Amortisierte Analyse
|
|
|
- Lorenz Frei
- vor 8 Jahren
- Abrufe
Transkript
1 Amortisierte Analyse
2 Amortisierung Betrachte eine Folge a 1, a 2,..., a n von n Operation auf Datenstruktur D T i = Ausführungszeit von a i T = T 1 + T T n, Gesamtlaufzeit Oft kann die Laufzeit einer einzelnen Operation in einem großen Bereich schwanken, z. B. in 1,...,n, aber nicht bei allen Operationen der Folge kann der schlechteste Fall auftreten 2
3 Analyse von Algorithmen Best Case Worst Case Average Case Amortisierte Worst Case Was sind die durchschnittlichen Kosten einer Operation in einer schlechtest möglichen Folge von Operationen? 3
4 Amortisierung Idee: Zahle für billige Operation etwas mehr Verwende Erspartes um für teure Operationen zu zahlen Drei Methoden: 1. Aggregatmethode 2. Bankkonto Methode 3. Potentialfunktion Methode 4
5 1.Aggregat Methode: Dualzähler Bestimmung der Bitwechselkosten eines Dualzählers Operation Zählerstand Kosten
6 2. Bankkonto Methode Beobachtung: In jedem Schritt wird genau eine 0 in eine 1 verwandelt Idee: Bezahle zwei KE für das Verwandeln einer 0 in eine 1 jede 1 hat eine KE auf dem Konto 6
7 Bankkonto Methode Operation Zählerstand
8 3. Potentialfunktion Potentialfunktion φ Datenstruktur D φ(d) t l = wirkliche Kosten der l-ten Operation φ l = Potential nach Ausführung der l-ten Operation (= φ(d l ) ) a l = amortisierte Kosten der l-ten Operation Definition: a l = t l + φ l - φ l-1 8
9 Beispiel: Dualzähler D i = Stand nach der i-ten Operation b i = φ(d i ) = # von Einsen in D i i te Operation # von Einsen D i-1 :...0/ b i-1 D i :...0/ b i = b i-1 t i + 1 t i = Bitresetkosten von Operation i 9
10 Dualzähler a i = amortisierte Bitwechselkosten von Operation i a i t ( b t + 1) = ti + + i 1 i bi = i 2n 10
11 Dynamische Tabellen Problem: Verwaltung einer Tabelle unter den Operationen Einfügen und Entfernen, so dass die Tabellengröße der Anzahl der Elemente angepasst werden kann immer ein konstanter Anteil der Tabelle mit Elementen belegt ist die Kosten für n Einfüge- oder Entferne Operationen O(n) sind. Organisation der Tabelle: Hashtabelle, Heap, Stack, etc. Belegungsfaktor α T : Anteil der Tabellenplätze von T, die belegt sind. 11
12 Implementation Einfügen class dynamic table { int [] table; int size; int num; // Größe der Tabelle // Anz. der Elemente dynamictable() { table = new int [1]; size = 1; num = 0; } // Initialisierung der leeren Tabelle 12
13 Implementation Einfügen insert ( int x) { if (num == size ) { new Table = new int [2*size]; for (i = 0; i < size; i++) füge table[i] in newtable ein; table = newtable; size = 2*size; } füge x in table ein; num = num + 1; } 13
14 Kosten von n Einfüge-Operationen in eine anfangs leere Tabelle t i = Kosten der i-ten Einfüge-Operation Worst case: t i = 1, falls die Tabelle vor der Operation i nicht voll ist t i = (i 1) + 1, falls die Tabelle vor der Operation i voll ist. Also verursachen n Einfüge-Operationen höchstens Gesamtkosten von 2 ( i) = O( n ) Amortisierter Worst-Case: Aggregat -, Bankkonto -, Potential-Methode n i= 1 14
15 Potential-Methode T Tabelle mit k = T.num Elemente s = T.size Größe Potentialfunktion φ (T) = 2 k s 15
16 Potential-Methode Eigenschaften φ 0 = φ(t 0 ) = φ ( leere Tabelle ) = -1 Unmittelbar vor einer Tabellenexpansion ist k = s, also φ(t) = k = s. Unmittelbar nach einer Tabellenexpansion ist k = s/2, also φ(t) = 2k s = 0. Für alle i 1 : φ i = φ (T i ) > 0 Da φ n - φ 0 0, gilt t i a i 16
17 Berechnung der amortisierten Kosten a i der i-ten Einfüge-Operation k i = # Elemente in T nach der i-ten Operation s i = Tabellengröße von T nach der i-ten Operation Fall 1: i-te Operation löst keine Expansion aus k i = k i-1 + 1, s i = s i-1 a i = 1 + (2k i - s i ) - (2k i-1 s i-1 ) = 1 + 2(k i - k i-1 ) = 3 17
18 Fall 2: i-te Operation löst Expansion aus k i = k i-1 + 1, s i = 2s i-1 a i = k i (2k i - s i ) - (2k i-1 s i-1 ) = 3 18
