(51) Int Cl.: B64G 1/64 (2006.01) B64G 1/22 (2006.01)



Ähnliche Dokumente
CABLE TESTER. Manual DN-14003

Snap-in switch for switches PSE, MSM and MCS 30

11 EN Page 1 of 2 Standard: INTERPRETATION RELATED TO. Clause(s):

Dolby International AB

Test Report. Test of resitance to inertia effects of Zirkona Backwall. Sled Test (Frontal Impact) 20 g / 30 ms

Evidence of Performance

p^db=`oj===pìééçêíáåñçêã~íáçå=

Newest Generation of the BS2 Corrosion/Warning and Measurement System


Formatting the TrekStor i.beat run

Release Notes BRICKware Copyright 23. March 2010 Funkwerk Enterprise Communications GmbH Version 1.0

Daimler. Patent Portfolio PRE-SAFE.

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

Word-CRM-Upload-Button. User manual

miditech 4merge 4-fach MIDI Merger mit :

Kuhnke Technical Data. Contact Details

Registration of residence at Citizens Office (Bürgerbüro)

(51) Int Cl. 7 : G09F 21/12. (72) Erfinder: Schimanz, Gerhard

Electrical tests on Bosch unit injectors

(51) Int Cl. 7 : G06K 7/00, G06K 13/08. (72) Erfinder: Baitz, Günter Berlin (DE) Kamin, Hartmut Berlin (DE)

IP X4 MOA/SL/FL IP44, CH IP24. Montage-Anleitung Instructions de montage Assembling instructions. 225 cm. 60 cm 0

Where are we now? The administration building M 3. Voransicht

p^db=`oj===pìééçêíáåñçêã~íáçå=

UWC 8801 / 8802 / 8803

2 IP X4 WLS/FL IP24. Montage-Anleitung Instructions de montage Assembling instructions. 225 cm. 60 cm 0

11 kw** E82MV222_4B kw**

*EP A2* EP A2 (19) (11) EP A2 (12) EUROPÄISCHE PATENTANMELDUNG. (43) Veröffentlichungstag: Patentblatt 2003/47

(51) Int Cl.: B23K 26/28 ( ) B23K 26/32 ( ) B23K 26/30 ( ) B23K 33/00 ( )

USBASIC SAFETY IN NUMBERS

Mock Exam Behavioral Finance

1. General information Login Home Current applications... 3

Kuhnke Technical Data. Contact Details

a) Name and draw three typical input signals used in control technique.

Pneu. Linearantriebe mit externer Gleitführung Baureihe PLS

Overview thermostat/ temperature controller

Erste Glasbläserbrille, die als Arbeitsschutzbrille. The first glassblower s glasses which can be referred to as safety glasses.

Datasheet. Page 1 of 7

Circular Knitting Machine

Hazards and measures against hazards by implementation of safe pneumatic circuits

EEX Kundeninformation

EG-Zertifikat. wurde das Teilsystem (genauer beschrieben im Anhang) the following subsystem (as detailed in the attached annex)

Schalten einer kapazitiven Last mit einem Transistor

ATEX-Check list. Compiled by: Date: Signature: Acceptable practice at the determination of flash point: Closed cup according to ISO 2719

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen

Die Bedeutung neurowissenschaftlicher Erkenntnisse für die Werbung (German Edition)

*EP A1* EP A1 (19) (11) EP A1 (12) EUROPÄISCHE PATENTANMELDUNG. (43) Veröffentlichungstag: Patentblatt 2002/18

PROFIBUS-DP Repeater 1 to 1 and 1 to 5 with optional level converter module

Rev. Proc Information

Wissenschaftliche Dienste. Sachstand. Payment of value added tax (VAT) (EZPWD-Anfrage ) 2016 Deutscher Bundestag WD /16

Electrical testing of Bosch common rail piezo injectors

H o c h s c h u l e D e g g e n d o r f H o c h s c h u l e f ü r a n g e w a n d t e W i s s e n s c h a f t e n

DIBELS TM. German Translations of Administration Directions

Titelbild1 ANSYS. Customer Portal LogIn

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

Preisliste für The Unscrambler X

Ich habe eine Nachricht für Sie

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Walter Buchmayr Ges.m.b.H.

I-Energieversorgung I-Power Supply

STRATEGISCHES BETEILIGUNGSCONTROLLING BEI KOMMUNALEN UNTERNEHMEN DER FFENTLICHE ZWECK ALS RICHTSCHNUR FR EIN ZIELGERICHTETE

Honeywell AG Hardhofweg. D Mosbach MU1H-1220GE23 R1001

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Electrical testing of Bosch common rail Injectors

Softwareupdate-Anleitung // AC Porty L Netzteileinschub

PELTIER-HOCHLEISTUNGSMODULE

WP2. Communication and Dissemination. Wirtschafts- und Wissenschaftsförderung im Freistaat Thüringen

HiOPC Hirschmann Netzmanagement. Anforderungsformular für eine Lizenz. Order form for a license

Simulating the Idle: A New Load Case for Vehicle Thermal Management

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank

Typenreihe GH Lifting Solenoids

Algorithms for graph visualization

Algorithms & Datastructures Midterm Test 1

SAMPLE EXAMINATION BOOKLET

Analogtechnik 2, Semestertest Technique analogique 2, Test de semestre

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Zubehör Accessories Accessoires

Umrüstung von SMA Wechselrichtern nach SysStabV Bernd Lamskemper

Electrical testing of Bosch common rail solenoid valve (MV) injectors

FACHKUNDE FüR KAUFLEUTE IM GESUNDHEITSWESEN FROM THIEME GEORG VERLAG

J RG IMMENDORFF STANDORT F R KRITIK MALEREI UND INSPIRATION ERSCHEINT ZUR AUSSTELLUNG IM MUSEUM LU

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!!

