Genetische Algorithmen von der Evolution lernen
|
|
|
- Richard Flater
- vor 9 Jahren
- Abrufe
Transkript
1 Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998
2 Ansatz Bisher: Problemlösung durch Anwendung von Regeln manuell definierte (Expertensysteme) gelernte (Neuronale Netze) Evolution: Eigenschaften einer Population passen sich an Umgebungsbedingungen an Übertragung: Menge von Lösungskandidaten passen sich an Problem an Wie? Kreuzung + Mutation (zufällig!) Anfang: evolutionäre Algorithmen evolutionäre Algorithmen komplexe Optimierungsprobleme viele Parameter analytisch nicht möglich Wegminimierung Bohren von Leiterplatten physikalische Probleme Minimierung komplizierter Funktionen häufig Maximierung, Rückführung auf Minimierung Handlungsreisender (Labyrinth) --> Logistik Energieminimierung (Molecular modelling) Strömungswiderstand
3 Vorgehen bei evolutionärer Optimierung Ziel: Minimierung einer Funktion f(x1,x2,...,xn) Eine Population von Startwerten (z.b. 100) wird zufällig gewählt. Diese werden zufällig geändert (Mutation). Wird das Ergebnis besser, wird dieser Kandidat behalten, ansonsten ein neuer gesucht. Funktioniert gut bei klassicher Optimierung. Problem: lokale Minima Lösung: Größe der Änderungen wird zufällig in einem zunächst großen, später immer kleineren Bereich durchgeführt, verschiedene Verfahren, etwa Simulated Annealing aus [Negnevitsky], S. 242 genetische Algorithmen: Darstellung des Problems als Chromosomen (Bitstring) fester Länge Auswahl einer fitness function f Ausgangspopulation erzeugen Neue Population durch Kreuzung und Mutation erzeugen (Auswahl durch fitness function) aus [Negnevitsky], S. 221
4 Beispiel gesucht wird das Maximum der Funktion (15x-x*x), 0<x<15 Darstellung als Chromosomen aus [Negnevitsky], S. 222/223 Ausgangspopulation, N=6, fitness = Wert der Fkt. Fitness Ratio ist das Verhältnis der Fitness des Kandidaten zur Summe der Fitness aller Auswahl der Chromosomen nach Fitness Ratio nach der Roulette Methode (Goldberg, 1989) aus [Negnevitsky], S. 222/223
5 Realisierung von Kreuzung und Mutation aus [Negnevitsky], S. 225 komplexere Funktionen a) Ausgangspopulation b) erste Generation c) Ergebnis d) richtiges Ergebnis aus [Negnevitsky], S. 227 Optimierungsalgorithmen (nicht nur genetische) bleiben leicht in lokalen Minima hängen, da der Weg zum globalen Minimum zunächst eine Verschlechterung darstellt. Abhilfe: Größere Sprünge (mehr Mutationen)
6 Bei niedriger Mutationsrate (obere Abbildung) wird lokales Maximum gefunden, höhere Mutationsrate liefert das globale Maximum Problem: Woher weiss man, dass man das echte Optimum gefunden hat? Gar nicht! Abhilfe: Test mit verschiedenen Mutationsraten. Wenn jeweils das gleiche Ergebnis erzielt wird, vermutet man, dass die Lösung optimal ist. aus [Negnevitsky], S. 228 Beispiel Planung von Wartungsarbeiten an Kraftwerken Warum? Planung ist komplex (NP-vollständig), Optimierung mit Nebenbedingungen (Resourcen, hier etwa Minimalleistung) Szenario: 7 Kraftwerke unterschiedlicher Leistung, die ein- oder zweimal pro Jahr gewartet werden müssen. 4 Perioden, Mindestleistung jeweils unterschiedlich. Zunächst: N=20, p(mutation) = 0.001
