Microbiology II. Sulfate reduction. Christopher Bräsen. aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Ähnliche Dokumente
Microbiology II. Methanogenesis. Christopher Bräsen. Methanococcus jannaschii. Methanosarcina barkeri

Microbiology II. Fermentations Acetogenesis and the CODH/ACS pathway Syntrophy. Christopher Bräsen. Methyl branch. Carbonyl branch

BIOPHYSIK DER ZELLE Energieumwandlung Mitochondrien, Atmungskette, Michell Hypothese, ATP Synthase. ATP Synthese

Stoffwechsel. Metabolismus (3)

Reduction / Oxidation

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit Pool water quality the German philosophy

Lithotrophe Organismen II

5. STOFFWECHSEL. Energie-Quelle Brennstoffe. 5.1 Übersicht. Red.-Äquivalente. Katabolismus

Grundlagen der Physiologie

Organische Chemie IV: Organische Photochemie

Wirkstoffgewinnung mit ganzen Zellen Biologische Konservierungsmittel und Herstellung von Bernsteinsäure. Detlef Goelling

Basis of the disulfide isomerase activity of DsbC

Activity and diversity of sulfate-reducing and methanogenic microorganisms in a petroleum-contaminated aquifer

Was bisher geschah 1

Level 2 German, 2015

Level 1 German, 2014

Vertiefendes Seminar zur Vorlesung Biochemie I Bearbeitung Übungsblatt 5

Biochemie II - Tutorium

Regulation der Glykolyse: Phosphofructokinase

Mitglied der Leibniz-Gemeinschaft

Grundlagen der Physiologie

The Na-dependent NADH:ubiquinone oxidoreductases from Klebsiella pneumoniae and Vibrio alginolyticus

Level 1 German, 2012

FACHKUNDE FüR KAUFLEUTE IM GESUNDHEITSWESEN FROM THIEME GEORG VERLAG

Atmung Übersicht. Atmung der Mitochondrien

Mikrobielle Ökologie. Mikrobielle Ökologie

Der Energiestoffwechsel eukaryotischer Zellen

Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus)

Guten Erfolg!! 2. Vordiplom Herbst 2004 Grundlagen der Biologie IIB. Teil Mikrobiologie (Gewichtung: Faktor 2; Zeitbedarf ca.

FAIRTRADE project Exchange 2012 Scotland 2 nd 10 th of May

5. STOFFWECHSEL Substratketten-Phosphoryl.

Biochemie II. im Wintersemester 2009/2010. Joachim Wegener. Institut für Analytische Chemie, Chemo- und Biosensorik Universität Regensburg

Biochemistry of nitrilotriacetate degradation in obligately aerobic, Gram-negative bacteria

Mock Exam Behavioral Finance

Grundlagen des Stoffwechsels

2 Grad globale Erwärmung: Was bedeutet das für unser Klima?

Level 2 German, 2016

Investigation of acetate and oxalate metabolism in Methylobacterium extorquens AM1

Mikrobielle Ökologie. Mikrobielle Ökologie

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Die Bedeutung neurowissenschaftlicher Erkenntnisse für die Werbung (German Edition)

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition)

Big Data Analytics. Fifth Munich Data Protection Day, March 23, Dr. Stefan Krätschmer, Data Privacy Officer, Europe, IBM

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Das Thema: Die Olympischen Spiele in

FIVNAT-CH. Annual report 2002

Biochemie II - Tutorium

Harry gefangen in der Zeit Begleitmaterialien

Grade 12: Qualifikationsphase. My Abitur

VL 03 Biogeochemische Kreisläufe von C, N, S, Abbau organischer Substanz

Low Carbon energy intensive industries

Harry gefangen in der Zeit Begleitmaterialien

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

Kataboler und Anaboler Stoffwechsel

Level 1 German, 2016

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

EINFACH REINE HAUT: DAS BUCH GEGEN PICKEL, AKNE UND UNREINE HAUT (EINFACH... 1) (GERMAN EDITION) BY MOIN YAMINA

Wie man heute die Liebe fürs Leben findet

Corporate Digital Learning, How to Get It Right. Learning Café

Allg-MiBio1-WS08-Handout IV. Energiequelle phototroph chemotroph (Oxidations-Reduktions-Reaktionen)