Bedienungsanleitung User Manual

Patentrelevante Aspekte der GPLv2/LGPLv2

prorm Budget Planning promx GmbH Nordring Nuremberg

Chemical heat storage using Na-leach

Power supply Interference suppressed acc. to DIN EN /- 4, EN 55011, EN CI. B, power factor corrected Power factor BöSha LED driver

Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision

Deceleration Technology. Rotary Dampers mit hohem Drehmoment WRD-H 2515 WRD-H 3015 WRD-H 4025 WRD-H

Typenreihe GH Lifting Solenoids

Das neue Volume-Flag S (Scannen erforderlich)

Parameter-Updatesoftware PF-12 Plus

MARKET DATA CIRCULAR DATA AMENDMENT

Building Instructions. Aufbauanleitung. Service-Hotline:

Einkommensaufbau mit FFI:

creative Factory GmbH

1.1 VoIP - Kein Notruf möglich. 1.2 VoIP - Vorrang von Notrufen

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN

Geometrie und Bedeutung: Kap 5

Transkript:

(19) (11) EP 1 727 733 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 02.07.2008 Bulletin 2008/27 (21) Application number: 04806804.3 (22) Date of filing: 18.11.2004 (1) Int Cl.: B64G 1/64 (2006.01) B64G 1/22 (2006.01) (86) International application number: PCT/IT2004/000638 (87) International publication number: WO 200/090162 (29.09.200 Gazette 200/39) (4) PASSIVE DEPLOYMENT MECHANISM FOR SPACE TETHERS PASSIVER AUSBRINGMECHANISMUS FÜR WELTRAUMSEILE MECANISME DE DEPLOIEMENT PASSIF DE FILINS SPATIAUX EP 1 727 733 B1 (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR (30) Priority: 24.03.2004 IT RM2004013 (43) Date of publication of application: 06.12.2006 Bulletin 2006/49 (73) Proprietor: Finmeccanica S.p.A. 0019 Roma (IT) (72) Inventor: LICATA, Renato I-137 Torino (IT) (74) Representative: Capasso, Olga et al de Simone & Partners SpA Via V.Bellini 20 00198 Roma (IT) (6) References cited: US-A- 4 083 20 CARROLL J A: "SEDS Deployer Design and Flight Performance" AIAA PAPER, [Online] no. 93-4764, 1993, XP00232266 Retrieved from the Internet: URL:http://www.tetherapplications.com/pape rs/ aiaa93-4764.pdf> [retrieved on 200-02-18] cited in the application PATENT ABSTRACTS OF JAPAN vol. 2000, no. 08, 6 October 2000 (2000--06) & JP 2000 128097 A (MITSUBISHI HEAVY IND LTD), 9 May 2000 (2000-0-09) RAITT D, VAN DER HEIDE E J, KRUIJFF M, HERMANNS F: "IAC-03-U.2.b.09: Space Spin-in from Textiles: Opportunities for Tethers and Innovative Technologies" 4TH INTERNATIONAL ASTRONAUTICAL CONGRESS, [Online] 29 September 2003 (2003-09-29), XP00232267 BREMEN, DE Retrieved from the Internet: URL:http: //www.delta-utec.com/iaf/iac-03-u 2.b.09- Textile-Spin-In-Heide.pdf> [retrieved on 200-02-18] PATENT ABSTRACTS OF JAPAN vol. 016, no. 42 (M-1313), 21 September 1992 (1992-09-21) & JP 04 19199 A (SUSUMU SASAKI; others: 01), 2 June 1992 (1992-06-02) LICATA R: "Tethered system deployment controls by feedback fuzzy logic" ACTA ASTRONAUTICA, vol. 40, no. 9, May 1997 (1997-0), pages 619-634, XP00232268 SABATH D, KAST W, KOWALCZYK M, KRISCHKE M, KRUIJFF M, VAN DER HEIDE E: "Results of the parabolic flight tests of the RAPUNZEL deployer" ACTA ASTRONAUTICA, vol. 41, no. 12, December 1997 (1997-12), pages 841-84, XP00232269 GATES S S ET AL: "ADVANCED TETHER EXPERIMENT DEPLOYMENT FAILURE" JOURNAL OF SPACECRAFT AND ROCKETS, AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. NEW YORK, US, vol. 38, no. 1, January 2001 (2001-01), pages 60-68, XP002007 ISSN: 0022-460 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 7001 PARIS (FR) (Cont. next page)

EP 1 727 733 B1 NAKAMURA Y, SAKAMOTO Y, HIRAYAMA H, YASAKA T: "ISTS 2000-d-09: Study on a Tether Deployment System (TDS) of a Micro Tethered Satellite" 22ND INTERNATIONAL SYMPOSIUM ON SPACE TECHNOLOGY AND SCIENCE, [Online] 28 May 2000 (2000-0-28), - 4 June 2000 (2000-06-04) XP002322660 TOKYO, JP Retrieved from the Internet: URL:http://ssdlwww.aero.kyushu-u.ac.jp/qu est/quest-1/papers/ 00ists_d-09.pdf> [retrieved on 200-02-18] GWALTNEY D A, GREENE M: "Design of a Reel Mechanism for Control of an Orbiting Single Tether System" 22ND SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 11 March 1990 (1990-03-11), - 13 March 1990 (1990-03-13) pages 363-367, XP002322661 COOKEVILLE, TN, USA 2

