On the Influence of IQ-Imbalance on Carrier Recovery in WDM CO-OFDM Systems

Ähnliche Dokumente
Receiver Design for High-Speed Optical Inter-Satellite Communication

Investigation of the Nonlinear Characteristic of Costas Loop based Carrier Recovery Systems

Eingebettete Taktübertragung auf Speicherbussen

Radio Frequency Systems

Optisches OFDM Eine neue Technik für die optischen Datenübertragung Fred Buchali

Hochbitratige optische Übertragungssysteme. Empfänger. C.-A. Bunge; Hochschule für Telekommunikation Leipzig: High-Speed Optical Transmission Systems

Dynamic Hybrid Simulation

Sender- / Empfänger Architekturen. Roland Küng, 2012

M-ary Modulation & OFDM

Investigation of Performance Gain in n Systems due to Antenna Switching Using Simulated Radiation Patterns

Mess und Prüftechnik bis 6 GHz für Anwendungen. National Instruments CER

Adaptive Equalization With Time Lenses

A closer look at the M/G/R PS model for TCP traffic

Shock pulse measurement principle

Einführung in der NI Plattform für WLAN Test. Ken Tobler, System Engineer National Instruments

Sampling Rate / Sample rate. Modulation (gem. DVB-Standard) Modulation (DVB standard) 16 QAM 256 QAM QPSK, 16 QAM, 64 QAM

WLAN-Applikationsfirmware FSP-K90/FSQ-K91/-K91n

Betriebsarten-Umschalter Common mode / Differential mode switch

DVB-C2 Wegbereiter für zukünftige Fernsehdienste auf Kabelnetzen

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

Nonreturn to Zero (NRZ)

Developing Interactive Integrated. Receiver Decoders: DAB/GSM Integration

Summation der I und Q Signale

Amplifier Classes. by Manfred Thumm and Werner Wiesbeck. Forschungszentrum Karlsruhe in der Helmholtz - Gemeinschaft

What Energy Saving Possibilities Are Opened by New Base Station Hardware Solutions?

Advanced Receiver Structures for Vehicular Communications

Neue Detektoren für die Bewertung von Funkstörungen

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47

Wireless LAN Meßverfahren

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

Phasenjitter im DTV Signal

Software Defined Radios The Future Is Now

Meteorological measurements at the Offshore Platform FINO 2 - new insights -








Mini OEM Sender / Mini OEM Transmitter

Wireless Communications

All Digital Transceiver

1 Title Detail specification for high screened coaxial RF-cable with tin soaked braid. Generic specification: IEC , IEC

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

NIALM for Smart Buildings LoReMA Load Recognition Monitoring and Acting

LON Glasfaser Repeater Technische Datenblatt

Molecular dynamics simulation of confined multiphasic systems

Challenges for the future between extern and intern evaluation

Veröffentlichung: C. Lam, B. Razavi : A 2.6-GHz/5.2-GHz Frequency Synthesizer in 0.4 -µm CMOS Technology Journal of Solid-State Circuits Mai 2000

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

GIS-based Mapping Tool for Urban Energy Demand

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

AFu-Kurs nach DJ4UF. Betriebstechnik/Vorschriften 04: Betriebliche Abkürzungen. Amateurfunkgruppe der TU Berlin. Stand

Keysight N28xxA/B Passive Probes

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

City West between Modern Age and History: How Does the Balancing Act. between Traditional Retail Structures and International

Studienkomitee A2 Transformers. Martin A. Stössl Siemens AG Österreich Transformers Weiz

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN

Kompensation der nichtlinearen Kennlinie des externen Modulators für optische OFDM-Echtzeit-Systeme

Routing in WSN Exercise

Keysight Technologies Signal Studio for Short Range Communications

FLOXCOM - WP 7 Modelling and Optimisation of Wall Cooling - Wall Temperature and Stress Analysis

LWL-Breitbandübertragungssysteme Analog Fiber Optic Links

Entwicklungshandbuch Synthesizer für HSDR4512

Patrick Dittmer, Bremer Institut für Produktion und Logistik GmbH SIMKAB SIMPLIFIED CABIN RFID FOR VALUE CHAIN VISIBILITY IN CARGO

Simulation of a Battery Electric Vehicle

Praktikum 3: I/Q Architekturen

Einführung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen. Roland Pfeiffer 1. Vorlesung

Prediction of Binary Fick Diffusion Coefficients using COSMO-RS

Chemical heat storage using Na-leach

Ein Überblick über MIMO- Systeme und deren Einsatzgebiete.

