Bestimmung der Dämpfung an einem Lichtwellenleiter

Ähnliche Dokumente
OTDR Messtechnik. September 2009 Jörg Latzel Online Training

Glasfaser Microscope/OTDR/iOLM. Markus Mayrl CUBRO Acronet Product Manager Technologietag 9. April 2015

Inhaltsverzeichnis. Vorwort Vorwort zur 8. Auflage. 1 Grundlagen der Lichtwellenleiter-Technik Dieter Eberlein

1 mm 20mm ) =2.86 Damit ist NA = sin α = α=arctan ( nm ) Berechnung eines beugungslimitierten Flecks

Lichtwellenleiter Grundlagen

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

Inhaltsverzeichnis. 4. Beilagen Dienstbeschreibung. Dienst Dark Fiber Version / Datum 1.1 vom 1. Dezember 2013

WAN Netzwerk Neuerstellung

Expertenwissen LWL-Technik

Messwerte bei Kupfer- und Glasfaserkabeln

Probleme mit. Jedes Unternehmen kann es. David Veneski Marketingleiter, Zertifizierungsprodukte

Dämpfungsänderung von. LWL-Wasserdetektor. für biegeempfindliche und biegeunempfindliche verkabelte eingefärbte SM-Fasern im Vergleich

OTDR- Messtechnik (Rückstreumessung) 3-EDGE GmbH Helmut Contzen Seite 1 von 42

O2 PhysikalischesGrundpraktikum

Optische Messtechnik für LAN Verkabelungen im Feldeinsatz

Dienstleistungsangebot 240 Schulungsangebot 242

Echtzeit-Laserstrahl-Positionsdetektor. XY4QD - Benutzerhandbuch

Optik. Optik. Optik. Optik. Optik

Bedienungsanleitung. SolidTherm. Messgerät für Wärme- und Temperaturleitfähigkeit von Feststoffen.

Digitale Übertragungstechnik

AG-Sat Kompetenzseminar Stuttgart 21.Februar 2011

Diplomarbeit. Erkennen von Installations- und Verarbeitungsfehlern von LWL-Kabeln durch Bewertung von besonderen Ereignissen auf OTDR-Rückstreukurven

Netzwerke - Bitübertragungsschicht (1)

Zeitaufgelöste Techniken zur Proteinfaltung

Überwachung (Monitoring) passiver Netze der optischen Übertragungstechnik

Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri

4 Ortsaufgelöste Messung durch Nutzung der Ramanstreuung

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

Inhalt. Kieback & Peter GmbH & Co KG Tempelhofer Weg 50 D Berlin Telefon 030 / Telefax 030 /

Feldbusanschluss mit Lichtwellenleiter (LWL) in Linien-/Sterntopologie

Prüfung von Glasfaserverbindungen: empfohlene Maßnahmen Taschenhandbuch

Atomic Force Microscopy

Gebäudeeinführungspunkt (Building Entry Point) bei Glasfaseranschlüssen. Er ist die Übergabestelle vom Netz zum Endkunden-Anschlussgerät (CPE).

Black Box erklärt: Fiberoptik BLACK BOX

h- Bestimmung mit LEDs

V 35 Werkstoffuntersuchungen mit Ultraschall

testo 330i Abgas-Messgerät Inbetriebnahme & Sicherheit

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

1.1 Auflösungsvermögen von Spektralapparaten

Integriert-optische Modulatoren Technische Informationen

Computerpflege. Windows XP Update (Arbeitssicherheit) Dieses Programm öffnet die Internetseite von Windows. Starten Sie die [Schnellsuche].

Optisch isoliertes Mess- und Auswertesystem

Brechzahl In einem optischen Medium (beispielsweise Glas) ist die Lichtgeschwindigkeit niedriger als im Vakuum. Die Brechzahl gibt den Faktor an.