1 EP 1 727 733 B1 2 Description BACKGROUND OF THE INVENTION Field of the Invention [0001] The present invention relates to the field of the mechanisms for deployment of space tethers from earth orbiting spacecraft or satellite carriers and in particular to the class of expendable tether mechanisms for passive on orbit deployment of end-masses tethered by a long space tether and that do not require to be retrieved. [0002] Tethers many kilometres in length, to be stored by winding up onto the present mechanism, may be either conductive, usually made of copper or aluminium, or nonconductive, such as those made of Kevlar, Spectra, glass fibre, quartz fibre, et c. depending on the space tether application. [0003] One of the most important issues for an application requiring a tether many kilometres in length is the on-orbit deployment (and retrieval) operation, since unless the orbiting tethered masses have a difference in orbiting altitude of some kilometres (measured along the local vertical direction), the connecting tether will not have sufficient tension or separating force (due to the difference of the gravity gradients associated with the two end-masses) to allow a passive tether deployment. This means that the tether passive deployment will only be possible if the friction force of the tether deployment (within the tether mechanism) is smaller than the tension force along the tether, due to the effect of the Earth gravitational field onto the tethered masses. [0004] Low friction for a tether deployment mechanism is therefore very important, in particular in order to allow a passive deployment and control for conductive or nonconductive space tether applications, such as electrodynamic propulsion for orbit raising or maintenance, deorbiting of a spacecraft at the end of its operational lifetime, and other non-conductive tether applications. [000] The field of application of the present invention is therefore the deployment mechanisms for space tethers, having a very low early deployment friction or resistance, in order to allow passive deployment of a tethered mass with only the application of an initial and rather small separation impulse provided by a spring separation mechanism or a similar space separation device. Description of the Prior Art [0006] Conductive tethers may be used to provide propulsion for orbital adjustment. It is a simple fact of physics that a current flowing through a conductor creates a magnetic field. If a satellite sends current generated by its solar arrays through a conductive tether, the direction of the current may be such as to generate a magnetic field in the opposite direction with respect to the Earth s magnetic field, with consequent magnetic "drag" which degrades the satellite orbit. If the satellite sends the current 1 20 2 30 3 40 4 0 through the conductive tether in the opposite direction, it generates a magnetic field which works with the Earth s magnetic field, and the satellite orbit will rise. [0007] An important application for the type of passive deployer disclosed here is a Low Earth Orbit (LEO) satellite carrier or a launcher last stage equipped with a deorbiting device having several-kilometre long and conductive tether and a passive deployer of the type here described and illustrated in Figure 1 (reflecting the state of the art), with its protective cover 1 mounted on an exterior spacecraft panel 2 by means of three pyro-bolts 3. [0008] This de-orbiting device represents a state-ofthe-art electro-dynamic tether system for de-orbiting of small and medium size LEO satellites and upper stages of launchers. Analyses show that the use of tethers for orbital adjustment is far more efficient in terms of spacecraft mass requirements than the use of chemical thrusters, though the orbital changes are also slow. Current studies indicate that a 2-kilogram tether deployed by a 100-kilogram satellite in an 80-kilometre high orbit can bring the satellite back to Earth in three months. [0009] A reference to this type of space tether application is given by the following conference papers: 1. "EDOARD: A Tethered Device for Efficient Electro-dynamic De-Orbiting of LEO Spacecraft", presented at the Space Technologies & Applications International Forum (STAIF 2001), Conference on Innovative Transportation Systems, Albuquerque, NM, USA, February 11-1, 2001, by Licata R., Iess L., Bruno C., and Bussolino L. 2. "EDOARD: An Electro-dynamic Tether Device for Efficient Spacecraft De-Orbiting", presented at the 3rd European Conference on Space Debris, Vol.2, Darmstad, Germany, March 19-21, 2001 by Licata R., Iess L., Bruno C., Bussolino L., Anselmo L., Schirone L., and Somesi L. In these published papers, presented by the present inventor and other authors, only the electro-dynamic tether application for space has been described and illustrated. The tether deployment mechanism and method of tether deployment, which form the subject of the present patent application, have been neither published nor disclosed before. The inventor is also aware of the following space tether deployment mechanism concepts and associated publication references, which however have not the same or similar design nor do they present the same characteristics of the deployment mechanism and passive deployment method disclosed here. These other tether deployment mechanisms, for similar space applications, are described in the following conference papers or journal articles: 3. Caroll, J.A., "SEDS Deployer Design and Flight Performance", AIAA Paper 93-4764, 1993. whose mechanism was used in the NASA Missions SEDS- 1 in 1993 and SEDS-2 in 1994. In SEDS-1, a 2- Kilogram mini-satellite was deployed down towards 3

