Increased risk for flashback in case of dynamic operation of gas turbines

Ähnliche Dokumente
Validation of premixed combustion models using turbulent Bunsen flames at high pressure

CHARACTERISTICS OF TURBULENT LEAN-PREMIXED COMBUSTION FOR HYDROGEN-RICH FUEL GASES

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis

Wakefield computation of PETRAIII taper section Laura Lünzer

Erste Niedersächsische Energietage in Hannover 31. Oktober November 2007

Simulation of a Battery Electric Vehicle

Quadt Kunststoffapparatebau GmbH

Probabilistic LCF - investigation of a steam turbine rotor under transient thermal loads

Geothermal power generation by GEOCAL

Brenner für Industrieöfen Burners for Industrial Furnaces

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Dynamic Hybrid Simulation

Hazards and measures against hazards by implementation of safe pneumatic circuits

Kuhnke Technical Data. Contact Details

DICO Dimension Coupling

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Modeling of Flow Processes in Porous Media for Predicting the Water Content Distribution in Earth Dams using the Simulation Program PCSiWaPro

Internationale Energiewirtschaftstagung TU Wien 2015

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

on Software Development Design

Qun Wang (Autor) Coupled Hydro-Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage

A Brief Introduction to Functional Safety

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

The scientific approach of scale-up of a fluid bed

Solar Air Conditioning -

FEM Isoparametric Concept

Nomenclature. 1. Introduction Objectives of this Thesis Outline... 5

Thermal control of solid oxide electrolyser cells / fuel cells with high temperature heat pipes

Introduction FEM, 1D-Example

Prozesse als strategischer Treiber einer SOA - Ein Bericht aus der Praxis

How Clean is Clean? Incremental and Radical Innovations in Coal-fired Power Plants

Operation Guide AFB 60. Zeiss - Str. 1 D Dauchingen

Climate change and availability of water resources for Lima

Quality Management is Ongoing Social Innovation Hans-Werner Franz

SCR-Technik für Lkw. SCR Technique for Trucks. Johannes Ebner DaimlerChrysler AG

Zeitschriften Maschinenbau

ISO Reference Model

Modellbasierte Regelung. des Ladedrucks und der Abgasrückführung. beim aufgeladenen PKW-Common-Rail-Dieselmotor

Technical Thermodynamics

Integration of a CO 2 separation process in a coal fired power plant

Advanced Track and Tire Modeling using SIMPACK User Routines

Brandbook. How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes. Version 1.0.1

"Ermittlung von geometrischen Produktionstoleranzen mittels 3D-Messtechnik und ihre Auswirkungen. Kay Heinze Technische Universität Dresden

Challenges for the future between extern and intern evaluation

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

Parameter-Updatesoftware PF-12 Plus

Evaluation of an Augmented-Realitybased 3D User Interface to Enhance the 3D-Understanding of Molecular Chemistry

VDMA Process Technology

FIVNAT-CH. Annual report 2002

Plattenkollektion Panel Collection

Hochdruckverdichter für kalt verflüssigte Gase, Gase und Flüssigkeiten. High Pressure Compressors for Cold Liquid Gases, Gases and Liquids

IPEK. Institut für Produktentwicklung. Institut für Produktentwicklung Universität Karlsruhe (TH) Prof. A. Albers

Pilot Project Biogas-powered Micro-gas-turbine

Context-adaptation based on Ontologies and Spreading Activation

Routing in WSN Exercise

Zeitschriften Maschinenbau

HYDRAULIK UND PNEUMATIK ROTORDICHTUNG HYDRAULIC AND PNEUMATIC GLIDE SEAL C1R

Essen, 16. Dezember Stellungnahme zum Projekt. Qualifizierung der quantitativen Schallemissionsanalyse

HIR Method & Tools for Fit Gap analysis

Nitrogen Oxides. O = Lachgas =Stickoxydul =Distickstoffoxid = Nitrous Oxide N 2. Nitrogen oxides

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

"What's in the news? - or: why Angela Merkel is not significant

ISO Reference Model

drawbar eye series 2010

Launch Information BAT 415

DIE NEUORGANISATION IM BEREICH DES SGB II AUSWIRKUNGEN AUF DIE ZUSAMMENARBEIT VON BUND LNDERN UND KOMMUNEN

A dissertation submitted to ETH ZURICH. for the degree of Doctor of Sciences. presented by ALEXANDER SCHILLING Dipl. Masch.-Ing.