Faserlaser und FDML. Vortrag von Nina Wenke. ( ) ([2])

Optische Bauelemente

Praktikum Kommunikationstechnik

OLS Serie Lichtquellen, OPM Serie Optische Leistungsmessgeräte, und Messgerätekombinationen Kurzanleitung

Auflösungsvermögen. Interferenz

Abriss der Geometrischen Optik

Aufbau eines Teststands zur Vermessung von Sole-Wärmepumpen

Akusto-Optische Effekte

1 Grundlagen der Dispersion

Beugung und Laserspeckles

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Warum OPTOPAD? OMI-App

Übungen zur Experimentalphysik 3

Analytische Chemie. LD Handblätter Chemie. Bestimmung der Brechzahl mit dem Refraktometer C Optische Analysemethoden Refraktometrie

Inhaltsverzeichnis 1 Allgemeines 2 Grundlagen der Lichtwellenleiter-Technik 3 Kopplung von optischen Komponenten 4 Lichtwellenleiter-Steckverbinder

LWL - Messtechnik. Feldmesstechnik JDSU OP-1. PowerCheck Optischer Leistungsmesser. Colditzstraße 28, Bau 4a Berlin Tel.: +49 (0)

Abb. 1: J.A. Woollam Co. VASE mit AutoRetarder

Kapitel 0. Einleitung

Fahrzeugbeleuchtung Optik

Kurzanleitung. Kurzanleitung. Version. 1de.

Funktionsmuster RAMAN-OTDR: Prinzip, Anwendung und erste Ergebnisse

M4 Oberflächenspannung Protokoll

1. Versuchsziel und Ausrüstung

Neue Fiber Normen sowie neue Fasern

Die Glasfaser als Mittelpunkt der Daten-Übertragung

Experimentierfeld 5. Optisches Präzisionsinterferometer. 1. Sicherheitshinweise. 2. Beschreibung und Bedienung der Geräte

Protokoll O 4 - Brennweite von Linsen

Wie Ihr Glasfaser-LAN auf lange Sicht die nötige Leistung bringt

Wartung und Fehlerdiagnose mit einem OTDR in PON-Netzwerken

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen

AN025. Application Note 025 zu MODULAR-4 (ML3 und ML5) Messen der CPU-Auslastung im Echtzeitbetrieb

GRUNDLAGENLABOR DIGITALTECHNIK VERSUCH 5 VERSUCHSTHEMA DER SCHMITT-TRIGGER

Interferometrische Messtechnik in der industriellen Fertigung von der Idee bis zum praktischen Einsatz

Michelson - Interferometer

Grundlagen zur Wheatstone'schen Brückenschaltung

CTX 609 Daten Fax Modem. Installation Creatix V92 Data Fax Modem (CTX 609) unter Windows XP/ Windows Installation unter Windows XP:

Beantragung von Mitteln für das Schülerlabor Spektroskopie und Umweltphysik an der Internationalen Gesamtschule Heidelberg bei der Heraeus-Stiftung

BOSCH - REXROTH. Konfektionen nach BOSCH-REXROTH-Standard

BOSCH - REXROTH. Konfektionen nach BOSCH-REXROTH-Standard. zur Verwendung an Servoantriebssystemen

Einsatz von Wellenlängen-Diversität (WLD) in langen horizontalen optischen Kommunikationsstrecken

Messung von Integrated Access Devices (IAD s) via 2-Draht Interface (HPO oder AETHRA D2000 Pro)

Bedienungsanleitung LCQ-Meter (DG5MK) Stand

Versuch O3 - Wechselwirkung Licht - Materie. Gruppennummer: lfd. Nummer: Datum:

Elektro-Fahrzeugsimulator

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

AX Sicherheitsinformationen

Reinigen, Messen und Werkzeug. Reinigungsmaterial 200 Reinigungskoffer EasyCLEAN TM 202 Mikroskope 203

Lichtbrechung. Wissenschaftliches Gebiet: Physikalische Eigenschaften von Licht. Film/Jahr: QED Materie, Licht und das Nichts (2005)

Photonik. Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus. Oldenbourg Verlag München

Optischer Sensor für den Einsatz In Kraftfahrzeugen

Netzwerktechnik Modul 129 Netzwerktechnik

BAYERISCHE KABELWERKE AG

Biochemisches Grundpraktikum

Physik-Übung * Jahrgangsstufe 9 * Der Transistor Blatt 1

Optik. Grundlagen und Anwendungen. von Dietrich Kühlke. überarbeitet

MS Michelson-Interferometer

Entwicklung eines Messverfahrens zur Bestimmung des thermischen Beladungsgrades von PCM-Paraffin-Speichern

Transkript:

Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Bestimmung der Dämpfung an einem Lichtwellenleiter Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de Inhalt 1. Werkstofftechnische Grundlagen... 2 2. Hinweise zur Messtechnik... 3 3. Versuchsziel... 4 4. Aufgabenstellung... 4 5. Versuchsdurchführung... 5 6. Kolloquiumsfragen... 5 7. Anhang... 6 8. Quellen... 7 Physikalische Messtechnik S.1