Cycling and (or?) Trams

Prüfung 06. Februar 2009 Grundlagen der Biologie IIB. Teil Mikrobiologie (Gewichtung: Faktor 2; Zeitbedarf ca. 70 min) Name, Vorname:

Level 2 German, 2013

Nitrogen Oxides. O = Lachgas =Stickoxydul =Distickstoffoxid = Nitrous Oxide N 2. Nitrogen oxides

Gärung (Fermentation)

Biochemie II - Tutorium

Zu + Infinitiv Constructions

ist die Vorlesung MIKROBIOLOGIE 2 (SS 2 SWS)

Das Zeitalter der Fünf 3: Götter (German Edition)

Osmotic Effects on Microbial Growth Halophiles

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

Product Lifecycle Manager

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

H 2 2 H + H + + S HS + S HCO 2 CO 2 + H + und Sn 1 2 = Polysulfid, MM b = an PsrC gebundenes Methyl-Menachinon.

Durch biothermodynamische Modellversuche mikrobielle Lebensweisen verstehen und interpretieren

Turning Data Into Insights Into Value. Process Mining. Introduction to KPMG Process Mining

English grammar BLOCK F:

Funktion der Mindestreserve im Bezug auf die Schlüsselzinssätze der EZB (German Edition)

Sagen und Geschichten aus dem oberen Flöhatal im Erzgebirge: Pfaffroda - Neuhausen - Olbernhau - Seiffen (German Edition)

Kapitel IV. Zellorganellen b. Biologie für Physikerinnen und Physiker Kapitel IV Organellen b

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

VORANSICHT. Halloween zählt zu den beliebtesten. A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9)

Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park

Kurztitel. Präsentation Kathrin Schlüter. Vorstellung Grundlagen Ziele Versuchsaufbau Ergebnisse Zukünftige Arbeiten.

Integration of a CO 2 separation process in a coal fired power plant

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors

Call Centers and Low Wage Employment in International Comparison

A Classification of Partial Boolean Clones

Level 1 German, 2011

Schöpfung als Thema des Religionsunterrichts in der Sekundarstufe II (German Edition)

Martin Luther. Click here if your download doesn"t start automatically

1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt.

NOREA Sprachführer Norwegisch: Ein lustbetonter Sprachkurs zum Selbstlernen (German Edition)

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

Übungsaufgaben zur Vorbereitung auf die Kombinierte Abiturprüfung im achtjährigen Gymnasium

Controlling the Surface Properties of Nanoparticles Bioorganically modified Nanoparticles for Cell Signaling (NANOCYTES)

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Transkript:

Microbiology II Sulfate reduction Christopher Bräsen aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Lecture Plan 17.10. 2017 Mikrobielle Physiologie I Energetik Bräsen 24.10. 2017 Mikrobielle Physiologie II Einige Prinzipien und Mechanismen im zentralen Kohlenstoffmetabolismus Bräsen 31.10. 2017 Keine Vorlesung Bräsen 07.11. 2017 Mikrobielle Physiologie III Nitrat Atmung Bräsen 14.11. 2017 Mikrobielle Physiologie IV Acetogenese und der Acetyl CoA/Kohlenmonoxid Dehydrogenase Weg Bräsen 21.11. 2017 Mikrobielle Physiologie V Anaerobe Nahrungskette und Methanogenese Bräsen 28.11. 2017 Mikrobielle Physiologie VI Sulfate Reduktion Bräsen 05.12. 2017 Antibiotika (Penicillium notatum) Meckenstock 12.12. 2017 Mikroorganismen in der Umwelt (Geobacter metallireducens) Meckenstock 19.12. 2017 Mikrobielles Wachstum (Elusimicrobium minutum) Meckenstock 09.01. 2018 Mikrobielle Fortbewegung (Thioploca) Meckenstock 16.01. 2018 Viren (T4) Meckenstock 23.01. 2018 Geschichte der Mikrobiologie Meckenstock 30.01. 2018 Wrap up/ausweichtermin Meckenstock/Bräsen

Redox potentials ΔG 0 = n F ΔE 0 Brock Mikrobiologie Pearson 2013

Anaerobic food chain Methane is a major end product of anaerobic biomass degradation only in anoxic environments where the concentrations of sulphate, nitrate, Mn(IV) or Fe(III) are low. In the presence of these electron acceptors, methanogenesis is out competed by anaerobic respiration, mainly for thermodynamic reasons. (Thauer RK et al. (2008) Nature Reviews Microbiology 6, 579 591) Brock Mikrobiologie Pearson 2013

