Versuch von Beadle und Tatum Verändertes Gen -> veränderter Phänotyp

Ähnliche Dokumente
Eukaryotische messenger-rna

Posttranskriptionale RNA-Prozessierung

Zentrales Dogma der Biologie

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

KV: Genexpression und Transkription Michael Altmann

KV: Translation Michael Altmann

Es ist die Zeit gekommen, zu verstehen, wie es zur Proteinbiosynthese kommt?! Wobei jeweils eine AS von 3 Basen codiert wird..

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.)

Molekularbiologie 6c Proteinbiosynthese. Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird

Was ist der Promotor? Antwort: Eine spezielle Nucleotidsequenz auf der DNA, an der die RNA-Polymerase bindet um die Transkription zu starten.

Bei der Translation wird die Aminosäuresequenz eines Polypeptids durch die Sequenz der Nukleotide in einem mrna- Molekül festgelegt

Molekulargenetik Biologie am Inhaltsverzeichnis Die Begriffe DNA, Nukleotid, Gen, Chromosom und Epigenom definieren...

Molekulargenetik der Eukaryoten WS 2014/15, VL 11. Erwin R. Schmidt Institut für Molekulargenetik

1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie:

Expression der genetischen Information Skript: Kapitel 5

Biochemie Vorlesung Die ersten 100 Seiten

Biochemie Tutorium 9. RNA, Transkription

Genaktivierung und Genexpression

Promotor kodierende Sequenz Terminator

Thema Transkription und Genregulation Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung

Proteinbiosynthese. Prof. Dr. Albert Duschl

Transkription 3. Teil. Posttranskriptionale Modifikationen

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016

Transkription und Regulation der Genexpression

Transkription Teil 2. - Transkription bei Eukaryoten -

Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang.

Das zentrale Dogma der Molekularbiologie:

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen. Abb. aus Stryer (5th Ed.)

Spleißen und Prozessieren von mrna

RNA und Expression RNA

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination

Von der DNA zum Eiweißmolekül Die Proteinbiosynthese. Ribosom

1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! nicht-codogener Strang.

TRANSKRIPTION I. Die Herstellung von RNA bei E-Coli

Proteinbiosynthese. Prof. Dr. Albert Duschl

Gen Protein Aufgaben: Edel LK-Bio BI-3

Einleitung. Replikation

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05

Struktur und Eigenschaften der DNA in Pro und Eukaryonten

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie

Zentrales Dogma der Biochemie Zyklus eines Retrovirus Der Fluss der genetischen Information verläuft von der DNA zur RNA zum Protein. Zumindest bis 19

PROTEINBIOSYNTHESE "Das zentrale Dogma der Molekularbiologie"

Übung 11 Genregulation bei Prokaryoten

Biologie für Mediziner

Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt. Abb. aus Stryer (5th Ed.)

Entwicklungs /gewebespezifische Genexpression. Coexpression funktional überlappender Gene

Vorlesung Molekulare Humangenetik

I Allgemeine Grundlagen und Präanalytik

Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS)

BCDS - Biochemische Datenbanken und Software

Institut für Biochemie und Molekulare Medizin. Lecture 1 Translational components. Michael Altmann FS 2011

Vorlesung Allgemeine und Molekulare Genetik Transkription und Genregulation Erwin R. Schmidt

1. Nachschreibeklausur zur Vorlesung "Genetik" im WS 09/10 A. Matrikel-Nr.: Versuch: 1 2 3

15.2 Transkription bei E. coli

Eukaryoten und Prokaryoten

Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen)

Vorlesungsthemen Mikrobiologie

Eine neue RNA-Welt. Uralte RNA-Welt Am Anfang der Entstehung des Lebens. Bekannte RNA-Welt Protein-Synthese. Neue RNA-Welt Regulatorische RNA-Moleküle

GENETIK. für Studierende. Michaela Aubele. für Ahnungslose. Eine Einstiegshilfe. 2. Auflage. Dr. Michaela Aubele, München.