3 EP 1 727 733 B1 4 the Earth. In 1994, the SEDS-2 experiment was performed with the same gear as SEDS-1, deploying a 20-Kilometre long tether. This document is considered to be the closest prior art document. 4. Koss, Stephen, "Tether Deployment Mechanism for the Advanced Tether Experiment (ATEX)", 7th European Space Mechanism and Tribology Symposium, p. 17-12, European Space Agency, Noordwijk, The Netherlands, 1997.. Licata, R. Gavira, J.M. Vysokanov, V. Bracciaferri, F., "SESDE - A First European Tether Experiment Mission", IAF-paper-98-A709, 49th International Astronautical Congress, Melbourne, Australia, 1998, in which the Small Expendable Spool Deployer (SESDE) concept is illustrated. 6. Nakamura, Yosuke, "Ground Experiments of a Micro Tether Reeling Mechanism", 23rd Intern. Symposium on Space Technology and Science, p. 887-892, Matsue, Japan, May 2002. 1 20 2 30 3 40 4 0 [00] None of these tether mechanisms has the characteristics or advantages of the mechanism and deployment method disclosed here, which allow the deployment of a full passive space tether from an orbiting spacecraft carrier, starting from the early stage of deployment, when gravity gradient tensions are still very low. [0011] The SEDS deployer design presented in Ref. 3. and being used in some space tether applications such as the SEDS missions, although it also implements tether storage or winding of the fixed spool type, similar to the one indicated in the present patent application, has in its outlet position a "barber pole" tether deployment brake, comprising a motor to rotate the "pole" onto which the tether is also wound on. The number of spirals on the "pole" of tether winding is controlled by the electrical motor and these make the tether deployment friction force used for its deployment brake varying. Consequently, even with its minimum winding of tether spirals onto the "barber pole" during early tether deployment phases, some high residual tether deployment friction force is always present in this type of mechanism, making very difficult if not impossible an early stage passive space tether deployment performance, as that which can be obtained by the mechanism disclosed in the present application. [0012] On the other hand, the ATEX mechanism indicated in Ref. 4. above, is not designed for cable tether but for tape tether, with tether reel and motor and hence very high deployment friction force and rather strong mechanical complications, not at all present in the mechanism described in the present application. [0013] The "Advanced Tether Experiment" (ATEX) in early 1999 was an element of a satellite named the "Space Test Experiment" (STEX), that tested a suite of new technologies for future NRO intelligence or support satellites. ATEX was intended to test a new tether scheme that was implemented as a tape over six-kilometre long and three-centimetre wide, with reinforcements consisting of fibre strands running down its length. However, the experiment was a complete failure, with only 22 meters of the tether being successfully deployed before STEX determined an out-of-bounds condition with tether deployment. STEX ejected the ATEX package to protect itself. The ATEX mechanism comprises a stepper motor driving a pair of pinch rollers pulling the tether off a level-wound reel. [0014] The SESDE mechanism design, illustrated and published in Ref., is also based on the tether winding of fixed spool type, but it does not possess the very low friction device, represented by the single tether layer cylindrical part for the early tether deployment, which is practically friction-less, the simple incorporated spring separation device and the passive tether deployment brake device of the tether mechanism disclosed in the present application. [001] Finally, the tether mechanism of Ref. 6 is not at all similar to the mechanism of the present patent application, since it implements a rotating reel for its tether storage and winding, with the consequence of requiring a reel motor and brake and other associated electromechanical complexities, in order to overcome high friction forces due to tether unwinding, reel shaft rotational friction force and torque, etc. OBJECTS OF THE INVENTION [0016] The main object of the present invention is to provide an expendable space tether deployment mechanism capable of passively deploying cable tethers made of various materials and long up to many kilometres (e.g. 20-30 Km) with very low friction force at the early stage of deployment, an incorporated impulsive separation device for the required tethered end-mass with minimum complexity. The tether structure (i.e. diameter, layers and materials) and length required by the specific application will determine the overall mechanism sizing, including fixed spool and external cylinder sizing, separation spring sizing et c. [0017] The tether deployment mechanism proposed in the present patent application may be mounted onto any external flat surface of a spacecraft, as shown in Figure 2, with external cover 1, mechanical interfaces, including some (usually three) pyro-bolts 3 to be actuated for an impulsive separation to initiate the tether deployment, data and power interfaces with the carrier spacecraft by the cables 4 and the connectors also shown in the same figure. [0018] The space tether mechanism disclosed here attains the object indicated above through the implementation of the following main mechanism features illustrated in the cross section drawing of Figure 3: a cylinder 6 onto which a first layer of some hundreds of meters of tether length 7 is wound-up, providing hence the very low friction or resistance force for the early part of the space tether deployment operation; 4

EP 1 727 733 B1 6 a fixed cylindrical tether spool 8, representing the deployer-storing device for the remaining kilometres of tether length. Continuity of the tether winding (and deployment) from the first part on the mechanism external cylindrical surface 6 and its interior tether spool 8 is allowed by a longitudinal cut 9 made along the external cylinder length, having a width of only a few millimetres (depending upon the tether diameter size) but sufficient to allow the tether passage at the end of the first part of the deployment and the starting of the internal tether spool deployment; a spring separation mechanism, represented by the centrally mounted spring on the interior interface plane 11 and the (three) pyro-bolts 3, used for installing the deployer cover 1 onto the carrier satellite structure 2 and also for separating these deployer parts on orbit with a deployment time command sent through the carrier spacecraft; a passive tether spool deployment brake 12, able to passively start its activation during the last part of tether deployment. This is implemented in the tether spool winding by a device of daisy shape that opens up or deploys when freed by the space tether unwinding, as soon as it reaches the planned deployed tether length or tether spool level, as illustrated in the same Figure 3. [0019] A further object of the present invention is to provide a method for the passive deployment of a tether by means of the mechanism cited above. This method is described below and is also detailed in the characterising part of claim 3. DESCRIPTION OF THE PREFERRED EMBODIMENTS [0020] The mechanism described here may be fitted onto a satellite bus with minimum mass, complexity and cost, as it limits the number of tether deployment mechanism components to a minimum, while minimising the risk of failure. [0021] Minimum electrical and mechanical or structural interfaces are required, as also shown in Figures 2 and 4. [0022] In the mechanism described here, the impulse for the separation and starting of the on-orbit tether deployment is provided by a simple system illustrated in Figure 3, with a spring accommodated at the centre of the fixed tether spool 8 and attached to it by a mechanical interface plane 11. When the deployer cover 1 is freed by the simultaneous actuation of the (three) pyrobolts 3 through a suitable ground command, the central separation spring is freed at one end and hence imparts the planned impulse to the tethered deployer mass and transforms its stored energy in form of kinetic energy of the tethered masses. [0023] As shown in Figure 4, after the actuation of the pyro-bolts 3 and spring system, the first portion of tether 7, wound-up onto the outer mechanism cylinder 1 20 2 30 3 40 4 0 6, will start deploying the mechanism part with tether spool 8, the deployer cover 1 and the spring system will separate from the carrier spacecraft 2 onto which the deployer interface plane 13 and the electronics boxes, comprising the hollow cathode 14 and the controller 1, the tether attachment point with its three-axis magnetometer 16, together with data and power interfaces 17 will remain attached. [0024] Therefore during the on-ground preparation activity, the many-kilometre long conductive tether is hence wound-up firstly onto the inner cylindrical spool 8 and hence onto the outer cylinder 6 with nearly zero early tether deployment friction (having only one single layer of tether winding on the exterior cylinder 6) and thus providing a passive deployment after a small initial separation impulse. [002] After on-ground assembling of the tether mechanism, during installation activity on the carrier vehicle and ground and space transportation, the outer tether winding tension is kept by a simple V-shaped device 18, mounted on an interface plane 13 that is installed onto the carrier spacecraft by (usually) three bolts 19, as shown in Figure 4. [0026] Once the on-orbit deployment of the first part of tether length is completed, the tether will deploy passing through the cut 9 of the external cylinder illustrated in Figure 3, and then the fixed spool tether will start deploying with higher deployment friction or resistance with respect to the earlier part of the deployment. [0027] Depending on the tethered masses, the deployed tether length and also the initial separation rate and friction values, at some stage of the many-kilometre long deployment, when the differential gradient applied to the tethered masses in the earth gravitational field is sufficiently high, the tether deployment rate will start gradually increasing. Unless some higher deployment resistance or friction force is applied, the deployment rate could reach so high values as ten or more metres per second in case of very long deployments. In any case, before the end of the deployment, in order to limit the maximum value of deployment rate during operations and even decrease it in its last part of deployment, a braking device 12 has been introduced in the tether spool winding so that it is freed to deploy as a daisy and providing high friction, hence high tether deployment resistance, for the remaining part of the space tether to be deployed. Claims 1. A deployment mechanism for expendable space tether applications comprising essentially a fixed single-layer tether winding cylinder (6), a multiple-layer tether winding central spool (8), an initial separation impulse mechanism () for passive tether deployment, and a tether deployment brake (12) of daisylike shape; characterised in that

