Klausur : Allgemeine und Anorganische Chemie



Ähnliche Dokumente
Oxidation und Reduktion Redoxreaktionen Blatt 1/5

Crashkurs Säure-Base

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 6

Chemische Reaktionen

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 2

Chemie Zusammenfassung KA 2

Kapiteltest 1.1. Kapiteltest 1.2

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Grundlagen. Maximilian Ernestus Waldorfschule Saarbrücken

Einführung. KLASSE: 9TE NAME: Vorname: Datum: LTAM Naturwissenschaften 9e Chemische Gleichungen 1 -

Wird vom Korrektor ausgefüllt: Aufgabe Punkte

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

Kapitel 13: Laugen und Neutralisation

Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch. Reinstoff, Element, Verbindung. Zweiatomige Elemente.

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Endstoffe (Produkte) Aus dem Reaktionsgemisch entweichendes Gas, z. B. 2 Welche Informationen kann man einer Reaktionsgleichung entnehmen?

Technische Universität Chemnitz Chemisches Grundpraktikum

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Chemie für Mediziner

Übungsblatt zu Säuren und Basen

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

Organische Chemie I Chemie am Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2

1) Welche Aussagen über die Hauptgruppenelemente im Periodensystem sind richtig?

MAGNESIUM. 1. Bei Verbrennungsreaktionen entstehen in der Regel (kreuze richtig an):

Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen

mentor Grundwissen Chemie. 5. bis 10. Klasse Usedom

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Elektronenpaarbindung (oder Atombindung) Nichtmetallatom + Nichtmetallatom Metallatom + Nichtmetallatom 7. Welche Bindungsart besteht jeweils?

Die innere Energie eines geschlossenen Systems ist konstant

Atombau, Periodensystem der Elemente

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Lichtbrechung an Linsen

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

2.8 Grenzflächeneffekte

Musterprüfung Chemie Klassen: MPL 09 Datum: April 2010

Chemische Bindung. Chemische Bindung

Erstellen von x-y-diagrammen in OpenOffice.calc

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Katalysatoren - Chemische Partnervermittlung im virtuellen Labor

GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * kg m(h) = 1 u

Anorganische Chemie III

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Aufbau der Elektronenhülle des Wasserstoffatoms

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert?

Das chemische Gleichgewicht

Kapitel 8 MO-Verbindungen der Übergangsmetalle - Bindungsverhältnisse und Strukturen

3. Säure-Base-Beziehungen

Professionelle Seminare im Bereich MS-Office

Kapitel 4: Chemische. Woher stammen die chemischen Symbole?

1 Mathematische Grundlagen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die wichtigsten Elementfamilien

Korrelation (II) Korrelation und Kausalität

Mathematischer Vorbereitungskurs für Ökonomen

Redox- Titrationen PAC I - QUANTITATIVE ANALYSE ANALYTIK I IAAC, TU-BS, Manganometrie. Bestimmung von Eisen(III) in salzsaurer Lösung

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

Lernaufgabe: Richtigstellen von Reaktionsgleichungen

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Chemie

ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Abgestufte Lernhilfen

Vorlesung Anorganische Chemie

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen

Die reellen Lösungen der kubischen Gleichung

Festigkeit von FDM-3D-Druckteilen

Administratives BSL PB

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Reaktionsgleichungen verstehen anhand der Verbrennung von Magnesium

Themengebundenes Lernen Klasse 7 SOL-Stunde zu Aktivieren und Festigen

Wasserchemie und Wasseranalytik SS 2015

Einheiten und Einheitenrechnungen

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute

1. Theorie: Kondensator:

Elektrolyte. (aus: Goldenberg, SOL)

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie

Einführung in die Algebra

Anleitung über den Umgang mit Schildern

Wie sieht unsere Welt im Kleinen aus?

Arbeitsheft Quantitative Aspekte Jakob 1

EINE KERZE INTERPRETATIONEN BEOBACHTUNGEN FLAMME REAKTIONEN WACHS DOCHT GASE. Reaktionsgleichungen Prozesse. Theorien

Info zum Zusammenhang von Auflösung und Genauigkeit

PCD Europe, Krefeld, Jan Auswertung von Haemoccult

Repetitionsaufgaben Wurzelgleichungen

Wasserkraft früher und heute!