Wiederholunng. Klassische Genetik

4. Genetische Mechanismen bei Bakterien

Inhalt Genexpression Microarrays E-Northern

Translation. Auflesung- Proteinsynthese

Unterschiede zwischen Prokaryoten und. Eukaryont. Unterschiede prokaryotische eukaryotische Zelle. Zellaufbau Prokaryoten. Zellaufbau Eukaryoten

Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion

Proteinbiosynthese: Transkripion:

Genexpression und Genregulation in Prokaryoten

Dr. Jens Kurreck. Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.:

8. Translation. Konzepte: Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation - Elongation - Termination

Biologie für Mediziner

Struktur und Funktion der DNA

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008

Inhaltsverzeichnis. Teil I: Grundlagen. 1. Lebensformen: Zellen mit und ohne Kern Proteine: Ein Überblick in Stichwörtern 37 VII

11 Nukleinsäuren Die DNA: Der Speicher der Erbinformation

Beschreiben Sie in Stichworten zwei der drei Suppressormutationen, die man in Hefe charakterisiert hat. Starzinski-Powitz, 6 Fragen, 53 Punkte Name

Vererbung. Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend

Studienprojekt DaMocles. Puromycin. von J. Primozic, A. Röblitz, M. Schorstein, D. Seelinger, Candeniz Simsek

Ausbildung zum Bienenwirtschaftsmeister Mai 2012 Christian Boigenzahn

Genexpression. Introns, T7-Typ DNA Polymerase, RNA Editing, Transsplicing

DNA: Aufbau, Struktur und Replikation

Teil I Grundlagen der Zell- und Molekularbiologie

Biochemie Tutorium 10. Genetischer Code, Translation & Regulation der Proteinbiosynthese

Thema: Eukaryotische Genregulation und RNA- Prozessierung. Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt

Teil I Allgemeine Grundlagen und Präanalytik

mrna S/D UTR: untranslated region orf: open reading frame S/D: Shine-Dalgarno Sequenz

Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr

DNA-Replikation. Konrad Beyreuther. Stefan Kins

1. Welche Auswirkungen auf die Expression des lac-operons haben die folgenden Mutationen:

5.Epigenetische Regulierung

Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen

Molekulargenetik DNA-Struktur Nukleotide

Bakterielle Genetik. Dr. Thomas Seehaus

Transkript:

Versuch von Beadle und Tatum Verändertes Gen -> veränderter Phänotyp Neurospora crassa Ein-Gen-ein-Enzym Hypothese Ein-Gen-ein-Polypeptid-Hypothese Ein-Gen-ein-Genprodukt-Hypothese Purves et al. 12.1 1

Das zentral Dogma: Von der DNA zum Protein Replikation Transkription Translation Purves et al. 12.2 2

Genexpression: Gen Abschnitt auf der DNA, der für ein Genprodukt kodiert, inkl. Kontrollregionen Expression Fluss von der genetischen Information (DNA) zum Genprodukt beteiligte Vorgänge sind: Transkription (DNA in RNA) Translation (RNA in Protein) findet in allen lebenden Zellen statt RNA Protein 3

Bei Prokaryoten in einem Kompartiment Purves et al. 12.3 Purves et al. 14.1 4

Pro- und eukaryotische Genexpression DNA Nicht-Matrizenstrang (+) Matrizenstrang, codogen (-) RNA Transkription des Matrizenstranges Translation Protein 5

Transkription Purves et al. 12.4 6

Die chemische Struktur der RNA RNA DNA RNA enthält den Zucker Ribose RNA enthält Uracil anstelle von Thymin 7

Die RNA-Polymerase transkribiert DNA RNA-Polymerase aus E. coli DNA-abhängige RNA-Polymerase Katalyse von Phosphatdiesterbindungen Verlängerung der wachsenden RNA Kette in 5 ->3 Richtung Substrat: Ribonukleosidtriphosphate, kein Primer α α σ β β Minimal (Core) Enzym, 4 UE: α 2,β,β Holoenzym, 5 UE: α 2,β,β,σ α: Struktur des Enzyms σ: Erkennung β: RNA-Synthese des Transkriptionsstarts β : Bindung an DNA 8