7 EP 1 727 733 B1 8 said mechanism accommodates a first portion of tether (7), many kilometres in length, wound up on said inner multi-layer spool (8), followed by a second portion of said tether (7), many hundred metres in length, wound up in a single layer on said outer cylinder (6); in order to allow the passage of the tether (7) both on ground, during the required tether winding and preparatory operations, and on-orbit, during the actual deployment by the unwinding of its two types of tether windings, a surface cut (9) of said outer cylinder (6) of sufficient width and along most of its length is provided such that once the continuous space tether is deployed on orbit, the unwinding tether will pass through said cylinder cut (9) and will continue to unwind from said multi-layer central spool (8) till the end of deployment; said initial separation impulse mechanism for passive tether deployment comprises a central sinusoidal spring (), mounted inside the core of said fixed multi-layer tether spool (8) and capable of storing the required energy for initial separation of the tethered masses; said separation spring () is kept in a compressed state, during ground operations and ground and space transportation and before on-orbit separation and deployment, by some, usually three, pyrobolts (3) mounted on the mechanism cover (1) and its interface plane with the external surface (2) of the carrier spacecraft; at separation time, on command coming from ground through the carrier spacecraft telemetry and telecommand on-board system, said pyro-bolts (3) are actuated, said central spring () is released and the whole deployment mechanism, with its cover (1), spring () and full tether windings, will separate about the orbit local vertical direction from said carrier spacecraft (2); and said passive tether deployment brake (12) of daisy-like shape and flexible material, incorporated within said centrally fixed multi-layer spool tether winding (8) and fixed on the spool central core mounting, will deploy on-orbit during tether deployment operation at the planned length of the deployed tether or distance of the tethered end-masses; the deployment of this device increases by the planned magnitude or amount the tether deployment friction resistance force, so that the decreasing of the tether deployment rate from the deployer mechanism is gradually provided and applied until the end of the deployment operation. 2. The deployment mechanism claimed in claim 1, further comprising a tether mechanism interface plane (13), to be bolted onto said external surface (2) of the carrier spacecraft, an external protective cover (1) bolted by said pyro-bolts (3) to said interface 1 20 2 30 3 40 4 0 plane (2) with the carrier spacecraft, mountings of the carrier-end tether attachment (16), electronic boxes (17), data and power interface connectors (), and an outer tether winding V-shaped gripping or restraining device (18); characterised in that said tether mechanism interface plane (13) is bolted to an external surface (2) of said carrier spacecraft by substantially three simple bolts (19) and remains mounted onto the external surface of the carrier, with electronics and other components of the deployment device, after onorbit initial separation of the deployer mechanism and deployment operations of the tether and the tethered end-masses; in that said external protective cover (1) bounded by said pyrobolts (3) to the interface plane (13) with said carrier spacecraft is bolted as a single structure to said tether winding spool (8) structures with said spring separation device () incorporated; said cover (1) is also used as a protective shell, for the tether windings and all the other deployer mechanism components, mainly against potential micro-meteorite impacts and the material aging effects due to ultra-violet ray exposure or to exposure to other types of dangerous space radiation; said mountings of the attachment point of the tether end at the carrier spacecraft side, said electronics boxes (17) and said data and power interface connectors () of the tether application system, such as for the electro-dynamic tether propulsion application, and said V-shaped outer tether winding restraining or gripping device (18) are all mounted to be fixed and to remain on the mechanism interface plane, on the exterior of the carrier spacecraft until the end of the space tether application; the carrier spacecraft bound electronics components for the electro-dynamic tether application are represented by a hollow cathode (14), relays and current measurement and control electronics (1); and said V-shaped tether winding gripping device (18) is of elastic (beam) type and its mounting on the interface plane is in correspondence of said outer tether winding cylinder (6) end-border, so that the first few single layer tether winding spirals are gripped to the cylinder surface and the tether winding tension kept until on-orbit deployment separation action for which these tether winding spirals and cylinder are freed from said V-shaped restraining device (18). 3. A passive method for tether unwinding, using the mechanism claimed in claim 1, characterised in that said tether unwinding comprises the following steps: an impulse applied for separation from said spacecraft (2) performed by said spring (); tether 6