1. Werkstofftechnische Grundlagen Die Übertragung von Informationen über Lichtwellenleiter (LWL) gewinnt aufgrund zahlreicher Vorteile zunehmend an Bedeutung. Die Leitung von Licht in einem Lichtwellenleiter erfolgt durch Totalreflexion an einer Grenzschicht zwischen einem Werkstoff mit hoher Brechzahl und einem Werkstoff mit niedriger Brechzahl, siehe Abbildung 1. Abbildung 1: Schematische Darstellung der Totalreflexion (rot und gelb) beim Auftreffen von Licht vom optisch dichteren Medium (n 1 ) auf ein optisch dünneres Medium (n 2 ). Der rote Strahlenverlauf zeigt die Totalreflexion an der Grenzfläche zwischen den Schichten, der gelbe Strahlenverlauf zeigt die Totalreflexion unter dem Grenzwinkel Θ c für die Totalreflexion. [1] Der Grenzwinkel Θ c für die Totalreflexion kann mittels Gleichung (1) berechnet werden. θ c = arcsin n 2 n 1 (1) Ein wichtiger Parameter der Lichtwellenleiter ist die optische Dämpfung, d.h. der Lichtverlust bei der Leitung des Lichts. Sie ergibt sich aus dem Verhältnis der Lichtleistung P 0 am Faseranfang zur Lichtleistung P L am Faserende und wird in Dezibel (db) angegeben: a = 10 lll P 0 P L (2) Physikalische Messtechnik S.2

Lichtverluste können in Lichtwellenleitern, bedingt durch den Werkstoff des LWL, durch Streuung und Absorption auftreten. Streuverluste werden hauptsächlich durch die sogenannte Rayleighstreuung verursacht, die durch Inhomogenitäten des Werkstoffes Glas entsteht. Absorption entsteht durch unerwünschte Beimengungen verschiedener Stoffe zum Glas, wobei die Adsorption stark wellenlängenabhängig ist. Bei Lichtwellenleitern spielt aber neben der Dämpfung durch den Werkstoff noch die Dämpfung, die durch Koppel- und Spleißstellen (z.b. Stecker, Fusionsspleiß) verursacht wird, eine Rolle. Diese Art der Dämpfung wird als Fresnel-Reflexion bezeichnet. Es ist daher von entscheidender Bedeutung, an welchen Stellen einer installierten Lichtwellenleiterstrecke Dämpfung auftritt. Weiterhin ist relevant, wie groß die Dämpfungswerte der einzelnen Verbindungsstellen sind und in welcher Größenordnung sich die Dämpfung der Verbindungsstellen bzw. Verbindungselemente zu der materialbedingten Dämpfung (hauptsächlich durch die Streuung verursacht) des Lichtwellenleiters bewegt. Nur durch diese Kenntnis können optische Nachrichtenübertragungsstrecken optimiert werden. Außerdem können durch diese Messungen Fehlerstellen lokalisiert und beseitigt werden. 2. Hinweise zur Messtechnik In diesem Laborversuch wird zur Bestimmung der optischen Dämpfung das Rückstreumessverfahren (OTDR- Optical-Time-Domain-Reflectometry) verwendet. Der OTDR-Messplatz besteht aus einem Computer mit den installierten OTDR-Karten, einem speziellen Anschluss für die Kontaktierung der Testfaser und der OTDR-Testbox. Der AOC 10 OTDR-Messplatz ist bereits vollständig aufgebaut. Die zu testende Faser befindet sich in der OTDR-Testbox und ist mit dem Computer über die FC/PC Ein- bzw. Ausgänge durch eine Verbindungsfaser verbunden. Dadurch kann der Computer sofort gestartet und Rückstreumessungen durchgeführt werden. Falls eine Steckverbindung, aus irgendeinem Grund, trotzdem neu kontaktiert werden muss, müssen unbedingt die Hinweise der Bedienungsanleitung (Teil 4: Start von Faserrückstreumessungen - Versuchsfaser anschließen, Seite 12f.) beachtet werden, um sicherzustellen, dass kein Staub in die Verbindungsstelle gelangt. Bei nicht angeschlossener OTDR-Testbox ist weiterhin notwendig, unbedingt die Sicherheitshinweise zu beachten. Insbesondere sind dies: - Laserquelle nicht einschalten - Nicht in die angeschlossenen Faser bzw. den Testfaseranschluss der OTDR-Karte sehen Physikalische Messtechnik S.3