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Erfahrungen mit Hartz IV- Empfängern

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale.

Primzahlen und RSA-Verschlüsselung

Reaktionsgleichungen und was dahinter steckt

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 3

Welche wichtigen Begriffe gibt es?

Papa - was ist American Dream?

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

Organische Moleküle. Verschiedene Ansichten des Methans

Transkript:

1 Klausur : Allgemeine und Anorganische Chemie Mi. 17.02.10 : 08.30 11.30 Uhr Musterlösungen (ohne Gewähr!) Falls nicht anders angegeben, werden die Punkte gleichmäßig über alle Teilfragen verteilt (bei 4 Teilen je 2.5 Punkte, usw.) 1. Geben Sie je einen Nachweis für folgende Spezies an (Beschreibung in Worten, Gleichung(en)): Ammonium, Carbonat, Fe 3+, Chlorid. Ammonium mit einer Lauge erwärmen, es entsteht Ammoniak (am Geruch oder mit ph- Papier nachweisen). NH 4 + + H NH 3 + H 2 Carbonat mit einer Säure versetzten (nicht Schwefelsäure!), Kohlendioxid steigt auf (und kann mit Barytwasser nachgewiesen werden, das trübe wird). C 3 2 + 2H + C 2 + H 2 ; C 2 + Ba(H) 2 BaC 3 + H 2 Fe 3+ entweder mit Thiocyanat, ergibt dunkelrote Farbe, oder mit Hexacyanoferrat(II), ergibt + III + II Berliner Blau. Fe 3+ + 3SCN Fe(SCN) 3 ; K + + Fe 3+ + [Fe(CN) 6 ] 4 K Fe [ Fe (CN) 6]. Eine Methode reicht! In beiden Fällen kann die Zusammensetzung des Produkts anders sein (z.b. + III Fe + II Fe(SCN) 3 (H 2 ) 3 bzw. 4[ Fe (CN) 6] 3 ). Chlorid zunächst ansäuern (HN 3, kein HCl!!), dann ergibt Silbernitratlösung einen weißen Niederschlag, der sich in verd. Ammoniaklösung wieder auflöst. Ag + + Cl AgCl; AgCl + 2NH 3 [Ag(NH 3 ) 2 ] + Cl. Fehlt eine Gleichung, eine Beschreibung in Worten (insbes. der spez. Bedingungen wie ansäuern, Niederschlag wieder auflösen) Punkteverlust! 2. Erklären Sie folgende Beobachtungen: (i) Chloride der Formel MCl 4 (M = Metall) sind nie ionisch (ii) Salze des Phosphonium-Ions PH + 4 werden in Wasser hydrolysiert (iii) Wird Bleinitrat Pb(N 3 ) 2 erhitzt, so entstehen braune Dämpfe, die einen Glimmspan wieder aufflammen lassen (iv) Beim Erhitzen wird Ammoniumcarbonat rückstandsfrei zersetzt. (i) Bei "normalen" ionischen Verbindungen müßte die KZ des Metalls viermal so groß sein wie die des Chlors. Das ist unmöglich. (Bei MCl 3 könnte ggf. eine Schichtstruktur entstehen). (ii) Phosphan PH 3 ist eine sehr schwache Base (insbes. gegenüber H + ), Phosphonium ist deswegen eine stärkere Säure; umso leichter lassen sich PH + 4 -Salze hydrolysieren. PH + 4 + H 2 PH 3 + H 3 +.