Promotor: Erkennungs- und Startpunkt für die RNA-Polymerase -35 -Region upstream -Bereich -10 -Region -1 keine 0 +1 Start der Transkription -35-10 ATG nicht-transkribierte DNA transkribierte DNA Start der Translation Konsensussequenzen prokaryotischer Promotoren -10-Region = Pribnow-Box -35-Region -35-10 +1 lac ACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA trp AAATGAGCTGTTGACAATTAATCATCGAACTAGTTAACTAGTACGCA pl TCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACAT Kons.-S ----------TTGACA---17+/-1 bp-----tataat-------- 9

Transkriptionszyklus einer bakteriellen RNA-Polymerase RNA σ-faktor Promotor Haarnadel RNA-Polymerase DNA 1. Bindung des RNA-Pol-Holoenzyms an den Promotor (geschlossener Komplex) 7. Freisetzung des Transkripts 6. Termination 2. Aufwinden der DNA (offener Komplex) 5. Elongationsphase mit hoher Prozessivität (50 nt/s) 3. Anfängliche Transkription (10 nt) Ribonukleosidtriphosphate RNA RNA 4. Ablösung des σ-faktors 10

Alternative Sigmafaktoren: Regulation der Genexpression bei E. coli Sigmafaktor Größe (kda) Funktion σ 70 70 Standard-Sigmafaktor σ S 38 Hunger, Stress σ 32 32 Hitzeschock 11

Transkriptionstermination bei E. coli Rho-unabhängige Termination Rho-abhängige Termination Haarnadelförmige Sekundärstruktur im 3 Nichtkodierungsbereich einer mrna Rho-Protein (Hexamer) lagert sich an mrna spaltet ATP 12

Transkripte sind länger als die kodierende Region Promotor +1 Ende Terminator DNA Kodierende Region 5 3 RNA-Transkript Leadersequenz 5 untranslatierter Bereich Trailer-Abschnitt 3 untranslatierter Bereich 13

Prokaryot Eukaryot RNA-Polymerase polycistronische mrna RNA-Polymerase Cap-Struktur monocistronische mrna Poly(A)-Schwanz Kernpore Translation noch während der Transkription mrna muss aus dem Kern ausgeschleust werden 14

Die drei durch die Transkription erzeugten Haupttypen von RNA-Molekülen Brown 6.1 15

Eukaryoten: drei DNA-abhängige RNA-Polymerasen im Kern RNA-Polymerase Produkt Lokalisierung RNA-Pol I: rrna (28S, 18S, 5,8S) Nukleolus RNA-Pol II: mrna (Protein-kodierende Gene) Nukleoplasma snornas, einige snrnas RNA-Pol III: 5S rrna, trnas, viele snrnas Nukleoplasma interne Promotoren! Zusätzlich RNA-Polymerasen in Mitochondrien und Chloroplasten mt-rna-pol mitochondriale Transkripte Mitochondrien (nur eine UE) (kernkodiert) pt-rna-pol (PEP) plastidäre Transkripte Plastiden (E.coli-ähnlich) (plastidenkodiert) pt-rna-pol (NEP) plastidäre Transkripte Plastiden (nur eine UE) (kernkodiert) 16

Eukaryotische Promotoren sind weniger konserviert prokaryotischer Promotor eukaryotischer RNA-Pol II Promotor Jannig & Knust 14.3 17

Struktur und Transkription eines eukaryotischen Gens Purves et al. 14.4 18

Transkription eukaryotischer DNA durch die RNA-Polymerase II benötigt viele allgemeine Transkriptionsfaktoren (TF) TFIIH 19

Eukaryotische Gene enthalten kodierende Exon- und nicht-kodierende Intron-Bereiche, eukaryotische RNA-Pol II-Transkripte werden prozessiert 1. Anfügen des Cap am 5 Ende 2. Polyadenylierung am 3 Ende 3. Spleißen Alle drei Prozesse finden im Zellkern statt! 20