9 EP 1 727 733 B1 unwinding from said single-layer cylindrical outer spool (6), involving a first tether length of many hundred metres with tether deployment resistance or friction force of value nearly equal to zero; further tether unwinding from said multi-layer spool (8), located inside said outer single-layer spool (6) of the remaining portion of the many kilometres long tether; and tether deployment braking action resulting from a constant friction force applied by means of said brake (12), through which said tether (7) is made to pass. Patentansprüche 1. Ausbringmechanismus für Anwendungen von Einweg-Weltraumhalteseilen, welcher im Wesentlichen einen befestigten einschichtigen Halteseil-Wicklungszylinder (6), eine mittlere mehrschichtige Halteseil-Wicklungsrolle (8), einen anfänglichen Trennimpulsmechanismus () zum passiven Ausbringen des Halteseils und eine Halteseilausbringbremse (12) margaritenblütenartiger Form umfassen; dadurch gekennzeichnet, dass der Mechanismus einen viele Kilometer langen ersten Abschnitt des Halteseils (7) umfasst, der auf der inneren mehrschichtigen Rolle (8) aufgewickelt ist, gefolgt von einem viele hundert Meter langen zweiten Abschnitt des Halteseils (7), der in einer einzelnen Schicht auf dem äußeren Zylinder (6) aufgewickelt ist; um das Vorbeilaufen des Halteseils (7) sowohl auf dem Boden während der erforderlichen Halteseilaufwicklungs- und Vorbereitungsoperationen als auch im Weltraum während des tatsächlichen Ausbringens durch das Abwickeln seiner beiden Arten der Halteseilwicklungen zu ermöglichen, ein Oberflächenschnitt (9) in dem äußeren Zylinder (6) von ausreichender Breite und entlang dem größten Teil seiner Länge bereitgestellt wird, derart, dass, sobald das durchgehende Weltraum-Halteseil im Weltraum ausgebracht wird, das sich abwickelnde Halteseil durch den Zylinderschnitt (9) hindurch läuft und sich bis zum Ende des Ausbringens weiter von der mittleren mehrschichtigen Rolle (8) abwikkelt; der anfängliche Trennimpulsmechanismus zum passiven Ausbringen des Halteseils eine mittlere sinusförmige Feder () umfasst, welche innerhalb des Kerns der befestigten mehrschichtigen Halteseilrolle (8) angebracht ist und die für die anfängliche Trennung der gehaltenen Massen erforderliche Energie speichern kann; die Trennfeder () während der Bodenoperationen und während des Boden- und Weltraumtransports und vor der Trennung und dem Ausbringen im Weltraum durch einige, gewöhnlich drei, Pyroschrauben (3), die auf der Abdekkung (1) des Mechanismus und ihrer Grenzflächenebene mit der äußeren Fläche (2) des Träger-Raumfahrzeugs 1 20 2 30 3 40 4 0 angebracht sind, in einem komprimierten Zustand gehalten wird; im Trennungszeitpunkt auf einen Befehl, der über die Telemetrie des Träger-Raumfahrzeugs und das ferngesteuerte Bordsystem vom Boden kommt, die Pyroschrauben (3) betätigt werden, die mittlere Feder () freigegeben wird und der gesamte Ausbringmechanismus mit seiner Abdeckung (1), seiner Feder () und seinen vollständigen Halteseilwicklungen sich in lokaler vertikaler Raumrichtung von dem Träger-Raumfahrzeug (2) trennt; und die Bremse (12) margaritenblütenartiger Form und flexiblen Materials für das passive Ausbringen des Halteseils, welche in die in der Mitte befestigte Mehrschichtrollenwicklung (8) des Halteseils eingebaut ist und auf der Befestigung des Zentralkerns der Rolle angebracht ist, während der Halteseil-Ausbringoperation im Weltraum bei der geplanten Länge des ausgebrachten Halteseils oder der geplanten Entfernung der gehaltenen Endmassen eingesetzt wird; der Einsatz dieser Vorrichtung die Reibungskraft beim Ausbringen des Halteseils um die geplante Größe oder Menge erhöht, so dass der Rückgang der Ausbringgeschwindigkeit des Halteseils aus dem Ausbringmechanismus bis zum Ende der Ausbringoperation allmählich bereitgestellt und angewendet wird. 2. Ausbringmechanismus nach Anspruch 1, welcher ferner eine Grenzflächenebene (13) des Halteseilmechanismus, welche auf die äußere Fläche (2) des Träger-Raumfahrzeugs zu schrauben ist, eine äußere Schutzabdeckung (1), welche durch die Pyroschrauben (3) an die Grenzflächenebene (2) mit dem Träger-Raumfahrzeug geschraubt ist, Befestigungen der Halteseilbefestigung (16) am Trägerende, Elektronikkästen (17), Daten- und Stromschnittstellenverbinder () und eine äußere V-förmige Klemm- oder Rückhaltevorrichtung (18) für die Halteseilwicklung umfasst; dadurch gekennzeichnet, dass die Grenzflächenebene (13) des Halteseilmechanismus im Wesentlichen durch drei einfache Schrauben (19) an eine äußere Fläche (2) des Träger- Raumfahrzeugs geschraubt ist und mit der Elektronik und anderen Komponenten der Ausbringvorrichtung nach einer anfänglichen Trennung des Ausbringmechanismus im Weltraum und Ausbringoperationen des Halteseils und der gehaltenen Endmassen auf der äußeren Fläche des Trägers befestigt bleibt; dass die äußere Schutzabdeckung (1), welche durch die Pyroschrauben an die Grenzflächenebene (13) mit dem Träger-Raumfahrzeug gebunden ist, als Einzelstruktur an die Strukturen der Halteseil-Wicklungsrolle (8) mit der eingebauten Feder- Trennvorrichtung () geschraubt ist; die Abdekkung (1) auch als Schutzhülle für die Halteseilwicklungen und alle anderen Komponenten des Ausbringmechanismus verwendet wird, hauptsächlich 7