German Norwegian Seminar on Hydro Power

Asynchronous Generators

Influence of dust layer thickness. on specific dust resistivity

The Integration of Renewable Energy Sources Into the Distribution Grid

Messanordnungen mit Messumformer SITRANS P Measurement with transmitter SITRANS P

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

Deceleration Technology. Rotary Dampers with high-torque range WRD-H 7550 WRD-H 9565 WRD-H

Projektarbeiten 2. Sem. MSc Bauing - FS Prof. Dr. Ingo Burgert

Possible Contributions to Subtask B Quality Procedure

Cooperation Project Sao Paulo - Bavaria. Licensing of Waste to Energy Plants (WEP/URE)

Hybrid model approach for designing fish ways - example fish lift system at Baldeney/Ruhr and fish way at Geesthacht /Elbe

Frederik Blomann (Autor) Randbedingungen und Konsequenzen des Flow-Erlebens

Dialogue: Herr Kruse talks to Herr Meyer about his regular trips to Berlin: Das geht sehr schnell! Es dauert nur etwa 3 Stunden.

Challenges in Systems Engineering and a Pragmatic Solution Approach

l=var Einseitig Die Leuchte Void hat eine Lichtaustrittsfläche

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

Produktprogramm Product Range.

ANALYSIS AND SIMULATION OF DISTRIBUTION GRIDS WITH PHOTOVOLTAICS

Model-based Development of Hybrid-specific ECU Software for a Hybrid Vehicle with Compressed- Natural-Gas Engine

Presentation enac enabling Assessment Centers. part of the enablingsolutions product family

Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan

An insight into downstream developments: Energy efficiency in gas heating appliances

CERTIFICATE. The Certification Body of TÜV SÜD Industrie Service GmbH. certifies that

Westenberg Wind Tunnels

BRABUS Frontschürze für Viano

Funktionale Sicherheit ISO Schwerpunkt Requirements Engineering,

Creating OpenSocial Gadgets. Bastian Hofmann

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Sensoren / Sensors XA1000 / XP200 / XP400 XP100 / XP101.

ELBA2 ILIAS TOOLS AS SINGLE APPLICATIONS

Transkript:

Wir schaffen Wissen heute für morgen Increased risk for flashback in case of dynamic operation of gas turbines Yu-Chun Lin 28. August 2013 1 Introduction Pre-combustion CO 2 capture H 2 -rich fuel mixtures 2

Experiments Operation pressure: 20 bar Air flow rate: 750 mn/h 3 Max. Preheat: 823 K 3 Profiles of Flame Front: H 2, Syngas, and CH 4 Fuel Air H 2 P = 5 bar T ad 1750 K Fuel Air Syngas (H 2 -CO 50-50) CH 4 (Natural Gas) Fuel Air 75 mm 290 mm 4

Flashback 5 When the Flame Gets Shorter Flashback? Fuel Air H 2 Φ = 0.50 P = 2.5 bar T 0 = 623 K u 0 = 40 m/s Fuel Air Φ = 0.39 Fuel Air Φ = 0.32 6

Mechanisms of Flashback* 1. Core flow flashback 2. Combustion induced vortex breakdown (CIVB) 3. Combustion instability induced flashback 4. Boundary layer flashback (BLF) *Lieuwen, T., McDonell, V., Santavicca, D., and Sattelmayer, T., 2008, Burner Development and Operability Issues Associated with Steady Flowing Syngas Fired Combustors, Combustion Science and Technology, 180, pp. 1169-1192. 7 Boundary Layer Flashback H 2 -N 2 70-30, P = 10 bar, T 0 = 623 K, u 0 = 40 m/s, Φ ~ 0.3 (a) Typical operation (b) Flame anchoring /Flashback 8

Model for Laminar/Turbulent BLF* Flashback: g f g c Laminar: g f = u/ y = 8 u 0 d -1 g c = 3 S L02 /(2 b 0.5 α) Turbulent: g f = 0.03955 u 1.75 0 ν -0.75 d -0.25 g c =? u(y) g f = ( u/ y) y=0 Flame front g c = velocity/distance Penetration distance Wall of the premixing pipe =? Quenching distance *Lewis, B. and von Elbe, G., 1943, Stability and Structure of Burner Flames, Journal of Chemical Physics, 11, pp. 75-97. 9 S T : Evaluation T 0 = 623 K u 0 = 40 m/s Continuity: ρ 0 A 0 u 0 = ρ 0 A f, averaged S T c = 0.05 0.5 A 0 (d 25 mm) F L <c=0.05> Progress variable (c) approach: c = 0 fresh mixture c = 1 completely burnt gas 10