Sulfate reduction Competition of sulfate reducers with syntrophic methanogenic communities and acetogens for fermentation products (lactate, propionate, acetate, H 2 in anaerobic environments) Sulfate reducers with broader substrate spectrum than e.g. methanogens Higher affinity and lower threshold for H 2 sulfate reducers outcompete methanogens at elevated SO 4 concentrations e.g. in marine sediments Muyzer G & Stams AJM, 2008

Redox potentials ΔG 0 = n F ΔE 0 Brock Mikrobiologie Pearson 2013

Sulfate reducers In five bacterial lineages, two archaeal anaerobic Ubiquitous in habitats where SO 4 is present Seawater ~28 mm SO 4 Muyzer G & Stams AJM, 2008

Three main physiological groups: Sulfate reducers Sulphate reducing reaction ΔG 0 group SO 4 + 4 H 2 + H + HS + 4 H 2 O 151.9 autotrophs Many sulfate reducers, e.g. Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) SO 4 + Acetate HS + 2 HCO 3 (also: fatty acids, hydrocarbons, aromatic compounds Acetyl CoA) 0.75 SO 4 + propionate 0.75 HS + 2 acetate + HCO 3 +0.25 H + 0.5 SO 4 + butyrate 0.5 HS + 2 acetate + 0.5 H + 0.5 SO 4 + lactate 0.5 HS + acetate + HCO 3 47.6 Complete oxidizers (heterotrophs) 37.7 27.8 80.2 Incomplete oxidizers (heterotrophs) Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) Many others Incomplete oxidizers Desulfovibrio

Sulfate reduction (chemolitoautotrophic) 4 H 2 + SO 4 + H + HS + 4H 2 O ΔG 0 = 152 kj/mol SO 4 red. Oxidative part Reductive part 4 H 2 SO 4 8 [H] net ~ 2 ATP Via Electron transport phosphorylation (ETP) 4 H 2 O HS CO 2 fixation via reductive acetyl CoA/CO dehydrogenase pathway, some via reductive citric acid cycle Problems: Sulfate transport Sulfate activation Energy consuming processes

Redox potentials ΔG 0 = n F ΔE 0 Redox potential of SO 4 /HSO 3 too nega ve cannot be reduced by NAD(P)H (or ferredoxin red ) SO 4 has to be activated at the expense of ATP Adenylation of SO 4 to APS Brock Mikrobiologie Pearson 2013

Sulphate activation Anhydride bond SO 4 activation energy consuming Dissimilatory sulphate reduction excretion Organic sulfur (Cystein, Methionine, etc.) B. subtilis Sulphate esters Organic sulfur (Cystein, Methionine, etc.) E. coli Sulphate esters Brock Mikrobiologie Pearson 2013, modified

Oxidative part Sulfate reduction (chemolitoautotrophic) Reductive part 4 H 2 APS Corresponds to 2 ATP equivalentswhich have to be invested PP i ATP SO 4 8 [H] HSO 3 AMP ΔG 0 = 152 kj/mol SO 4 red. 4 H 2 O HS ~ > 2 ATP Via Electron transport phosphorylation (ETP) CO 2 fixation via reductive acetyl CoA/CO dehydrogenase pathway, some via reductive citric acid cycle Problems: Sulfate transport Sulfate activation Energy consuming processes

Sulfate reduction (chemolitoautotrophic) Oxidative part Reductive part 4 H 2 APS ATP Sulfurylase PP i ATP SO 4 8 [H] HSO 3 AMP APS reductase ΔµH + 4 H 2 O HS ~ > 2 ATP (ETP) Sulfite reductase CO 2 fixation via reductive acetyl CoA/CO dehydrogenase pathway, some via reductive citric acid cycle Problems: Sulfate transport Sulfate activation Energy consuming processes

Sulfate reduction (chemolitoautotrophic) Periplasmic hydrogenase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme ATP Sulfurylase APS reductase Sulfite reductase Soluble, cytoplasmic enzymes

Sulfate reduction (chemolitoautotrophic) Qrc = quinone reductase complex ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Sulfate reduction (chemolitoautotrophic) Qrc = quinone reductase complex Menaquinone ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Menaquinone Menaquinone 75 mv Ubiquinone +113 mv Horton et al., Biochemie, 4. akt. Auflage