Capping des Transkriptes am 5 Ende: Anfügen eines modifizierten Guaninnukleotids 5 Cap signalisiert 5 Ende eukaroytischer mrnas Wird während der Transkription Methylgruppe angehängt 5 Cap wichtig für Export der mrna ins Cytosol und die Translation 5-5--Bindung 7-Methyl-Guanosintriphosphat 21

Polyadenylierung am 3 -Ende 3 -Poly(A)-Schwanz signalisiert 3 -Ende eukaroytischer mrnas Poly(A)-Polymerase (Polymerisation ohne Matrize!) 200-250 A-Nukleotide werden angehängt 3 -Poly(A)-Schwanz wichtig für Export der mrna ins Cytosol, für die Stabilität und die Translation 10-20 Nukleotide < 30 Nukleotide Spaltung durch Endonukleasekomplex wird abgebaut Poly(A)-Anheftung durch Poly(A)-Polymerase 22

Spleißen des Transkripts Spleißen = Entfernen der Intronsequenzen aus dem Primärtranskript, Verknüpfung der Exons Nukleotidsequenzen markieren die Spleißstellen Spleißen wird durch Spleißosomen ausgeführt Spleißosomen sind aus Proteinen und snrnas zusammengesetzt Intron wird entfernt Teil der mrna 23 Janning & Knust 14.9

Das Spleißosom, eine Spleißmaschine Purves et al. 14.10 24

Eukaryoten: Kontrolle der Transkription durch die Chromatinstruktur Modifikation (z. B. Acetylierung) der Chromatinproteine (Histone) reguliert die Transkription Nukleosom 10 nm Histonoktamer Histon- Deacetylierung Histon-Deacetylase (HDAC) DNA offenes Chromatin -> transkriptionsaktiv Histon- Acetylierung Histon-Acetyltransferase (HAT) kondensiertes Chromatin -> transkriptionsinaktiv 30 nm 25 Janning & Knust 17.16

Histon-Acetyltransferase (HAT) Reguliert Zugänglichkeit der DNA für Proteine der Transkriptionsmaschinerie Histon-Acetyltransferase (HAT) acetyliert Histone in der Nähe der TATA-Box Transkriptionsfaktor RNA-Polymerase II Histone DNA Ac Transkription Nukleosom 26

Modifikation des Chromatins Histon- Deacetylierung Histon-Methylierung DNA-Methylierung Histon- Acetylierung Histon-Demethylierung DNA-Demethylierung 27

Initiation der Genexpression: Unterschiede zwischen Pro- und Eukaryoten Prokaryoten Eukaryoten RNA-Polymerase eine RNA-Polymerase, drei RNA-Polymerasen, einige Sigma-Faktoren viele allgemeine Transkriptionsfaktoren regulatorische Transkriptions- ja ja; zahlreich faktoren Transkript meist polycistronisch, monocistronisch, keine Modifikation Modifikation am 5 - u. 3 -Ende Introns i.d.r. nicht vorhanden, meist vorhanden, kein Spleißen Spleißen Trennung von Transkription u. nein ja (Kern/Cytoplasma) Translation Einfluss der Chromatinstruktur kein Chromatin! ja 28

Die drei durch die Transkription erzeugten Haupttypen von RNA-Molekülen Brown 6.1 29

Ribosomale RNA Purves et al. 12.9 Ribosomen bestehen aus RNA (rrna) und Proteinen und sind aus zwei Untereinheiten zusammengesetzt 30

Ribosomen 31

Svedbergeinheit S Maß für Sedimentationsgeschwindigkeit bei Zentrifugation in einem Dichtegradienten S-Wert abhängig von Größe, Form, Volumen und Dichte des Partikels/Moleküls je größer und kompakter, desto größer ist Wanderungsgeschwindigkeit Zellfraktionierung durch differentielle Zentrifigation, Sedimentationsanalyse oder Dichtegradientenzentrifugation (Saccharose) 32