7 links N=20: a) 50 Generationen b) 100 Generationen rechts: N=100 Ergebnis nach 100 Generationen bei unterschiedlicher Mutationsrate Ergebnis ist gleich (gut), also Vermutung dass optimale Lösung aus [Negnevitsky], S. 238 Genetic programming Bisher: Modifikation von Daten Gewichte im NN Algorithmen Warum nicht Programmcode? Parameter, Koordinaten usw. bei genetischen zufällig erzeugte Programme als Population, Auswahl durch Fitness-Funktion, Modifikation durch Kreuzung und Mutation Anwendung z.b. Entwicklung elektronischer Filter, Verstärker usw. (Koza, 1994) einfache (spezielle) Sprachen Baumstruktur (Kreuzung/Mutation einfacher) Angelehnt an LISP schwierig (jedoch prinzipiell möglich) bei komplexen Programmiersprachen (komplexe Syntax,...), deshalb
8 Darstellung Programm zur Berechnung von 3+(5*4)/7 Notation entweder als Baum oder Transformation in Liste PLUS(3,DURCH(MAL(5,4),7)) Die Syntax dieser Sprache enthält die Funktionen PLUS(a,b), DURCH(a,b), MAL(a,b) aus [Nilsson], S. 61 Beispiel Ein Roboter soll den Wänden eines Raumes folgen. Sensoren liefern Informationen, ob die benachbarten Felder begehbar sind (keine Wand). Funktionen n, ne, e usw. Roboter kann sich bewegen, Funktionen north, east usw. Logische Funktionen AND(a,b), OR(a,b) usw. und IF(a,b,c): Wenn Ausdruck a wahr ist, wird b ausgeführt, ansonsten c Wenn die Wand berührt wird, ist das Spiel aus.
9 (Eine) manuell erstellte Lösung aus [Nilsson], S. 63 Beispiel aus [Nilsson] Evolution Ausgangspopulation: 5000 zufällig erzeugte Programme Fitness Funktion: Jedes Programm wird max. 60 Schritte lang ausgeführt, besuchte Zellen an der Wand werden gezählt (max. 32). 10 mal nacheinander mit zufälligen Startpunkten --> max. Fitness 320 Nächste Generation: 10% werden direkt übernommen (jeweils 7 zufällig ausgewählt, das mit der höchsten Fitness wird verwendet). 90% werden durch Crossover aus zwei zufällig gewählten (wie oben) erzeugt. Mutation wird nicht verwendet, könnte aber implementiert werden: Ein Teilbaum wird durch einen (zufälligen) neuen ersetzt
10 crossover bei Programmen aus [Nilsson], S. 64 Das fitteste Programm der Ausgangspopulation Auffällig: Viele redundante Operationen aus [Nillson], S. 66
11 aus [Nillson], S. 67 Das fitteste Programm in Generation 2 Das fitteste Programm in Generation 6 aus [Nillson], S. 67
12 Das fitteste Programm in Generation 10 Hier wird erstmals das Problem vollständig gelöst aus [Nillson], S. 68 Fitness der Generationen aus [Nilsson], S. 68
13 Particle swarms Kennedy, Eberhard, Shi, Swarm Intelligence, Morgan Kaufmann, 2001 Ursprung: boids Simulation eines Vogelschwarms durch einfache Annahmen: Vogel interagiert nur mit seinen Nachbarn
14 Beispiel PSO Particle Swarm Optimization simuliert einen Volgelschwarm (Ähnliche Technik: Ant Colony Optimization) Idee: Vogelschwarm, nur eine Futterstelle. Optimale Strategie? Alle Vögel folgen demjenigen, der am nächsten am Futter ist. Umsetzung: Einzelne Partikel, haben Koordinaten und Geschwindigkeit (Vektoren), kennen jeweils ihren bisher besten Wert (pbest) und den besten des Schwarms (gbest). Ausgangsbasis: Zufällige Startwerte. In jeder Iteration: v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) present[] = present[] + v[] (übl. v limitiert auf vmax)
15 PSO contd. Unterschiede zu genetischen Algorithmen keine Mutation, Crossover (zufällige Änderungen) dafür Orientierung hin zum besten Individuum Gedächtnis Evolution bevorzugt den besten, verdrängt die anderen Hier: Alle suchen gemeinsam teilw. bessere Performance Anwendungen: Bestimmung der Gewichte in neuronalen Netzen klass. Optimierungsprobleme Beispiel:
Optimale Produktliniengestaltung mit Genetischen Algorithmen
Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen
Genetische Programmierung
15. Juli 2007 Anfang der 90er von John R. Koza entwickelt. Verfahren zur automatisierten Erstellung von Programmen. Von der Evolution inspiriert. Anforderungen an die Möglichst korrekte Lösung ergeben
Evolutionäre Algorithmen Genetische Programmierung
Evolutionäre Algorithmen Genetische Programmierung Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für
Evolutionäre Algorithmen Software
Evolutionäre Algorithmen Software Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung
Computational Intelligence
Vorlesung Computational Intelligence Stefan Berlik Raum H-C 80 Tel: 027/70-267 email: [email protected] Inhalt Überblick Rückblick Optimierungsprobleme Optimierungsalgorithmen Vorlesung Computational
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer
5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus
5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,
Evolutionäre Algorithmen
Evolutionäre Algorithmen Genetische Programmierung Prof. Dr. Rudolf Kruse Christian Moewes {kruse,cmoewes}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut
Exkurs Modelle und Algorithmen
Exkurs Modelle und Algorithmen Ansatz künstlich neuronaler Netze (KNN) Versuch, die Wirkungsweise menschlicher Gehirnzellen nachzubilden dabei wird auf formale mathematische Beschreibungen und Algorithmen
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
Lösung der statischen Verkehrsumlegung mit Hilfe der Partikelschwarmoptimierung
Lösung der statischen Verkehrsumlegung mit Hilfe der Partikelschwarmoptimierung Axel Rauschenberger Institut für Bauinformatik, Leibniz Universität Hannover Matthias Bode Institut für Bauinformatik, Leibniz
Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014
Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte
Seminararbeit zum Thema Genetische Algorithmen
Seminararbeit zum Thema Genetische Algorithmen Seminar in Intelligent Management Models in Transportation und Logistics am Institut für Informatik-Systeme Lehrstuhl Verkehrsinformatik Univ.-Prof. Dr.-Ing.
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Partikelschwarmoptimierung für diskrete Probleme
Partikelschwarmoptimierung für diskrete Probleme Yushan Liu Fakultät für Mathematik TU München 26. Oktober 2014 Ferienakademie im Sarntal - Kurs 1 Moderne Suchmethoden der Informatik: Trends und Potenzial
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
Einführung in Heuristische Suche
Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?
3. Das Reinforcement Lernproblem
3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität
Randomisierte Algorithmen 2. Erste Beispiele
Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest
Proposal zur Masterarbeit. Kombination der neuroevolutionären Methoden EANT mit Q-Learning und CMA-ES
Proposal zur Masterarbeit Kombination der neuroevolutionären Methoden EANT mit Q-Learning und CMA-ES Tchando Kongue Einleitung Neuroevolutionäre Algorithmen sind Methoden, die durch die Benutzung von genetischen
Verbesserungsheuristiken
Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.
Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie
Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel
Structurally Evolved Neural Networks for Forecasting
Structurally Evolved Neural Networks for Forecasting - Strukturierte neuronale Netze für Vorhersagen Institut für Informatik - Ausgewählte Kapitel aus dem Bereich Softcomputing Agenda Grundlagen Neuronale
Genetische Algorithmen
Projekt für Algorithmische Anwendungen Genetische Algorithmen Von Mike Müller 11037091 Dennis Freese 11038517 Gruppe: B-ROT 1 Inhaltsverzeichnis Allgemeines...3 Geschichtliche Entwicklung der genetischen
Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung
Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,
13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems
13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung
Clusteranalyse: Gauß sche Mischmodelle
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer
Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus
Problemreduktion durch Transformation am Beispiel des Erweiterten Euklidschen Algorithmus Wolfgang Windsteiger JKU Linz, A 4040 Linz, Austria Kurzfassung Transformation beschreibt im Wesentlichen die algorithmische
Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme
Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh ([email protected]) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es
Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)
Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige
Artificial Life und Multiagentensysteme
Vortrag im Rahmen des Seminars: Artificial Life und Multiagentensysteme Prof. Dr. Winfried Kurth Sommersemester 2003 Prognose von Zeitreihen mit GA/GP Mathias Radicke, Informatikstudent, 10. Semester Gliederung
Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft. Lars Melchior
Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft Lars Melchior Theoretische Grundlagen Theoretische Grundlagen Genetik Genetische Algorithmen NK
Polynome im Einsatz: Bézier-Kurven im CAD
Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im
Euklidische Distanzmatrizen. Andrei Grecu
Euklidische Distanzmatrizen Andrei Grecu Übersicht Motivation Definition und Problemstellung Algo 1: Semidefinite Programmierung Algo 2: Multidimensional Scaling Algo 3: Spring Embedder Algo 4: Genetischer
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Grundlagen und Basisalgorithmus
Grundlagen und Basisalgorithmus Proseminar -Genetische Programmierung- Dezember 2001 David König Quelle: Kinnebrock W.: Optimierung mit genetischen und selektiven Algorithmen. München, Wien: Oldenbourg
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
5.10. Mehrdimensionale Extrema und Sattelpunkte
5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(
Statistics, Data Analysis, and Simulation SS 2015
Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler
Etwas Spezielles: Zielwertsuche und Solver. Zielwertsuche
Etwas Spezielles: Zielwertsuche und Solver Zielwertsuche EXCEL kann auch Beziehungen indirekt auflösen. Die einfache Variante ist die Zielwertsuche. Für eine bestimmte Zelle ("Zielzelle") wird ein anderer
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)
3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände
(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim
(künstliche) Neuronale Netze (c) Till Hänisch 2003,2015, DHBW Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Aufbau des Gehirns Säugetiergehirn,
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung
Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL
12 Synthese Eingebetteter Systeme Sommersemester 2011 16 Abbildung von Anwendungen: Optimierung mit DOL 2011/06/24 Michael Engel Informatik 12 TU Dortmund unter Verwendung von Foliensätzen von Prof. Lothar
Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen
Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen Katharina Witowski (DYNAmore GmbH) Peter Reithofer (4a engineering GmbH) Übersicht Problemstellung Parameteridentifikation
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische
Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen
Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 13. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Genetisches Programmieren Rückblick: Bisher
Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle
Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle Umgang mit unsicherem Wissen VAK 03-711.08 Oliver Ahlbrecht 8. Dezember 2005 Struktur 1. Einleitung 2. Beispiel Cart-Pole 3. Warum Hybride
Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester
Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform Thorsten Jost INF-M2 AW1 Sommersemester 2008 Agenda Motivation Feature Detection Beispiele Posenbestimmung in Räumen
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
storage management (c) Till Hänisch 2003, BA Heidenheim
storage management (c) Till Hänisch 2003, BA Heidenheim warum? haenisch@susi:~ > df Filesystem 1k-blocks Used Available Use% Mounted on /dev/sda3 35115800 16351708 16980076 50% / /dev/sda1 23300 3486 18611
Genetische Algorithmen und Evolutionsstrategien
Eberhard Schöneburg Frank Heinzmann Sven Feddersen Genetische Algorithmen und Evolutionsstrategien Eine Einführung in Theorie und Praxis der simulierten Evolution Tschnische UnsversSsät Darmstadt Fachbereich
Nichtlineare Optimierungsprobleme mit Komplexität
Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-
Schulinternes Curriculum für Informatik (Q2) Stand April 2015
Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar
Tutorial Excel Übung 1&2 Kartenverkauf -1- Kartenverkauf Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung1&2.