11 EP 1 727 733 B1 12 gegen mögliche Mikrometeoriteneinschläge und die Materialalterungseffekte aufgrund von ultravioletter Bestrahlung oder Bestrahlung mit anderen Arten gefährlicher Weltraumstrahlung; die Befestigungen des Befestigungspunktes des Halteseilendes auf der Seite des Träger-Raumfahrzeugs, die Elektronikkästen (17) und die Daten- und Stromschnittstellenverbinder () des Halteseil-Anwendungssystems, z.b. für die elektrodynamische Halteseil-Vortriebsanwendung, und die äußere V- förmige Rückhalte- oder Klemmvorrichtung (18) für die Halteseilwicklung alle so angebracht sind, dass sie befestigt sind und bis zum Ende der Halteseilanwendung im Weltraum auf der Grenzflächenebene des Mechanismus auf der Außenseite des Träger- Raumfahrzeugs bleiben; die an das Träger-Raumfahrzeug gebundenen Elektronikkomponenten für die elektrodynamische Halteseilanwendung durch eine Hohlkathode (14), Relais und die Strommessund -regelelektronik (1) dargestellt werden; und die V-förmige Klemmvorrichtung (18) für die Halteseilwicklung elastischer (Stangen-)Art ist und ihre Befestigung auf der Grenzflächenebene mit der Endbegrenzung des äußeren Halteseil-Wicklungszylinders (6) in Übereinstimmung steht, so dass die ersten wenigen einschichtigen Halteseilwindungen an die Zylinderoberfläche geklemmt werden und die Halteseil-Wicklungsspannung bis zum Weltraumausbring-Trennvorgang bewahrt wird, für welchen diese Halteseilwindungen und der Zylinder von der V-förmigen Rückhaltevorrichtung (18) befreit werden. 3. Passives Verfahren zur Halteseilabwicklung unter Anwendung des Mechanismus nach Anspruch 1, dadurch gekennzeichnet, dass die Halteseilabwicklung die folgenden Schritte umfasst: einen für die Trennung von dem Raumfahrzeug (2) angewendeten Impuls, der von der Feder () ausgeht; Abwickeln des Halteseils von der einschichtigen zylindrischen äußeren Rolle (6) unter Beteiligung ersten Halteseillänge von vielen hundert Metern mit einer Widerstands- oder Reibungskraft für das Ausbringen des Halteseils, die einen Wert von nahezu Null aufweist; weiteres Abwickeln des verbleibenden Abschnitts des viele Kilometer langen Halteseils von der mehrschichtigen Rolle (8), welche innerhalb der äußeren einschichtigen Rolle (6) angeordnet ist; und einen Bremsvorgang für das Ausbringen des Halteseils, welcher aus einer konstanten Reibungskraft resultiert, die mittels der Bremse (12) angewendet wird, durch welche hindurch das Halteseil (7) geführt wird. Revendications 1 20 2 30 3 40 4 0 1. Mécanisme de déploiement pour applications de câble spatial extensible comprenant essentiellement un cylindre d enroulement de câble monocouche fixe (6), un mécanisme d impulsion de séparation initiale () pour le déploiement de câble passif, et un frein de déploiement de câble (12) en forme de marguerite ; caractérisé en ce que ledit mécanisme accueille une première portion de câble (7), de nombreux kilomètres de longueur, enroulée sur ladite bobine multicouche interne (8), suivie d une seconde portion dudit câble (7), de nombreuses centaines de mètres de longueur, enroulée dans une seule couche sur ledit cylindre externe (6) ; pour permettre le passage du câble (7) à la fois au sol, pendant les opérations requises d enroulement et de préparation de câble, et en orbite, pendant le déploiement réel par le déroulement de ses deux types d enroulement de câble, une coupure de surface (9) dudit cylindre externe (6) de largeur suffisante et le long de la plupart de sa longueur est fournie, de sorte que, une fois que le câble spatial continu est déployé en orbite, le câble se déroulant traverse ladite coupure de cylindre (9) et continue à se dérouler de ladite bobine centrale multicouche (8) jusqu à la fin du déploiement ; ledit mécanisme d impulsion de séparation initiale pour le déploiement de câble passif comprend un ressort sinusoïdal central (), monté à l intérieur du noyau de ladite bobine de câble multicouche fixe (8) et capable de stocker l énergie requise pour la séparation initiale des masses câblées ; ledit ressort de séparation () est maintenu dans un état comprimé, pendant les opérations terrestres et le transport terrestre et spatial et avant la séparation et le déploiement en orbite, par certains, généralement trois, pyro-boulons (3) montés sur le capot de mécanisme (1) et son plan d interface avec la surface externe (2) du vaisseau spatial porteur ; au moment de la séparation, sur commande du sol à travers le système embarqué de télémétrie et de télécommande du vaisseau spatial porteur, lesdits pyro-boulons (3) sont actionnés, ledit ressort central () est relâché et tout le mécanisme de déploiement, avec son capot (1), le ressort () et les bobinages de câble complets, se séparent autour de la direction verticale locale d orbite dudit vaisseau spatial porteur (2) ; et ledit frein de déploiement de câble passif (12) en forme de marguerite et de matériau flexible, incorporé au dit bobinage de câble de bobine multicouche fixe centralement (8) et fixé sur le montant de noyau central de bobine, se déploie en orbite pendant l opération de déploiement de câble à la longueur planifiée du câble déployé ou à la distance des masses d extrémité câblées ; le déploiement de ce dispositif augmente de la grandeur planifiée ou de la quantité de la force de résistance de frottement de déploiement de câble, de sorte que la réduction du taux de déploiement de câble du mécanisme de déploiement est progressivement fournie et appliquée jus- 8