3. Versuchsziel In Lichtwellenübertragungsstrecken müssen, unabhängig von der Struktur der Systeme, die einzelnen Fasern durch Spleiße und Stecker miteinander verbunden bzw. angekoppelt werden. An diesen Koppelstellen entstehen daher Verluste. Diese Verluste addieren sich mit den materialbedingten Verlusten der Fasern zu dem Gesamtlichtverlust, der Gesamtdämpfung der Übertragungsstrecke. Der vorliegende Versuch soll die Problematik der Dämpfung von Lichtwellenleiterübertragungsstrecken publik machen. Praktische Messungen an einer Lichtwellenübertragungsstrecke werden mit moderner Messtechnik durchgeführt, so dass schließlich anhand der Messergebnisse die verschiedenen Dämpfungsarten bewertet und die Übertragungsstrecke gezielt optimiert werden kann. 4. Aufgabenstellung Alle Messungen sollen sowohl bei 850 nm als auch bei 1300 nm Wellenlänge durchgeführt werden. Der OTDR-Messplatz bietet, durch das hier zugrunde liegende Messverfahren, die Möglichkeit, die verschiedensten Messungen an der Testfaserstrecke der OTDR-Testbox durchzuführen. Bestimmen Sie: - Dämpfung der Gesamtstrecke - Länge der Gesamtstrecke - Anzahl der Verbindungstellen - Entfernung der einzelnen Verbindungstellen untereinander und zum Testfasereingang - Dämpfungswerte der einzelnen Verbindungstellen - Dämpfung zwischen den einzelnen Verbindungsstellen Vergleichen Sie die ermittelten Messwerte mit Tabellenwerten und bewerten Sie die Verbindungsstellen anhand der Messwerte und der Rückstreukurven! Machen Sie eine Aussage über die in der Testbox vorhandene Faser bzw. vorhandenen Fasern und über die Art der Verbindungsstellen! Kommentieren Sie die Versuchsergebnisse und machen Sie Vorschläge zur Optimierung der vorhandenen optischen Übertragungsstrecke! Physikalische Messtechnik S.4

5. Versuchsdurchführung Führen Sie folgende Schritte durch: 1) Inbetriebnahme des Rückstreumessplatzes durch Anschalten des Computers 2) Machen Sie sich mit dem Rückstreumessplatz vertraut, indem Sie unter Zuhilfenahme der Bedienungsanleitung die Grundfunktionen der Menüsteuerung aufrufen 3) Testen Sie den Einfluss auf der Messdauer auf das Signal-Rausch-Verhältnis 4) Durchführung der Messungen bei einer Wellenlänge von 850 nm und 1300 nm, es ist sinnvoll die gemessenen Rückstreukurven zu fotografieren (Telefon) 5) Beenden der Software und Rückkehr zum DOS Betriebssystem durch Drücken der Esc-Taste (System verlassen). 6. Kolloquiumsfragen 1. Nennen Sie wesentliche Vorteile der Nachrichtenübertragung über Lichtwellenleiter! 2. Erklären Sie das Grundprinzip der Lichtleitung in Lichtwellenleitern. 3. Wie erfolgt im vorliegenden Versuch die Ermittlung der optischen Dämpfung einer Lichtwellenleiterübertragungsstrecke? 4. Nennen Sie die Vorteile des hier verwendeten Messverfahren im Gegensatz zu den anderen Messverfahren zur Bestimmung der Dämpfung! 5. Welche zusätzlichen Messungen sind außer der Dämpfungsmessung mit diesen Verfahren möglich? 6. Nennen Sie praktische Einsatzgebiete aufgrund der Vorteile und zusätzlichen Messmöglichkeiten für dieses Messverfahren! Physikalische Messtechnik S.5

7. Anhang Abbildung 2: Typische ODTR Rückstreukurve Physikalische Messtechnik S.6

Tabelle 1: Typische Dämpfungswerte [5] 8. Quellen & Literatur [1] https://de.wikipedia.org/wiki/totalreflexion (06.10.17) [2] Bedienungsanleitung Antel AOC 10 OTDR [3] Grimm / Nowak. Lichtewellenleitertechnik. Hüthig Verlag Heidelberg [4] Geckeler. Lichtwellenleiter für die optische Nachrichtenübertragung. Springer Verlag Berlin [5] Glaser. Lichtwellenleiter. Verlag Technik Berlin [6] http://www.profibus.felser.ch/lichtwellenleiter.htm (letzter Zugriff 12.08.2016) Physikalische Messtechnik S.7