S T vs. Normalized Flame Length S T, cone = u 0 [1 + 4 (F L <c=0.05> /d) 2 ] -0.5 d F L <c=0.05> 1.0 bar + 2.5 bar 5.0 bar 7.5 bar 10.0 bar Fuel gas: H 2 -N 2 85-15 11 Model for Turbulent BLF Flashback: g f g c Turbulent: g f = 0.03955 u 0 1.75 ν -0.75 d -0.25 g c =? u(y) g f = ( u/ y) y=0 Flame front g c = S T /(Le δ L0 ) Penetration distance Le α/d H2 -N 2 Quenching distance Wall of the premixing pipe 12

g f vs. g c : Predicting the Flashback Limit (1/3) g f, 10.0 bar g f, 7.5 bar g f, 5.0 bar g f, 2.5 bar Fuel gas: H 2 -N 2 85-15 g f = 0.03955 u 0 1.75 ν -0.75 d -0.25 13 g f vs. g c : Predicting the Flashback Limit (2/3) g f, 7.5 bar Flashback! Predicted Φ FB g c = S T /(Le δ L0 ) Le α/d H2 -N 2 Fuel gas: H 2 -N 2 85-15 14

g f vs. g c : Predicting the Flashback Limit (3/3) g f, 10.0 bar g f, 7.5 bar g f, 5.0 bar g c, 10.0 bar g c, 7.5 bar g c, 5.0 bar + g c, 2.5 bar g f, 2.5 bar Predicted Φ FB Fuel gas: H 2 -N 2 85-15 15 Measured Φ FB : Syngas* Flashback! T 0 = 573 K T 0 = 623 K T 0 = 673 K Stable Fuel gas: H 2 -CO 50-50 *Daniele, S., Jansohn, P., and Boulouchos, K., 2010, Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control, GT2010-23456, Proceedings of ASME Turbo Expo 2010, Glasgow, UK. 16

Predicted Φ FB : Syngas T 0 = 573 K T 0 = 623 K T 0 = 673 K Stable Fuel gas: H 2 -CO 50-50 17 Φ FB : Syngas, T 0 = 673 K Predicted Measured Fuel gas: H 2 -CO 50-50 18

Φ FB : Syngas, T 0 = 623 K Predicted Measured Fuel gas: H 2 -CO 50-50 19 Φ FB : Syngas, T 0 = 573 K Predicted Measured Fuel gas: H 2 -CO 50-50 20

Measured & Predicted Φ FB : Syngas Predicted, T 0 = 573 K Measured, T 0 = 573 K Predicted, T 0 = 623 K Measured, T 0 = 623 K Predicted, T 0 = 673 K Measured, T 0 = 673 K Fuel gas: H 2 -CO 50-50 21 Predicted Φ FB : Syngas & H 2 -Rich H 2 -CO 50-50 H 2 -N 2 70-30 H 2 -N 2 85-15 H 2 22

Velocity Gradients vs. T ad : Syngas & H 2 -Rich g f, 10.0 bar g c, Syngas, T 0 = 673 K g c, Syngas, T 0 = 623 K g c, Syngas, T 0 = 573 K g c, H 2 g c, H 2 -N 2 85-15 g c, H 2 -N 2 70-30 P = 10 bar 23 Velocity Gradients vs. T ad : CH 4 & H 2 -Rich g f, H 2 -rich g f, CH 4 g c, H 2 -rich H 2 H 2 -N 2 85-15 H 2 -N 2 70-30 CH 4 g f, CH 4 P = 2.5 bar 24

Summary (1/2) One of the concerns about introducing the natural gasfired combined cycle power plants to Switzerland is the accompanying emissions of green house gases. In order to comply with the limits on CO 2 emissions, the carbon capture and sequestration (CCS) techniques have to be implemented. If the carbon capture is done prior to the combustion process, the hydrogen content in the fuel gas is significantly increased ( H 2 -rich ), and this leads to higher propensity of flashback. 25 Summary (2/2) For steady flowing combustors (e.g., gas turbine combustor), the flashback in the turbulent boundary layer is one of the major operational issues when burning these H 2 -rich fuels. An indicator that predicts specifically the occurrence of this flashback mode is developed in PSI, which could be further implemented to qualify various burner designs. 26

Thank you! 27