13 EP 1 727 733 B1 14 qu à la fin de l opération de déploiement. 2. Mécanisme de déploiement selon la revendication 1, comprenant en outre un plan d interface de mécanisme de câble (13), à boulonner sur ladite surface externe (2) du vaisseau spatial porteur, un capot de protection externe (1) boulonné par lesdits pyro-boulons (3) sur ledit plan d interface (2) avec le vaisseau spatial porteur, des montants de la fixation de câble d extrémité de porteur (16), des boîtiers électroniques (17), des connecteurs d interface de données et d alimentation électrique (), et un dispositif d accrochage ou de retenue en forme de V de bobinage de câble extérieur (18) ; caractérisé en ce que : ledit plan d interface de mécanisme de câble (13) est boulonné sur une surface externe (2) dudit vaisseau spatial porteur par sensiblement trois boulons simples (19) et reste monté sur la surface externe du porteur, avec des composants électroniques et d autres composants du dispositif de déploiement, après la séparation initiale en orbite du mécanisme de déploiement et les opérations de déploiement du câble et des masses d extrémité câblées ; en ce que ledit capot de protection externe (1) lié par lesdits pyro-boulons (3) au plan d interface (13) avec ledit vaisseau spatial porteur est boulonné en tant que structure unique sur lesdites structures de bobine de bobinage de câble (8) avec ledit dispositif de séparation de ressort () incorporé ; ledit capot (1) est également utilisé en tant que coque de protection, pour les bobinages de câble et tous les autres composants de mécanisme de déploiement, principalement contre les impacts potentiels de micrométéorites et les effets du vieillissement de matériau sous l effet de l exposition aux rayons ultraviolets ou de l exposition à d autres types de rayonnement spatial dangereux ; lesdits montants du point d attache de l extrémité de câble sur le côté du vaisseau spatial porteur, lesdits boîtiers électroniques (17) et lesdits connecteurs d interface de données et d alimentation électrique () du système d application de câble, comme pour l application de propulsion de câble électrodynamique, et ledit dispositif d accrochage ou de retenue de bobinage de câble extérieur en forme de V (18) sont tous montés pour être fixés et pour rester sur le plan d interface de mécanisme, à l extérieur du vaisseau spatial porteur jusqu à la fin de l application de câble spatial ; les composants électroniques liés du vaisseau spatial porteur pour l application de câble électrodynamique sont représentés par une cathode creuse (14), des relais et des composants électroniques de mesure et de régulation de courant (1) ; et 1 20 2 30 3 40 4 0 le dispositif d accrochage de bobinage de câble en forme de V (18) est d un type élastique (poutre) et son montage sur le plan d interface est en correspondance avec la frontière d extrémité dudit cylindre de bobinage de câble extérieur (6), de sorte que les premières spirales de bobinage de câble monocouche sont accrochées à la surface du cylindre et la tension de bobinage de câble est maintenue jusqu à l action de séparation de déploiement en orbite pour laquelle ces spirales de bobinage de câble et le cylindre sont libérés dudit dispositif de retenue en forme de V (18). 3. Procédé passif de déroulement de câble, utilisant le mécanisme selon la revendication 1, caractérisé en ce que ledit déroulement de câble comprend les étapes suivantes : une impulsion appliquée pour la séparation dudit vaisseau spatial (2) effectuée par ledit ressort () ; le déroulement de câble de ladite bobine extérieure cylindrique monocouche (6), impliquant une première longueur de câble de nombreuses centaines de mètres avec une force de résistance ou de frottement de déploiement de câble d une valeur presque égale à zéro ; la poursuite du déroulement de câble de ladite bobine multicouche (8) située à l intérieur de ladite bobine monocouche externe (6) de la portion restante de nombreux kilomètres de longueur de câble ; et l action de freinage de déploiement de câble découlant d une force de frottement constante appliquée au moyen dudit frein (12), à travers lequel ledit câble (7) est amené à passer. 9

EP 1 727 733 B1

EP 1 727 733 B1 11

EP 1 727 733 B1 12

EP 1 727 733 B1 13

EP 1 727 733 B1 REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. Non-patent literature cited in the description LICATA R. ; IESS L. ; BRUNO C. ; BUSSOLINO L. EDOARD: A Tethered Device for Efficient Electro-dynamic De-Orbiting of LEO Spacecraft. Space Technologies & Applications International Forum (STAIF 2001), Conference on Innovative Transportation Systems, 11 February 2001 [0009] LICATA R. ; IESS L. ; BRUNO C. ; BUSSOLINO L. ; ANSELMO L. ; SCHIRONE L. ; SOMESI L. EDOARD: An Electro-dynamic Tether Device for Efficient Spacecraft De-Orbiting. the 3rd European Conference on Space Debris, 19 March 2001, vol. 2 [0009] CAROLL, J.A. SEDS Deployer Design and Flight Performance. AIAA Paper, 1993, 93-4764 [0009] KOSS ; STEPHEN. Tether Deployment Mechanism for the Advanced Tether Experiment (ATEX. 7th European Space Mechanism and Tribology Symposium, 1997, 17-12 [0009] LICATA, R. GAVIRA ; J.M. VYSOKANOV ; V. BRACCIAFERRI, F. SESDE - A First European Tether Experiment Mission. 49th International Astronautical Congress, 1998, 98-A709 [0009] NAKAMURA ; YOSUKE. Ground Experiments of a Micro Tether Reeling Mechanism. 23rd Intern. Symposium on Space Technology and Science, May 2002, 887-892 [0009] 14