19 Einfügen und Entfernen von Elementen Jetzt: Kontrahiere Tabelle, wenn Belegung zu gering! Zíele: (1) Belegungsfaktor bleibt durch eine Konstante nach unten beschränkt (2) amortisierte Kosten einer einzelnen Einfüge- oder Entferne- Operation sind konstant. 1. Versuch Expansion: wie vorher Kontraktion: Halbiere Tabellengröße, sobald Tabelle weniger als ½ voll ist! 19
20 Schlechte Folge von Einfüge- und Entfernenoperationen Kosten n/2 mal Einfügen (Tabelle voll) 3 n/2 I: Expansion n/2 + 1 D, D: Kontraktion n/2 + 1 I, I : Expansion n/2 + 1 D, D: Kontraktion Gesamtkosten der Operationsfolge: I n/2, I,D,D,I,I,D,D,... der Länge n sind 20
21 2. Versuch Expansion: Verdoppele die Tabellengröße, wenn in die volle Tabelle eingefügt wird. Kontraktion: Sobald der Belegungsfaktor unter ¼ sinkt, halbiere die Tabellengröße. Folgerung: Die Tabelle ist stets wenigstens zu ¼ voll, d.h. ¼ α(t) 1 Kosten einer Folge von Einfüge- und Entferne-Operationen? 21
22 Analyse Einfügen und Entfernen k = T.num, s = T.size, α = k/s Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 22
23 Analyse Einfügen und Entfernen φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 Unmittelbar nach einer Expansion oder Kontraktion der Tabelle: s = 2k, also φ(t) = 0 23
24 Einfügen i-te Operation: k i = k i Fall 1: α i-1 ½ Fall 2: α i-1 < ½ Fall 2.1: α i < ½ Fall 2.2: α i ½ 24
25 Einfügen Fall 2.1: α i-1 < ½, α i < ½ (keine Expansion) Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 25
26 Einfügen Fall 2.2: α i-1 < ½, α i ½ (keine Expansion) Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 26
27 Entfernen k i = k i-1-1 Fall 1: α i-1 < ½ Fall 1.1: Entfernen verursacht keine Kontraktion s i = s i-1 Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 27
28 Entfernen k i = k i-1-1 Fall 1: α i-1 < ½ Fall 1.2: α i-1 < ½ Entfernen verursacht Kontraktion s i = s i 1 /2 k i-1 = s i-1 /4 Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 28
29 Entfernen Fall 2: α i-1 ½ keine Kontraktion s i = s i 1 k i = k i-1-1 Fall 2.1: α i ½ Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 29
30 Entfernen Fall 2: α i-1 ½ keine Kontraktion s i = s i 1 k i = k i-1-1 Fall 2.2: α i < ½ Potentialfunktion φ φ ( T ) = 2k s, 1/ 2 s / 2 k, < 1/ 2 30
3. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
3 Amortisierte Analyse
(M. Dietzfelbinger,.2.20) 3 Amortisierte Analyse Wir betrachten hier ein Analyseproblem, das oft bei Datenstrukturen, mitunter auch in anderen algorithmischen Situationen auftritt. Angenommen, wir haben
1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe
- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:
6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Fibonacci-Heaps und Amortisierte Analyse
Kapitel 6 Fibonacci-Heaps und Amortisierte Analyse Der Fibonacci-Heap dient als eine Implementierung für die abstrakte Datenstruktur Priority Queue und wurde von Michael L. Fredman and Robert E. Tarjan
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Codes und Informationsgehalt
Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Zusammenfassung. Algorithmentheorie
Zusammenfassung Zur Diplomprüfungsvorbereitung Algorithmentheorie Prof. Dr Thomas Ottmann PD Dr. A.Heinz Wintersemester 2002 Zusammengefasst von Markus Krebs und Andreas Horstmann November 2002 Vorlesung
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.
Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.
Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.
Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Grundlegende Datentypen
Foliensatz 4 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 50 Grundlegende Datentypen TU Ilmenau Seite 2 / 50 Atomare Datentypen
Suchen in Listen und Hashtabellen
Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Fully dynamic algorithms for the single source shortest path problem.
Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 8. Arrays. Arrays
1 Kapitel 8 Ziele 2 Die Datenstruktur der kennenlernen Grundlegende Algorithmen auf in Java implementieren können Mit von Objekten arbeiten können 3 Erweiterungen zur Behandlung von : Überblick Bisher
desk.modul : WaWi- Export
desk.modul : WaWi- Export Die Schnittstelle besteht aus einem Programm, welches die Daten aus der OfficeLine ausliest und in eine XML-Datei exportiert. Die Schnittstelle ist als ein eigenständiges Programm
Alignment-Verfahren zum Vergleich biologischer Sequenzen
zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume
1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten
Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL
Betreuer: Sascha Kriewel, Tobias Tuttas Raum: LF 230 Bearbeitung: 26., 27. und 29. Juni 2006 Datum Team (Account) Vorbereitung Präsenz Aktuelle Informationen, Ansprechpartner und Material unter: http://www.is.inf.uni-due.de/courses/dbp_ss07/index.html
Programmierung und Modellierung
Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:
(allgemeine) OOP in C++ Klassen und header-files Konstruktorn / Destruktoren Speicherverwaltung C++ Standard Library / SLT
Architektur Übersicht (allgemeine) OOP in C++ Polymorphie Virtuelle Funktionen Kompilieren Linken dynamische/statische Bibliotheken Tutorial: vs2008+ogre+(campus modell) Architektur (allgemeine) OOP in
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Einführung in die Informatik Hashtables
Einührung in die Inormatik Hashtables Hashtabellen Wolram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben bisher einige der typischen Datenstrukturen zum Speichern von Inormationen kennen gelernt Arrays
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
6. Datenintegrität. Integritätsbedingungen
6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Methoden des Algorithmenentwurfs Kapitel 2.2: Randomisierte Online Algorithmen
Methoden des Algorithmenentwurfs Kapitel 2.2: Randomisierte Online Algorithmen Christian Scheideler SS 2009 16.07.2009 Kapitel 2 1 Übersicht Notation Paging Selbstorganisierende Suchstrukturen Finanzielle
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
DATENSTRUKTUREN UND ZAHLENSYSTEME
DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: [email protected] Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden
Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block
Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Suchen und Sortieren (Die klassischen Algorithmen)
Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir
Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Bachelor-Klausur im WiSe 2013 / 2014. Grundlagen der Informatik
Fachhochschule Kaiserslautern FB Informatik und Mikrosystemtechnik Prof. Dr. M. Duque-Antón Bachelor-Klausur im WiSe 2013 / 2014 im Fach Grundlagen der Informatik Angewandte Informatik / Medieninformatik
Einführung in die STL anhand eines ausgewählten Beispiels
Einführung in die STL anhand eines ausgewählten Beispiels Frank M. Thiesing http://home.t-online.de/home/ frank.thiesing/stl/stl-folien.pdf Inhalt Überblick über die C++ STL Container Iteratoren Algorithmen
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, [email protected]
Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann
Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann 1 Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann
Kapitel 6. Vererbung
1 Kapitel 6 2 Ziele Das sprinzip der objektorientierten Programmierung verstehen Und in Java umsetzen können Insbesondere folgende Begriffe verstehen und anwenden können: Ober/Unterklassen Subtyping Überschreiben
Kapitel 6. Vererbung
1 Kapitel 6 2 Ziele Das sprinzip der objektorientierten Programmierung verstehen Und in Java umsetzen können Insbesondere folgende Begriffe verstehen und anwenden können: Ober/Unterklassen Subtyping Überschreiben
Das EDV-Cockpit mit MindManager für SharePoint
Das EDV-Cockpit mit MindManager für SharePoint 2010 MindBusiness GmbH 29.03.2010 - 2 - Inhalt Mindjet MindManager für SharePoint: Das EDV-Cockpit... 3 Vorbereitungen in SharePoint... 3 Aufbau der Map...
Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013 Vorlesung 9, Dienstag 18. Dezember 2012 (Performance Tuning, Profiling, Maschinencode) Prof. Dr.
Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013
Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Seminarausarbeitung Entwurf und Analyse von Datenstrukturen
Prozesse und Scheduling
Betriebssysteme für Wirtschaftsinformatiker SS04 KLAUSUR Vorbereitung mit Lösungen / Blatt 1 Prozesse und Scheduling Aufgabe 1 : Scheduling Gegeben seien die folgenden Prozesse und die Längen des jeweiligen
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
Z 50. Z O Z Int Z Komma Z Real Ziffer Komma Ziffer
10 Endliche Automaten 10.1 Einführungsbeispiele Beispiel 1: Warenautomat Ein Flasche Cola kostet 1,50. Münzen zu 1 und 50 ct werden angenommen. Cola und evtl. Restgeld werden ausgegeben. Auch der Rückgabeknopf
Name:... Vorname:... Matrikel-Nr.:... Unterschrift:...