2 (iii) Der thermische Zerfall des Bleinitrats setzt N 2 (braun) und Sauerstoff (Glimmspan- Nachweis) frei. 2Pb(N 3 ) 2 2Pb + 4N 2 + 2. (iv) Alle Produkte des Zerfalls sind gasförmig. (NH 4 ) 2 C 3 2NH 3 + C 2 + H 2. 3. Welche Haupt- und Nebenquantenzahlen gelten für eine 5f-Unterschale? Wie viele Elektronen kann diese Unterschale maximal aufnehmen, und wie sind deren weitere Quantenzahlen? Haupt-QZ = 5 (!); Neben-QZ = 3 (f-rbitale). Magnetische QZ kann sein: ±3, ±2, ±1, 0 (macht 7 rbitale), jedes rbital kann max. 2 Elektronen aufnehmen (Spin-QZ = ±½), macht max. 14e. jede korrekte QZ bzw. Satz davon: 2P; 14e, 2P 4. Wie ist nach M-Theorie die Bindungsordnung des Disulfid-Ions S 2 2? ("Leiterdiagramm" der Valenzschale angeben!). Erwarten Sie, daß dieses Ion stärker oder schwächer oxidiert als Peroxid? (Begründung!). (unwesentlich, ob pσ oder pπ niedriger liegt). B = (6-4)/2 = 1. Diagramm 5P, B 2P Die -Bindung ist schwach (Abstoßung der freien Elektronenpaare), die S S-Bindung wesentlich stärker (Kettenbildung bei Schwefel ausgeprägt!); also sollte leichter zu spalten sein und somit Peroxid ein (wesentlich) stärkeres xidationsmittel. (3P) 5. Phosphorpentachlorid existiert in der Gasphase als PCl 5 -Moleküle. Im festen Zustand ist eine Form ionisch, PCl + 4 PCl 6. Wie sind nach VSEPR-Regeln die Geometrien dieser Spezies? Kann man für NCl 5 eine Geometrie voraussagen? Keine der drei Phosphor-Spezies hat freie Elektronenpaare! Also PCl 5 trigonal bipyramidal, PCl + 4 tetraedrisch, PCl 6 oktaedrisch. NCl 5 ist nicht existenzfähig (max. Bindigkeit 4!). 1 6. (i) Wie ist der ph-wert einer M Natriumhydroxidlösung? (ii) Um welchen Faktor ist die 1000 Ladungsdichte eines Protons (Radius 1 fm) größer als die eines Ca 2+ -Ions (Radius 100 pm)?

3 (i) [H ] = 10 3 M, also [H + ] = 10 11 M (Ionenprodukt des Wassers = 10 14 ). ph = 11. (4P) (ii) 1 fm = 10 15 m; 100 pm = 10 10 m. Elektronendichte = Ladung/Volumen. Die Volumina verhalten sich wie Radius hoch 3, also Faktor (10 5 ) 3 = 10 15. Wegen der höheren Ladung des Ca 2+ -Ions ist der Faktor "nur" 5 10 14. (6P) 7. Sind folgende Behauptungen richtig oder falsch? (Begründung!): (i) Beim Mischen idealer Gase erfolgt keine Entropieänderung (ii) Der Verlauf der Reaktion H 2 (g) + I 2 (g) 2HI (g) läßt sich durch Druckänderungen verfolgen (iii) Wasserdampf verhält sich wie ein ideales Gas (iv) Da Sauerstoff volumenmäßig 21% der Luft ausmacht, ist sein Partialdruck 0.21 atm. (i) Falsch, die Mischenthalpie ist Null, jedes Mischen hat eine positive Entropieänderung. (ii) Falsch, bei der Reaktion bleibt die Zahl der Gasmole und somit der Druck bleibt konstant. (iii) Falsch, ideale Gase haben vernachlässigbare intermolekulare Wechselwirkung, Wassermoleküle hingegen haben starke H-Brücken. (iv) Richtig, Partialdruck ist proportional zum Molenbruch (bei Gasen: Molenbruch = Volumenverhältnis). 8. (a) Welche Eigenschaften gelten als typisch für die Übergangsmetalle bzw. ihre Komplexe? (b) Warum haben Cyanidkomplexe im allgemeinen wesentlich kleinere magnetische Momente als entsprechende Chloridkomplexe? Beispiele nicht vergessen! (a) (i) Es sind Metalle (physikalische Eigenschaften wie Glanz, Leitfähigkeit; chemische Eigenschaft = Kationenbildung) (ii) hohe Tendenz zur Komplexbildung (iii) häufigste Geometrie oktaedrisch (z.b. [Fe(CN) 6 )] 3 ) (iv) Komplexe sind oft gefärbt (d d-übergänge im sichtbaren Bereich, z.b. Cu 2+ blau) (v) Komplexe sind oft paramagnetisch (z.b. Fe 2+, d 5 ) (vi) Ein gegebenes Metall weist mehrere xidationsstufen auf (z.b. Fe, +2, +3,...) (je 1P = 6P) (b) Nach Kristallfeldtheorie ist die Aufspaltung so: Der Cyanidligand ruft eine große Kristallfeldaufspaltung Δ hervor (eher low spin), Chlorid jedoch eine kleine (eher high spin). (4P) 9. Beschreiben Sie die großtechnische Gewinnung von Natriumcarbonat (Solvay-Verfahren). (i) Calciumcarbonat wird "gebrannt": CaC 3 Ca + C 2