Tutorial Excel Übung 1&2 Kartenverkauf -1-1 Aufgabenstellung Kartenverkauf Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung1&2. 2 Strukturierter Entwurf zur Lösung 2.1 Definition des Problems
1. Welche Eigenschaften sollte ein Pseudo-Random Generator haben?
Die Themen 1. Welche Eigenschaften sollte ein Pseudo-Random Generator haben? Er sollte von wirklichen Zufallsgeneratoren nicht unterscheidbar sein?! Eine viel zu starke Forderung: Stattdessen sollte ein
Zufallszahlen in AntBrain
Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den
Monte-Carlo Simulation
Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung
Kapitel 12: Schnelles Bestimmen der Frequent Itemsets
Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren
Genetische Algorithmen
Genetische Algorithmen Projektgruppe 431 Metaheuristiken Bianca Selzam Inhaltsverzeichnis 1 Einleitung......................................................... 1 2 Grundlagen aus der Biologie.......................................
Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen:
1 Parallele Algorithmen Grundlagen Parallele Algorithmen Grundlagen Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: Dekomposition eines Problems in unabhängige Teilaufgaben.
Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007
Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem
f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.
Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales
IT-Grundlagen Excel Excel Grundbegriffe
Excel 2010 1.Semester 1 Karin Maier Excel 2010 - Grundbegriffe Excel ist ein Tabellenkalkulationsprogramm Darin können Daten eingegeben, formatiert und berechnet werden Arbeitsmappe = Datei Arbeitsmappe
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung
Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs
- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n
- 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.
Grundlagen, Vorgehensweisen, Aufgaben, Beispiele
Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. [email protected]
Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern [email protected] Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der
P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.
2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das
Inhalt. Zellulare Automaten 1 Genetische Algorithmen zur globalen Optimierung 10 Zellulare genetische Algorithmen 14
Inhalt Zellulare Automaten 1 Genetische Algorithmen zur globalen Optimierung 10 Zellulare genetische Algorithmen 14 1 Zelluläre Automaten Ausbreitungsprozesse können auch durch Zelluläre Automaten modelliert
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)
Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040
Implementierung von PartikelSchwarm-Optimierung und Vergleich. mit einer Evolutionsstrategie
Fachbereich Informatik Fachgebiet Neuroinformatik Implementierung von PartikelSchwarm-Optimierung und Vergleich mit einer Evolutionsstrategie Schriftliche Prüfungsarbeit für die Bachelor-Prüfung des Studiengangs
Algorithms for Regression and Classification
Fakultät für Informatik Effiziente Algorithmen und Komplexitätstheorie Algorithms for Regression and Classification Robust Regression and Genetic Association Studies Robin Nunkesser Fakultät für Informatik
Funktionale Programmiersprachen
Funktionale Programmiersprachen An den Beispielen Haskell und Erlang Übersicht Programmiersprachen λ-kalkül Syntax, Definitionen Besonderheiten von funktionalen Programmiersprache, bzw. Haskell Objektorientierte
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
Lokale Beleuchtungsmodelle
Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell
8 Baum in perfekter Komposition
8 Baum in perfekter Komposition Die Implementierung des Binärbaums im letzten Kapitel wird mithilfe des Entwurfsmusters Kompositum optimiert. Knoten und Abschluss Bei der einfach verketteten Liste wurde
Vergleichende Analyse von Genetischen Algorithmen und der Particle Swarm Optimization für den Evolutionären Strukturtest
Vergleichende Analyse von Genetischen Algorithmen und der Particle Swarm Optimization für den Evolutionären Strukturtest Arbeit zur Erlangung des akademischen Grades Diplom-Informatiker an der Technischen
Vom Leichtesten zum Schwersten Sortieralgorithmen
Aktivität 7 Vom Leichtesten zum Schwersten Sortieralgorithmen Zusammenfassung Häufig verwendet man Computer dazu Listen von Elementen in eine bestimmte Ordnung zu bringen. So kann man beispielsweise Namen
Informatik-Sommercamp 2012. Mastermind mit dem Android SDK
Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln
Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme
Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,
Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien
Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Katharina Witowski [email protected] Übersicht Beispiel Allgemeines zum LS-OPT Viewer Visualisierung von Simulationsergebnissen
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