Studiengang Bachelor of Computer Science Modulprüfung Praktische Informatik 1 Wintersemester 2010 / 2011 Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und
Übersicht. Informatik 2 Teil 3 Anwendungsbeispiel für objektorientierte Programmierung
Übersicht 3.1 Modell Konto 3.2 Modell Konto - Erläuterungen 3.3 Benutzer Ein- und Ausgabe mit Dialogfenster I 3.4 Benutzer Ein- und Ausgabe mit Dialogfenster II 3.5 Klassen- und Objekteigenschaften des
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 7. Grafische Benutzeroberflächen
1 Kapitel 7 Ziele 2 (Graphical User Interfaces) als Anwendungsbeispiel für die objektorientierte Programmierung kennenlernen Benutzung von Vererbung zur Erstellung individueller GUI-Klassen durch Erweiterung
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Kunden über Mandatsreferenz informieren
Kunden über Mandatsreferenz informieren Ab Februar 2014 wird der gesamte Zahlungsverkehr auf das neue SEPA-Verfahren umgestellt. Da die bestehenden Einzugsermächtigungen in ein Mandat umgewandelt werden
Objektorientierte Programmierung
Programmierkurs C++ Kapitel 7:Objektorientierte Programmierung Seite 1 Objektorientierte Programmierung If programming in PASCAL is like put in a straightjacket, then programming in C is like playing with
Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz
Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)
Effizientes Memory Debugging in C/C++
Effizientes Memory Debugging in C/C++ Adam Szalkowski Embedded Computing Conference 2014 Ursachen/ Symptome Debugging Tools Ursachen / Symptome Was habe ich falsch gemacht? Was kann denn passieren im schlimmsten
Taylorentwicklung der k ten Dimension
Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5
FHZ. K20 Arrays. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt
Inhalt 1. Einführung 2. Array-Komponenten von elementaren Datentypen 3. Array-Komponenten sind Objekte 4. Array als Parameter 5. Kopieren von Arrays 6. Beispiel 7. Vector versus Array Folie 1 Lernziele
1. Von der Idee zur Software 2. Funktionen und Datenstrukturen Lehrbuch: 4.3 3. Organisation des Quellcodes 4. Werte- und Referenzsemantik
Software-Technik: Vom Programmierer zur erfolgreichen Software-Technik: Vom Programmierer zur erfolgreichen 1. Von der Idee zur Software 2. Funktionen und Datenstrukturen Lehrbuch: 4.3 3. Organisation
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Datenstrukturen in Java
Datenstrukturen in Java SEP 350 Datenstrukturen Datenstrukturen ermöglichen Verwaltung von / Zugriff auf Daten (hier: Objekte) Datenstrukturen unterscheiden sich duch Funktionalität Implementierung modulares
RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51
RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für
Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)
Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien
Dr. Monika Meiler. Inhalt
Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6
6-1 A. Schwill Grundlagen der Programmierung II SS 2005
6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und
Invarianten und sichere Vererbung
Kapitel 7 Invarianten und sichere Vererbung Idee der Vererbung: class U extends O... bedeutet: Jedes U ist auch als O verwendbar, denn es hat mindestens dieselben Members im O-Subobjekt (Typkonformanz,
Java Schulung. Objektorientierte Programmierung in Java Teil V: Die Java Collection Klassen. Prof. Dr. Nikolaus Wulff
Java Schulung Objektorientierte Programmierung in Java Teil V: Die Java Collection Klassen Prof. Dr. Nikolaus Wulff Collections in Java 2 Java 2 Collections: http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
Kapitel 12: Übersetzung objektorienter Konzepte
Kapitel 12: Übersetzung objektorienter Konzepte Themen Klassendarstellung und Methodenaufruf Typüberprüfung Klassenhierarchieanalyse Escape Analyse 12.1 Klassendarstellung bei Einfachvererbung class Punkt
II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:
Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen
Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time
Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Kapitel 9. Hashverfahren. 9.1 Einführung
Kapitel 9 Hashverfahren 9.1 Einführung Uns sind bereits Verfahren bekannt, mit denen Datensätze mit einem eindeutigen Schlüssel gespeichert werden (z.b. B*-Bäume). Statt bei der Suche nach einem Schlüssel
B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP
B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte
Assoziation und Aggregation
Assoziation und Aggregation Martin Wirsing in Zusammenarbeit mit Matthias Hölzl, Nora Koch 05/03 2 Ziele Verstehen der Begriffe Assoziation und Aggregation Implementierung von Assoziationen in Java schreiben
Institut für Informatik
Technische Universität München Institut für Informatik Lehrstuhl für Computer Graphik & Visualisierung WS 2010 Praktikum: Grundlagen der Programmierung Lösungsblatt 7 Prof. R. Westermann, A. Lehmann, R.