4 (ii) Eine konz. NaCl-Lösung wird mit Ammoniak gesättigt und anschl. mit dem C 2 aus (i) und (iii) gesättigt; dabei fällt das nicht sehr lösliche Natriumhydrogencarbonat aus: NaCl + NH 3 + C 2 + H 2 NaHC 3 + NH 4 Cl (iii) Das NaHC 3 wird abfiltriert und thermisch zersetzt: 2NaHC 3 Na 2 C 3 + C 2 + H 2 (iv) Ammoniak wird aus Ca und NH 4 Cl neu generiert: Ca + 2NH 4 Cl CaCl 2 + 2NH 3 + H 2 (je 2P = 8P) Gesamtreaktion: CaC 3 + 2NaCl Na 2 C 3 + CaCl 2 (2P) 10. Folgende Gleichungen (alle außer (ii) finden in wässeriger Lösung statt) sind zu ergänzen und auszugleichen: (i) Mn 4 + 2 2 Mn 2+ + 2 (g) (ii) Cu (f) + H 2 S 4 (heiß, konz.) CuS 4 + S 2 (g) (iii) 3 + I I 2 (f) (iv) N 2 (g) + H 2? Mn 4 + 5e + 8H + Mn 2+ + 4H 2 2 2 2e 2 (i) 2Mn 4 + 5 2 2 +16H + 2Mn 2+ + 5 2 +8H 2 Cu 2e Cu 2+ H 2 S 4 + 2e + 2H + S 2 +2H 2 (ii) Cu + H 2 S 4 + 2H + Cu 2+ + S 2 +2H 2 oder Cu + 2H 2 S 4 CuS 4 + S 2 +2H 2 3 + 2e + 2H + 2 +H 2 2 I 2e I 2 (iii) 3 + 2I + 2H + I 2 + 2 + H 2 oder 3 + 2I + H 2 I 2 + 2 + 2H (iv) 2N 2 (g) + H 2 HN 2 + HN 3 11. Das Löslichkeitsprodukt von Quecksilbersulfid beträgt 10 54 Mol 2 L 2. In einem Schwimmbecken mit 1000 m 3 Wasser wird eine gesättigte Quecksilbersulfidlösung angesetzt. Wie viele Hg 2+ -Ionen befinden sich im Schwimmbecken? LP = [Hg 2+ ][S 2 ] = 10 54 ; [Hg 2+ ] = [S 2 ]; [Hg 2+ ] = (10 54 ) = 10 27 M. Das Volumen der Lösung = 10 3 m 3 = 10 6 L. Da lösen sich 10 27 10 6 = 10 21 Mol = 10 21 N A Ionen = 10 21 6 10 23 600 Ionen. 12. Was verstehen Sie unter: (i) einem Kronenether (ii) einer Zustandsfunktion (iii) einer Wasserstoffbrücke (iv) dem Inert-Paar-Effekt? (i) Ein Kronenether ist ein organisches Ringmolekül bestehend aus n ( )- Einheiten (üblich ist n = 4-6). Beispiel: 18-Krone-6.

