiMa-Praktikum 1. Woche 8
WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Abgabe: (vor 12 Uhr)
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 11/12 Einführung in die Informatik I Übungsblatt 2 Prof. Dr. Helmut Seidl, M. Schwarz, A. Herz,
Parallele und funktionale Programmierung Wintersemester 2016/ Übung Abgabe bis , 16:00 Uhr
4. Übung Abgabe bis 25.11.2016, 16:00 Uhr Aufgabe 4.1: Verklemmungsbedingungen a) Welche drei Bedingungen müssen gelten, damit es zu einer Verklemmung in einem parallelen System kommen kann? b) Nach welcher
Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich), Phys. Technik / Bio.Med. Technik. EDV - Praktikum (4)
Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich), Phys. Technik / Bio.Med. Technik i:\lab_doc\hillen\edv_prak\pas_pr04.doc EDV - Praktikum (4) Thema: Anwendung von Schleifen Verwendung von Auswahlanweisungen
Kontrollstrukturen. Verzweigungen Einfache Mehrfache Wiederholungen Eine Sequenz durchlaufen Wiederhole bis Solange. Tue
Kontrollstrukturen Verzweigungen Einfache Mehrfache Wiederholungen Eine Sequenz durchlaufen Wiederhole bis Solange. Tue Einfache Verzweigung Eine Verzweigung erlaubt das bedingte Ausführen bestimmter Programm-Teile.
DHBW Karlsruhe, Angewandte Informatik Programmieren in JAVA https://www.iai.kit.edu/~javavorlesung W. Geiger, T. Schlachter, C. Schmitt, W.
Schaltjahr Klasse: LeapYear Schreiben Sie ein Programm LeapYear, das eine Jahreszahl von der Konsole einliest und dann bestimmt, ob es sich bei diesem Jahr um ein Schaltjahr handelt! Das Ergebnis soll
Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration
Praktikum Ingenieurinformatik Termin 4 Funktionen, numerische Integration 1 Praktikum Ingenieurinformatik Termin 4 1. Funktionen. Numerische Integration, Trapezverfahren 1.1. Funktionen Eine Funktion ist
Methode der kleinsten Quadrate
1. Phase: Methode der kleinsten Quadrate Einführung Im Vortrag über das CT-Verfahren hat Herr Köckler schon auf die Methode der kleinsten Quadrate hingewiesen. Diese Lösungsmethode, welche bei überbestimmten
Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr.
Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 23 Bergische Universität Wuppertal Autor: Prof. Dr. Roland Pulch Aufgabe: Konstruiere Zufallszahlen aus der Menge {,, 2, 3, 4, 5, 6, 7,
Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände
Fachhochschule für Technik und Wirtschaft Berlin Elektrische Grundlagen der Informationstechnik Laborprotokoll: Nichtlineare Widerstände Mario Apitz, Christian Kötz 2. Januar 21 Inhaltsverzeichnis 1 Vorbeitung...
Grundlagen der Theoretischen Informatik: Übung 10
Grundlagen der Theoretischen Informatik: Übung 10 Joachim Selke Fachgebiet Theoretische Informatik Universität Hannover 20. Januar 2005 Turing-Maschinen als Rechenmaschinen gegeben sei eine Funktion f
Ingenieurinformatik II Numerik für Ingenieure Teil 2
Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel
Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2
Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie
Struktogramme. (6.) Ermitteln Sie den Wert von a und b aus dem Struktogramm: Struktogramme S. 1/3
Struktogramme (1.) Erstellen Sie das Struktogramm für folgende logische Anweisungen: Variable x = 2 Variable y = 6 Variable z = y x Variable y = 4 Variable z = z + y Ausgabe z Welcher Wert wird ausgegeben?
Struktogramme II. Struktogramme S. 1/5
Struktogramme II (1.) Erstellen Sie ein Struktogramm für die Berechnung des Durchschnittsverbrauchs auf 100 km eines motorisierten Fahrzeugs mit Hilfe eines Programms. Dabei sollen die notwendigen Daten
Wissenschaftliches Rechnen
Institut für Numerische und Angewandte Mathematik 11.04.2012 FB Mathematik und Informatik der Universität Münster Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide Übung zur Vorlesung
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 5 Besprechung: 20. 24.11.2017 (KW 47) Vorbereitende
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.