Analoge CMOS-Schaltungen

R&S TVSCAN Automatic TV Channel Scan Software Qualitätsbeurteilung mehrkanaliger TV-Signale an der TV- Kabelkopfstelle oder im Feld

Mobile JENCOLOR Evaluation Kits with Windows 8 Smart PC for Color Measurement Applications

Übung 1: Ausbreitung von Radiowellen

AKTIVE DVB-T ZIMMERANTENNE ANSCHLUSSHINWEISE ACTIVE DVB-T INDOOR ANTENNA CONNECTION INSTRUCTIONS

Qun Wang (Autor) Coupled Hydro-Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage

Body Worn HD. Anschlüsse // Connectors COFDM SYSTEMS

Wakefield computation of PETRAIII taper section Laura Lünzer

Überblick über Duplex - und Multiple-Access - Verfahren

Internationale Energiewirtschaftstagung TU Wien 2015

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)

Einführung in die Technologie

Kriterien zur Auswahl eines geeigneten Phasenrauschmessverfahrens. Dietmar Köther und Jörg Berben.

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

CONTROLLER RECEIVER REPEATER PAIRING SLIM CLIP

Entwurf und Leistungsbewertung einer Kommunikationsarchitektur zur Erbringung von. Regelleistung durch Elektrofahrzeuge

Beispiel einer realen Antenne: Hertzscher Dipol

Überblick über Duplexer-Schaltungen und TX/RX-Schalter

technische universität dortmund Fakultät Bio- & Chemieingenieurwesen Mechanische Verfahrenstechnik

Asynchronous Generators

Rauschmessungen an DVB-Signalen

AVANTEK. Indoor HDTV Antenna DVB-T Zimmerantenne. Instruction Manual Bedienungsanleitung

GAUSS towards a common certification process for GNSS applications using the European Satellite System Galileo

Merkmale: Spezifikationen: Standards IEEE 802.1d (Spanning Tree Protocol) IEEE a (54 Mbps Wireless LAN) IEEE b (11 Mbps Wireless LAN)

Broadband EMI Noise Measurement in Time Domain

HFRA Passive Magnetische Sende-Rahmenantenne Passive Magnetic TX Loop Antenna

Latency Scenarios of Bridged Networks

Überblick über Senderschaltungen

Transkript:

On the Influence of IQ-Imbalance on Carrier Recovery in WDM CO-OFDM Systems Workshop der ITG-Fachgruppe 5.3.1 Simon Ohlendorf, Dennis Clausen und Werner Rosenkranz Christian-Albrechts-Universität zu Kiel (CAU) 18.02.2016

Outline 1. CO-OFDM System 2. Influence of Carrier Frequency Offset 3. Methods for Carrier Recovery a. Pilot tone based b. TS based 4. Transmitter IQ-Imbalances a. Impact b. Compensation 5. Results 6. Summary and Conclusion -2-

Serial/Parallel Parallel/Serial OFDM Transmission System OFDM: Orthogonal Frequency Division Multiplexing Bandwidth is divided into subbands A f f SC 1/TS Parallel data streams htx rect t / T N S orthogonal subcarriers with frequencies f0,..., f( N 1) Modulation: IDFT (IFFT), Demodulation: DFT (FFT) f fn 1 f n fn 1 OFDM Transmitter s () t 0 h Tx OFDM Receiver h Rx r () t 0 Data s () t 1 h Tx j 2 f0t e j 2 f1t e Channel e e j2 f t 0 j2 f t 1 h Rx r () t 1 Data sn () 1 t h Tx h Rx rn () 1 t j2 fn 1t e e j f t 2 N1-3-

Sync CO Rx ADC Rx DSP Synchronisation - CP FFT Zero Forcing EQ DATA CO-OFDM Transmission System CFO: fc fc flo f LO f c ECL IQ-MOD LPF LPF DAC ECL Tx DSP +CP (GI) IFFT (N FFT ) +Sync +EQ S/P DATA (4-QAM) f 1 OFDM-frame: S OFDM-symbols overhead EQ data load data N D OFDM-data symbols N TS OFDM training symbols t -4-

Outline 1. CO-OFDM System 2. Influence of Carrier Frequency Offset 3. Methods for Carrier Recovery a. Pilot tone based b. TS based 4. Transmitter IQ-Imbalances a. Impact b. Compensation 5. Results 6. Summary and Conclusion -5-

Effects of Carrier Frequency Offset on CO-OFDM A f Received symbol k of n th subcarrier Frequency offset f c Relative freq. offset c f f c SC carrier freq. offset subcarrier spacing Amplitude FFT grid size N Intercarrier interference N n fsc Symbol k of n th subcarrier after FFT (Rx): 2 sin sin ( mn) r k e s k e s k e N 1 j2 k j j ( m n) n n m c N sin m 0 N sin N N c m n nm NNCP N1 N1 c N c c N c c N f Phase rotation Morelli, M., et al.(2007): Proceedings of the IEEE 95, Nr.7 Attenuation Phase rotation -6- Intercarrier interference