Redox potentials ΔG 0 = n F ΔE 0 Redox potential of SO 4 /HSO 3 too nega ve cannot be reduced by NAD(P)H (or ferredoxin red ) SO 4 has to be activated at the expense of ATP Adenylation of SO 4 to APS Brock Mikrobiologie Pearson 2013

Qrc = quinone reductase complex Sulfate reduction (chemolitoautotrophic) Qmo = quinone interacting membrane bound oxidoreductase complex ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Sulfate reduction (chemolitoautotrophic) Qrc = quinone reductase complex Qmo = quinone interacting membrane bound oxidoreductase complex Dsr = dissimilatory sulfite reductase complex ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Sulfate reduction (chemolitoautotrophic) Qrc = quinone reductase complex Qmo = quinone interacting membrane bound oxidoreductase complex Dsr = dissimilatory sulfite reductase complex ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Sulfate reduction (chemolitoautotrophic) Problems: Sulfate transport Sulfate activation Energy consuming processes 1. Transport system 2. ATP Sulfurylase 3. APS Reductase (AprBA) 4. Sulfite reductase (DsrAB) 5. Hydrogenase 6. Cytochrome c3 7. Cytc3: Menaquinone Oxidoreductase/quinone reductase (Qrc Komplex) 8. Menaquinol dependent membrane Oxidoreductase (Qmo Komplex) 9. Dsr Komplex (coupled to dissimilatory Sulfite reduction) 10. Energy conserving Pyrophosphatase 11. Pyrophosphatase 12. ATP Syntetase 13. Dithiol/Disulfide protein DsrC Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Sulfate reduction (chemolitoautotrophic) André A. Santos et al. Science 2015;350:1541-1545

Three main physiological groups: Sulfate reducers Sulphate reducing reaction ΔG 0 group SO 4 + 4 H 2 + H + HS + 4 H 2 O 151.9 autotrophs Many sulfate reducers, e.g. Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) SO 4 + Acetate HS + 2 HCO 3 (also: fatty acids, hydrocarbons, aromatic compounds Acetyl CoA) 0.75 SO 4 + propionate 0.75 HS + 2 acetate + HCO 3 +0.25 H + 0.5 SO 4 + butyrate 0.5 HS + 2 acetate + 0.5 H + 0.5 SO 4 + lactate 0.5 HS + acetate + HCO 3 47.6 Complete oxidizers (heterotrophs) 37.7 27.8 80.2 Incomplete oxidizers (heterotrophs) Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) Many others Incomplete oxidizers Desulfovibrio

Sulfate reduction incomplete oxidation of organic electron donors Oxidative part 2 Lactate Reductive part APS Corresponds to 2 ATP equivalentswhich have to be invested PP i ATP SO 4 2 Pyruvate 8 [H] HSO 3 APS reductase AMP Via Electron transport phosphorylation (ETP) 2 CO 2 2 Acetyl CoA 2 ATP (SLP) 2 Acetate Sulfite reductase ~ 1 ATP HS ΔG 0 = 160 kj/mol SO 4 red. Incomplete oxidation of organic compounds to acetate allow for ATP formation via SLP

[H] from catabolism Ferredoxin red, NAD(P)H, (MQH 2 ) Sulfate reduction (chemoorganoheterotrophic) Qrc = quinone reductase complex Qmo = quinone interacting membrane bound oxidoreductase complex Dsr = dissimilatory sulfite reductase complex ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Three main physiological groups: Sulfate reducers Sulphate reducing reaction ΔG 0 group SO 4 + 4 H 2 + H + HS + 4 H 2 O 151.9 autotrophs Many sulfate reducers, e.g. Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) SO 4 + Acetate HS + 2 HCO 3 (also: fatty acids, hydrocarbons, aromatic compounds Acetyl CoA) 0.75 SO 4 + propionate 0.75 HS + 2 acetate + HCO 3 +0.25 H + 0.5 SO 4 + butyrate 0.5 HS + 2 acetate + 0.5 H + 0.5 SO 4 + lactate 0.5 HS + acetate + HCO 3 47.6 Complete oxidizers (heterotrophs) 37.7 27.8 80.2 Incomplete oxidizers (heterotrophs) Desulfobacteriaceae (proteobacteria) Desulfotomaculum (gram positive) Archaeoglobus (archaea) Many others Incomplete oxidizers Desulfovibrio