Dichten und S-Werte von Zellmaterial 33

Zusammensetzung der Ribosomen bei Pro- und Eukaryoten Prokaryoten Eukaryoten Größe rrna Proteine Größe rrna Proteine (Nukleotide) (Nukleotide) große UE 50S 23S rrna (2904) 5S rrna (120) L1, L2, L3, etc. Ges.: >30 60S 28S rrna (4818) 5,8S rrna (160) L1, L2, L3, etc. Ges.: ca. 50 5S rrna (120) kleine UE 30S 16S rrna (1542) S1, S2, S3, etc. Ges.: >20 40S 18S rrna (1874) S1, S2, S3, etc. Ges.: ca. 35 34

Molekulare Feinstruktur eines 70S Ribosoms Purves et al. 12.9 b 35

Sekundärstruktur der 16 S rrna von E. coli 36

Prozessierung der eukaryotischen rrna Janning & Knust 15.1e 37

DNA, die rrna kodiert ist repetitiv Purves et al. 14.2 38

Nukleolus Kernkompartiment Ort der rrna Synthese Nukleolus besteht aus DNA, RNA und Proteinen Prozessierung der prä-rrna, Zusammensetzung präribosomaler Partikel Nukleolus-Organisator (NO) besteht aus rdna, die von mehreren Chromosomen stammen kann und tandemartig abgeordnete rdna enthält 39

trnas fungieren als Adapter (400 000 trna Moleküle pro Bakterien-Zelle) 40

trnas bestehen aus 74 95 Nukleotiden Kleeblattstruktur Akzeptorarm bindet Aminosäure; 3 Ende endet immer auf -CCA DHU-Arm enthält ungewöhnliches Pyrimidin Dihydrouracil Anticodonarm erkennt mrna Variabler Arm enthält variable Anzahl an Nukleotiden TψC enthält die Abfolge T, Pseudouracil und C 41

Tertiärstruktur der trna jede trna hat individuelle 3D-Struktur 42

Uridin Zucker 43

Der genetische Code 44

Die 20 in Proteinen vorkommenden Aminosäuren Janning & Knust 15.3 45

Problem: 4 Buchstaben A,T,G,C -> aber 20 Aminosäuren Singulet-Code: 4 Codons Duplett-Code: 4 2 = 16 Codons Triplett-Code: 4 3 = 64 Codons Purves et al. 12.5 46

Frage: Welches Triplett codiert für welche Aminosäure? Versuch von Nirenberg und Matthaei Purves et al. 12.6 47

Der Code ist degeneriert, d.h. mehrere Tripletts codieren eine Aminosäure (Ausnahme: Tryptophan und Methionin) Synonyme Codons sind sich meist ähnlich, so dass die ersten beiden Basen eines Tripletts oft schon die Aminosäure spezifizieren (Ausnahmen: Leucin und Arginin) Leucin Leucin Arginin Arginin Purves et al. 12.5 48

Die "Wobble"-Hypothese (F. Crick 1965) "wobble" = "Schwanken, Wackeln" Eine einzelne z. B. mit Glycin beladene trna kann drei verschiedene Codons auf der mrna erkennen 49

"Wobble" Abweichungen bei der Bindung des Anticodons an das Codon 50

Der genetische Code ist fast universell und gilt für alle Organismen Es gibt wenige Ausnahmen (insbesondere in Mitochondrien- Genomen) z.b. UGA (normalerweise Stop) in Mitochondrien Tryptophan und AUA (normalerweise Isoleucin) in Mitochondrien Methionin 51

Verwendung von Code-Wörtern (Codon usage) Ein Beispiel: 6 Arginin Codons CGT 43% CGC 32% CGA 7% CGG 8% AGA 9% AGG 1% korrespondiert mit Vorkommen synonymer trnas d.h. es gibt seltene Codons (Speziesspezifisch) Regulation von Genaktivität, da seltene Codons zu schwächerer Expression führen 52