5 (ii) Eine Zustandsfunktion ist eine thermodynamische Funktion eines Systems, die nur vom aktuellen Zustand des Systems und nicht von seiner Geschichte abhängt (z.b. Entropie). (iii) Die Wasserstoffbrücke stellt eine starke Art der Dipol-Dipol-Wechselwirkung dar. Sie kommt in Systemen δ X H δ+ Y (δ) bei elektronegativen Atomen X und Y (haupts. F,, N, Cl) zustande. Beispiel: Ketten aus HF ( F H F H F H ). (Nach den Folgen wurde nicht gefragt!) (iv) Bei den schwersten Elementen der Gruppen 13-15 ist die stabilste xidationsstufe um 2 kleine als die "Gruppenvalenz" (Hauptgruppennummer), z.b. Pb(II) statt Pb(IV). 13. Wie wird für (i) metallische bzw. (ii) nichtmetallische Elemente das Elektrodenpotential definiert? Nehmen Sie als konkrete Beispiele (i) Magnesium bzw. (ii) Chlor. Ungefähr wie groß (in Volt, mit Vorzeichen) sind die Standardpotentiale der reaktivsten Metalle bzw. Nichtmetalle? Prinzipiell werden Fälle (i) und (ii) gleich gehandhabt; man mißt das Potential einer Gesamtzelle, wo die eine Halbzelle, in der reduziert wird, das zu untersuchende Element enthält (die genaue Natur der Halbzelle muß vorsichtig präzisiert werden!) und die andere Halbzelle eine (störungsanfällige!) Standardwasserstoffelektrode (Pt-Elektrode mit H 2 - Gasfluß in H + -Lösung, H 2 -Druck 1 atm, H + -Aktivität 1M, 25 C) ist. Bei (i) sollte die erste Halbzelle aus Magnesiummetall in einer Lösung eines Magnesiumsalzes (Aktivität = 1M, 25 C) bestehen. Die Gesamtzelle ist dann (Pt)H 2 H + Mg Mg 2+. Das gemessene Potential ist negativ und entspricht der Reaktion Mg 2+ + 2e Mg. Bei Gasen ist es schwieriger; Man benötigt eine Lösung mit dem Anion des Elements. Eine mögliche Zelle wäre z.b. (Pt)H 2 H + Cl Cl 2 (Pt). Das gemessene Potential ist positiv und entspricht der Reaktion Cl 2 + 2e 2Cl. (6P) Standardpotentiale werden immer für Reduktion definiert; positive Potentiale entsprechen günstigen Prozessen (ΔG = nfe). Die Alkalimetalle sind starke Reduktionsmittel; dementsprechend sind ihre Kationen sehr schwer zu reduzieren, es resultieren hohe negative

6 Potentiale von ca. 3 V. Die Halogene sind starke xidationsmittel und werden somit leicht zu X reduziert, es resultieren hohe positive Potentiale (bei Fluor ca. +3 V). (4P) 14. Unten (Abb.1) sehen Sie einen Ausschnitt eines ionischen Strukturtyps. Um welchen Typ handelt es sich? Welche sind die schattierten bzw. nicht-schattierten Atome und wie sind ihre jeweiligen Koordinationszahlen und Koordinationsgeometrien? Das ist die Rutil-Struktur (Ti 2 ). KZ des Titans (offene Kreise, z.b. in der Mitte der Zelle) ist 6, oktaedrisch; KZ des Sauerstoffs (schattierte Kreise, z.b. direkt links oder rechts des zentralen Titans) ist 3, trigonal planar. SH H 2 N H C C H Abb. 1 (Aufgabe 14) Abb. 2 (Aufgabe 16) Sonderfragen 15 18 15. Die Kraft F zwischen zwei Ladungen q 1 und q 2 bei einem Abstand r ist gegeben durch F = q1q2. Dabei ist ε 0 die Permittivität des Vakuums. Beweisen Sie, daß die Dimensionen 2 4πε r 0 dieser Konstante I 2 L 3 M 1 T 4 sind. (Als Dimension der Elektrizität wird hier die Stromstärke I entsprechend der Einheit Ampere verwendet). ε 0 = q 1 q 2 /4πr 2 F. Eine Kraft verleiht einer Masse eine Beschleunigung und hat somit Dimensionen MLT 2. Eine Ladung hat Dimensionen IT. So sind die Dimensionen von ε 0 gegeben durch (IT) 2 /L 2 (MLT 2 ) = I 2 L 3 M 1 T 4. 16. Das Formelbild (Abb. 2, oben rechts) zeigt die Aminosäure Cystein. Vom zentralen Kohlenstoff aus ist der Wasserstoffsubstituent nach hinten (in das Papier hinein) gerichtet. Wie ist die Konfiguration (R oder S; Begründung!) am zentralen Kohlenstoff? Ändert sich die Konfiguration, wenn die SH-Gruppe durch CH 3 (Alanin) bzw. H (Glycin) ersetzt wird?