Sulfate reduction complete oxidation of acetate as organic electron donor Acetate + SO 4 + 2 H + 2 CO 2 + HS + 2 H 2 O ΔG 0 = 41 kj/mol SO 4 red. Acetate activation Energy consuming TCA cycle (modified) or Oxidative CODH/ACS pathway Oxidative part Acetate Acetyl CoA 2 CO 2 8 [H] Reductive part APS HSO 3 HS Corresponds to 2 ATP equivalentswhich have to be invested AMP ~ > 2 ATP PP i APS reductase Sulfite reductase ATP SO 4 Via Electron transport phosphorylation (ETP)

Sulfate reduction complete oxidation of acetate as organic electron donor Corresponds to 2 ATP equivalentswhich have to be invested Oxidative part Reductive part PP i ATP Acetate APS SO 4 Acetate activation Energy consuming Acetyl CoA 8 [H] HSO 3 APS reductase AMP Via Electron transport phosphorylation (ETP) TCA cycle (modified) or Oxidative CODH/ACS pathway 2 CO 2 HS Sulfite reductase ~ > 2 ATP No ATP via substrate level phosphorylation Reduction equivalents: ferredoxin ( 400 mv), NAD(P)H ( 320 mv) and menaquinone ( 75 mv); APS/SO 3 60 mv, SO 3 /HS 110 mv

The Citric acid cycle for complete acetate oxidation in arobic organisms Acetate activation (two ATP equivalents) Two irreversible steps < 30 kj/mol 320 mv 190 mv Energy dissipation + 30 mv 500mV 320 mv +113 mv APS/SO 3 60 mv, SO 3 /HS 110 mv! Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508

Redox potentials ΔG 0 = n F ΔE 0 Brock Mikrobiologie Pearson 2013

The Citric acid cycle complete oxidation in Desulfobacter postgatei with modifications Menaquinone Electron acceptor with more positive redox potential than NAD + moves equilibrium towards Oxaloacetate formation 75 mv 190 mv ATP Citrate lyase (reversible); the exergonic malate oxaloacetate conversion allows for energetic coupling of the Acetyl CoAoxaloacetate condensation Menaquinone (more negative redox potential than ubiquinone), redox difference bridged via concentration (or confurcation), enables electron transfer to APS and SO 3 Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508 75 mv + 30 mv 500mV +113 mv 450 mv UQH 2 Acetate activation via Succinyl CoA: acetate CoAtransferase (together with ATP Citrate Lyase makes the acetate activation energetically neutral) Oxoglutarate: ferredoxin oxidoreductase (reversible) Use of ferredoxin renders reaction reversible and allows for optimized energetic coupling via ETP

[H] from catabolism Ferredoxin red, NAD(P)H, MQH 2 Sulfate reduction (chemoorganoheterootrophic) Qrc = quinone reductase complex Qmo = quinone interacting membrane bound oxidoreductase complex Dsr = dissimilatory sulfite reductase complex? ATP Sulfurylase APS reductase Sulfite reductase Aus Fuchs, Allgemeine Mikrobiologie, 9. Auflage, Thieme

Respiratory chain complete oxidation in Desulfobacter postgatei Proposed electron flow in the respiratory chain of Desulfobacter postgatei in comparison to that in mitochondria and aerobes e.g. Paracoccus Aerobic organisms Desulfobacter postgatei (proposed) µh + = generation of electrochemical proton potential Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508

The Citric acid cycle complete oxidation in Desulfobacter postgatei with modifications 75 mv Especially the substitutions of irreversible Citrate synthase and Oxoglutarate dehydrogenase by the reversible ATP Citrate lyase and Oxoglutarate: ferredoxin oxidoreductase, respectively, make the whole cycle reversible! reversed pathway used for CO 2 fixation during autotrophic growth Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508 190 mv + 30 mv 500mV ATP Citrate lyase (reversible); the exergonic malate oxaloacetate conversion allows for energetic coupling of the Acetyl CoAoxaloacetate condensation +113 mv 450 mv UQH 2 75 mv Oxoglutarate: ferredoxin oxidoreductase (reversible) Use of ferredoxin renders reaction reversible and allows for optimized energetic coupling via ETP