Übungen mit dem Applet Zentraler Grenzwertsatz
Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3
2. Hausübung Algorithmen und Datenstrukturen
Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Elektrotechnik Protokoll - Nichtlineare Widerstände
Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
Daraus ergibt sich: Eine Steigerung der Lokal-Magnitude um 1 entspricht einer Verzehnfachung des Ausschlags (denn 10 + M
Erdbeben Außermathematische Anwendungen im Mathematikunterricht WS 201/15 Franz Embacher, Universität Wien Entstehung von Erdbeben Wird in der Vorlesung besprochen Das Magnituden-System Das bekannteste
KISSsys Anwendung: Biegekritische Drehzahlen, Kennlinienerstellung
KISSsoft AG Frauwis 1 CH - 8634 Hombrechtikon Telefon: +41 55 264 20 30 Fax: +41 55 264 20 33 Email: [email protected] KISSsys Anwendung: Berechnungssoftware für den Maschinenbau Automatische Erstellung
Das Problem des Handlungsreisenden
Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme
Auf- und Entladung eines Kondensators
Klasse 12 Physik Praktikum 10.12.2005 Auf- und Entladung eines Kondensators 1. Aufladen eines Kondensators Versuchsdurchführung: Wir bauten die Schaltung auf einem Brett nach folgender Skizze auf: Wir
Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen
Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen [email protected] www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches
Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23
Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 3 3.1 Gegeben sei die Anfangswertaufgabe (AWA) Zeigen Sie, dass die Funktion y (x) = x y(x) mit y(0) = 1 die einzige Lösung dieser AWA
5. Anwendungsaufgaben
5. Anwendungsaufgaben 5.1 Dose Titel V2 5-1 Dose 2 Version Mai 2011 Themenbereich Themen Rolle des CAS Methoden Hinweise Quelle Zeitlicher Rahmen Anwendungsaufgaben zur Differenzialrechnung Optimierung
a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug
Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)
Kontrollstrukturen und Logik
Programmieren mit Java Modul 2 Kontrollstrukturen und Logik Selbstständiger Teil Inhaltsverzeichnis 1 Notendurchschnitt 3 1.1 Aufgabenstellung............................... 3 1.2 Programmanforderungen...........................
Strukturierte Programmentwicklung
Strukturierte Programmentwicklung mit C Ok, ich will es rich:g lernen... Wie gehst Du beim Programmieren vor? Einführung in Programmierung Zu aller erst überlegst Du Dir: Um was geht es eigentlich? Welche
Parallelschaltung von Widerständen
Parallelschaltung von Widerständen Wenn Widerstände parallel geschaltet sind, läßt sich der gesamte Widerstand bekanntlich in allen Fällen nach folgender Formel berechnen, ganz gleich wieviel es sind und
MATLAB-Tutorium WS18 Nathalie Marion Frieß
MATLAB-Tutorium WS18 Nathalie Marion Frieß [email protected] Zugang UNI-IT Arbeitsplätzen lokal vorinstalliert Von zu Hause: Zugriff über Terminalserver Installation des Citrix Receiver Clients:
Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.
1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen
Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm
Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung
Programmieren in MATLAB Mehr als nur ein Taschenrechner
Computational Physics 1, Seminar 02 Seite 1 Programmieren in MATLAB Mehr als nur ein Taschenrechner 1) Definition eigener Funktionen Anlegen eines neuen m-files im m-file-editor mit folgem Beispielinhalt:
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal
Vom Leichtesten zum Schwersten Sortieralgorithmen
Aktivität 7 Vom Leichtesten zum Schwersten Sortieralgorithmen Zusammenfassung Häufig verwendet man Computer dazu Listen von Elementen in eine bestimmte Ordnung zu bringen. So kann man beispielsweise Namen
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
Analoge Schnittstellen
Universität Koblenz Landau Name:..... Institut für Physik Vorname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... Analoge Schnittstellen Versuch Nr. 8 Vorkenntnisse: Komponenten eines Mikrocontrollersystems,
Berechnen Sie die Körpergröße eines Mannes, dessen Oberschenkelknochen eine Länge von 50 cm aufweist!
Aufgabe 1 Archäologie In der Archäologie gibt es eine empirische Formel, um von der Länge eines entdeckten Oberschenkelknochens auf die Körpergröße der zugehörigen Person schließen zu können. Für Männer
4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o
*) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser
Einfache Bedingte Ausführung
Kontrollstrukturen Bisher Programme mit Funktionen als einfache Folge von Befehlen Ablauf von Programmen darüber hinaus steuerbar über Bedingte Ausführung: Ausführung von Programmteilen (Befehlen oder
6 Schaltwerke und endliche Automaten
6 Schaltwerke und endliche Automaten 6.1 Entwicklungsstufen 143 In diesem Abschnitt wird gezeigt, wie das Blockschaltbild aus 1.4 realisiert werden kann. Mithilfe der entwickelten Speicherbausteine und
Zentralabitur 2007 Physik Schülermaterial Aufgabe II LK Bearbeitungszeit: 300 min
Thema: Abklingprozesse Aufgabenstellung In den folgenden Aufgaben werden anhand des radioaktiven Zerfalls und der gedämpften elektromagnetischen Schwingung zwei Abklingprozesse betrachtet. Außerdem werden
a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!
1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.
10 Zeit in Milliarden Jahren
a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10
Aufnahmeprüfung 2014 LÖSUNGEN Mathematik Serie 5 (60 Min.)
Aufnahmeprüfung 014 LÖSUNGEN Mathematik Serie 5 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!
Arbeiten mit Funktionen
Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y
Zeitreihenanalyse Das Holt-Winters-Verfahren
Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende
Übungsklausur Lineare Algebra
Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe
Bernd-Blindow-Schulen Friedrichshafen / IKA 9/ Klausur Programmiertechnik-Praxis (1. Sem.)