7 Prioritäten basieren auf Kernladungszahlen! Das Molekül hat bereits die korrekte rientierung, mit dem H-Atom (niedrigste Priorität) nach hinten. Die Prioritäten der anderen Substituenten am zentralen C sind: NH 2 (höchste, N hat die größte Kernladungszahl aller direkten Substituenten), dann SH 2 (bei gleichen Atomen gehe man ein Atom weiter auf S > ), dann CH. Die Priorität nimmt (beginnend mit NH 2 ) im Uhrzeigersinn ab, also R- Konfiguration. (4P) Bei Alanin hat die CH 3 -Gruppe nun niedrigere Priorität als CH, die Konfiguration ändert sich auf S. (3P) Bei Glycin gibt es zwei gleiche Substituenten; das Molekül ist nicht mehr chiral. (3P) 17. Kommentieren Sie folgende Behauptungen über die Edelgase: (i) Alpha-Teilchen sind Heliumatome (ii) Die erste Edelgasverbindung war XePtF 6 (iii) KrF 2 ist ein lineares Molekül (iv) Radon ist etwa siebenmal schwerer als Luft. (i) Falsch. Den Alpha-Teilchen fehlen zu He-Atomen die Elektronen. Bei Kernreaktionsgleichungen ist das egal, denn diese berücksichtigen keine Elektronen. (Tatsächlich bilden sich Helium-Atome langsam in radioaktivem Material, weil die Alpha- Teilchen Elektronen "klauen".) (ii) Jein. Da die Ionisierungspotentiale von 2 und Xe fast gleich sind, und 2 reagiert mit PtF 6 unter Bildung von + 2 PtF 6, ist man auf die Idee gekommen, auch Xe mit PtF 6 umzusetzen. Das Produkt (ein roter Feststoff) enthielt mit Sicherheit die ersten Xe- Verbindungen, ist aber eine komplizierte Mischung aus verschiedenen Xe-haltigen Spezies und bis heute nicht vollständig charakterisiert worden. (iii) Richtig, wie XeF 2 oder I 3, 10e (einschl. 3 freie Paare) am zentralen Atom macht nach VSEPR linear. (iv) Richtig, bei Gasen ist die Dichte proportional zur Molmasse (PV = nrt, n = m/m, Dichte = m/v = PM/RT). Molmasse Luft (Mittelwert) ist etwa 30 (N 2 28, 2 32), Atommasse Rn = 222 (nicht Ra = 226!!), Verhältnis etwa 1:7.5. 18. (i) Ein radioaktives Nuklid hat eine Halbwertzeit von 1 Tag. Nach 17 Tagen ist die ursprüngliche Menge wegen radioaktiven Zerfalls auf 1 g zurückgegangen. Nach wie vielen Tagen gab es noch 4 g? (ii) Wie groß ist der Massendefekt des Nuklids 1 1 H? (i) Nach 15 Tagen (zwei weitere Halbwertzeiten vierteln die Menge). (ii) Null (Massendefekt kommt von Wechselwirkungen zwischen Nukleonen, es gibt aber nur eins).