The oxidative CODH/ACS pathway complete oxidation in Desulfotomaculum acetoxidans 117 mv 295 mv 524 mv Acetate activation via acetate kinase and phosphotransacetylase 1 ATP instead of two for acetate activation, regained in CHO FH 4 to formate conversion Menaquinone instead of NAD + makes the CH 3 FH 4 to CH 2 =FH 4 conversion reversible pathway is reversible and acts in the reversed direction in CO 2 fixation during autotrophic growth 420 mv Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508

Respiratory chain complete oxidation in Desulfotomaculum acetoxidans Proposed electron flow in the respiratorychain of Desulfotomaculum acetoxidans µh + = generation of electrochemical proton potential X = so far unidentified electron carrier Thauer RK (1988) Citric acid cycle, 50 years on. Eur J Biochem 176:497 508

Sulfur reduction Several anaerobes use elemetal sufur S 0 as electron acceptor Some of them are obligate sulfur S 0 reducers (e.g. some hyperthermophilic archaea like Thermoproteus, Pyrodictium) Redox potential S 0 /HS 270 mv Others also utilize other electron acceptors e.g. Desulfuromonas acetoxydans, they only induce the sulfur respiratory enzymes on demand

Questions 6 Describe the three physiological groups of sulfate reducers. What are the substrates, what the products? What are the (energetic) difficulties in sulfate reduction? Why has sulfate to be activated and how much ATP does it require? What is the product of sulfate activation? How does sulfate enter the cell? How is energy gained in the incomplete oxidation of lactate? Which pathways lead to complete oxidation of acetate? What is additionally challenging with respect to energetics during growth on acetate? Why does sulfate reducers outcompete methanogens in the presence of SO 4? How does sulfate reducers fix CO 2 during autotrophic growth with H 2? Name at least 3 pathways of CO 2 fixation!

Questions 6 Welches sind die drei physiologischen Hauptgruppen der Sulfat Reduzierer? Was sind die Substrate, was die Produkte? Was sind die energetischen Hürden bei der Sulfat Reduktion? Warum muss Sulfat aktiviert werden und wieviel ATP wird dazu benötigt?was ist das Produkt der Sulfat Aktivierung? Wie wird Sulfat in die Zelle aufgenommen? Wie wird bei der unvollständigen Oxidation von Laktat Energie gewonnen? Über welche Stoffwechselwege wird Acetat vollständig zu CO2 oxidiert? Was stellt beim Wachstum auf Acetat eine zusätzliche energetische Hürde dar? Warum sind die Sulfat Reduzierer gegenüber Methanogenen in Gegenwart von SO 4 im Vorteil? Wie fixieren Sulfat Reduzierer CO 2 bei autotrophem Wachstum mit H 2? Benennen Sie wenigstens 3 CO 2 Fixierungswege.

Übung: Mikrobielles Wachstum II Wie entwickelt man ein Medium?

Übung: Mikrobielles Wachstum II Minimalmedium (definierte Zusammensetzung), C limitiertes Wachstum (heterotroph) 1 g TZ/ 1 g C ~50% der C & E Quelle gehen in den Baustoffwechsel Wie viel Stickstoff (NH 4 Cl in mm) muss dem Medium mindestens zugegeben werden, damit der Stickstoff bei einer gegebenen C & E Quelle (20 mm Glucose) nicht limitierend wird?

Übung: Mikrobielles Wachstum II Minimalmedium (definierte Zusammensetzung), C limitiertes Wachstum (heterotroph) 1 g TZ/ 1 g C ~50% der C & E Quelle gehen in den Baustoffwechsel 20 mm Glucose 0,12 mol C (Glucose 6 C Atome) 1,44 g C (C 12 g/mol) 1,44 g TZ Man benötigt also mindestens 0,175 g N (1,44 x 0,12 (12% TZ sind N) 0,175 / 14 (N 14 g/mol) =12,5 mm NH 4 Cl ( =0,66 g/l)

Übung: Mikrobielles Wachstum II Minimalmedium (definierte Zusammensetzung), C limitiertes Wachstum (heterotroph) 20 mm Glucose 0,12 mol C (Glucose 6 C Atome) 1,44 g C (C 12 g/mol) 1,44 g TZ Man benötigt also mindestens 0,175 g N (1,44 x 0,12 (12% TZ sind N) 0,175 / 14 (N 14 g/mol) =12,5 mm NH 4 Cl ( =0,66 g/l) ~40 60 mm NH 4 Cl