Bernd-Blindow-Schulen Friedrichshafen / IKA 9/12 2. Klausur Programmiertechnik-Praxis (1. Sem.) 8.2.2013 Vorname: Punkte / Note: / Nachname: USB-Stick: Hilfsmittel: PC bzw. Laptop der Schule ohne Netzwerkverbindung,
3.3 Absenkungsverlauf
3.3 Absenkungsverlauf 3.3.1 Aufgabe 3.3.1.1 Verzögerungsfunktion Der Absenkungsverlauf des Grundwassers auf Grund einer Entnahme aus einem Brunnen (z.b. durch einen so genannten Pumpversuch) kann in erster
Grundlegende Programmstrukturen sind Sequenzen, Schleifen und Entscheidungen.
Grundlegende Programmstrukturen Seite 1 von 14 Grundlegende Programmstrukturen sind Sequenzen, Schleifen und Entscheidungen. Sequenzen Eine Sequenz ist eine Folge von en (sblock) ohne Verzweigungen. Der
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
5. Elementare Befehle und Struktogramme
5. Elementare Befehle und Struktogramme Programmablauf Beschreibung des Programmablaufs mittel grafischer Symbole Beispiel : Flussdiagramme ja nein Besser : Struktogramme Dr. Norbert Spangler / Grundlagen
Primzahlen und Programmieren
Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und
Übungsserie, Operationsverstärker 3 Verstärkerschaltungen
Elektronik 1 Martin Weisenhorn 1. April 219 Übungsserie, Operationsverstärker 3 Verstärkerschaltungen Aufgabe 1. Dimensionierung eines Subtrahierers Ein Subtrahierer soll die Differenzverstärung V D =
Wiederholungen Wachstumsfunktionen IGS List
Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
Hochschule München, FK 03 FA WS 2010/11. Ingenieurinformatik
Hochschule München, FK 03 FA WS 2010/11 Ingenieurinformatik Zulassung geprüft vom Aufgabensteller: Teil 1/Aufgabe 1: 30 Minuten ohne Unterlagen, Teil 2/Aufgaben 2-4: 60 Minuten, beliebige eigene Unterlagen
1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben
1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach
Imperatives Problemlösen in Java
Hinweise Der Kurs Informatik Fach 12 setzt Elemente des Problemlösens in der Programmiersprache Java aus der Klasse 10 voraus. Zum Wiederholen und Angleichen der Voraussetzungen mit denen Ihren Mitschüler
Ziele sind das Arbeiten mit Funktionen (Modularisierung, Parameterübergabe), sowie - Reihentyp (Array)
Ziele sind das Arbeiten mit Funktionen (Modularisierung, Parameterübergabe), sowie - Aufgabe 3: Diese Aufgabe baut auf der 2. Aufgabe auf und erweitert diese. Die Funktionalität der 2. Aufgabe wird also
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2/212 2.9. - 3.9.2 17.1. - 21.1.2 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 3 aus "Abenteuer Informatik" von Jens Gallenbacher
TGI-Übung Dirk Achenbach
TGI-Übung 7 06.02.2014 Dirk Achenbach INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Agenda
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Tutoriumslösung - Übung (Abgabe 9.04.05) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität):
3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen
3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt
int i=1; //Integerzahl i anlegen und mit 1 initialisieren float wert; //Floatzahl deklarieren scanf( %f,&wert); //Wert über Tastatur eingeben
Datenfelder (Array) Seite 1 von 7 Bei den bisherigen Programmen wurde für jede verwendete Variable (oder für jedes Objekt) ein eigener Typ und Name vergeben. Die Initialisierung, d.h. die Belegung mit
Übung 04 Mehrkörper Keplerproblem
Übung 04 Mehrkörper Keplerproblem 1 1 Lösung 1.1 Skizzieren des Algorithmus Aufgabe 1 1. Erstellen Sie skizzenhaft eine Möglichkeit der Berechnung aller Kräfte einer beliebigen Anzahl von Himmelskörpern.
Übungen mit dem Applet Wahrscheinlichkeitsnetz
Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung
2. Übung: Berechnung der Ströme und Spannungen in linearen Zweipolnetzwerken
2. Übung: Berechnung der Ströme und Spannungen in linearen netzwerken Prof. G. Kemnitz, Dr. C. Giesemann, TU Clausthal, Institut für Informatik 22. Oktober 2013 2.1 Vorbereitung im Selbststudium Gegeben
1. Die rekursive Datenstruktur Liste
1. Die rekursive Datenstruktur Liste 1.3 Rekursive Funktionen Ideen zur Bestimmung der Länge einer Liste: 1. Verwalte ein globales Attribut int laenge. Fügt man ein Element zur Liste oder löscht es, wird
Schaltungen mit mehreren Widerständen
Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und
4. Funktionen und Relationen
Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27
Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären
Aufgabe 1 Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären Rationale Zahlen sind positive Bruchzahlen Q, ihre Gegenzahlen und die Null. Also alle Zahlen, die als Quotient zweier ganzer Zahlen