Outline 1. CO-OFDM System 2. Influence of Carrier Frequency Offset 3. Methods for Carrier Recovery a. Pilot tone based b. TS based 4. Transmitter IQ-Imbalances a. Impact b. Compensation 5. Results 6. Summary and Conclusion -7-

PSD [db] CO Rx ADC Rx DSP Carrier Recovery Synchronisation - CP FFT Zero Forcing EQ DATA CO-OFDM Transmission System Pilot Tone CR CFO: fc fc flo f LO f c ECL ECL IQ-MOD LPF LPF DAC Tx DSP +CP (GI) IFFT (N FFT ) + Pilot Tone +Sync +EQ +IQ DATA (4-QAM) -40-50 -60-70 -80-90 -4-2 0 2 4 f [GHz] -8-

EVM [%] PSD [db] Pilot Tone Based CFO and PN Compensation ADC Carrier Recovery Sync -30-40 Pilot tone LP LP FFT BPF LP Δf c argmax(.) conj(.) -50-60 -70-80 BP data gap -90-400 -200 0 200 400 f [MHz] 50 50 50 40 40 40 30 20 OSNR: 10 db OSNR: 20 db 10-30 -25-20 -15-10 -5 Pilot-Signal-Ratio [db] 30 20 10 0 OSNR: 10 db OSNR: 20 db 10 20 30 40 Gap [SC] 30 GAP: 3 SC GAP: 5 SC 20 GAP: 21 SC GAP: 41 SC 10 20 40 60 B BP [MHz] 80 Jansen, S. L., et. al (2008). Journal of Lightw, Techn.. -9-

CO-OFDM Transmission System TS Based CFO and PN Compensation CO Rx ADC Sync Rx DSP Synchronisation CR (pre FFT) - CP FFT CR (post FFT) Zero-Forcing EQ DATA CFO: fc fc flo f LO f c ECL ECL IQ-MOD LPF LPF DAC Tx DSP +CP (GI) IFFT (N FFT ) + Pilot subcarriers f EQ data +Sync +EQ DATA (4-QAM) t -10-

TS Based CFO and PN Compensation ADC Sync & Carrier Recovery 1 S/P Carrier -GI FFT Recovery EQ 2 + 3 1. S&C TS with identical halves CFO causes phase rotation Φ Timing metric ( ) for synchronisation phase offset Max. CFO: Subcarrier spacing ˆ arg ( k 0) fractional CFO T A f f c 2z T T 2. 2. TS with differential data on even SC Estimation of integer CFO after FFT 2z T f Schmidl, T., & Cox, D. (1997)., IEEE Transactions on Communications -11-

TS Based CFO and PN Compensation ADC Sync & Carrier Recovery 1 S/P Carrier -GI FFT Recovery EQ 2 + 3 Phase Noise Track along complete signal 3. Pilot subcarriers Extract N p pilot subcarriers Phase rotation for every OFDM-symbol N p ˆ 1 ( k) arg n( ) arg n( ) N p n 1 r k s k Compensation sˆ ( ) ( )exp 2 ˆ n k rn k j ( k) Yi, X. (2007), Australian Conference on Optical Fibre Technology, 19(12). -12-

CO-OFDM WDM Simulation Model Ch. 2 ECL IQ- Modulator LPF c,2 1550.1nm IQ- Modulator LPF 3 db EDFA c,3 1550.2 nm 3 db ECL c,1 1550 nm Att./PM x2 100km ECL EDFA BPF Coherent Receiver OSNR 10 GS/s DAC Transmitter DSP 10 GS/s DAC Transmitter DSP Preamble: 1 Sync-TS, 2 EQ-TS Load: 50 Data-Symbols Ch. 1 & 3 N FFT = 512 N = 354 (70%) N CP = 24 Gap = 41 subcarriers 5.6 Gbaud/ch 11.2 Gbit/s/ch ADC LPF Receiver DSP Ch. 2-13-

Carrier Recovery Simulation Results 10-1 10-2 ideal CR Pilot CR S&C CR f c = 200 MHz linewidth = 100 khz l = 200 km BER 10-3 10-4 10-5 5 7.5 10 12.5 15 17.5 OSNR [db] OSNR @ BER = 10-3 : Ideal: 9,1 db Pilot tone: 10 db S&C: 11,4 db -14-

Outline 1. CO-OFDM System 2. Influence of Carrier Frequency Offset 3. Methods for Carrier Recovery a. Pilot tone based b. TS based 4. Transmitter IQ-Imbalances a. Impact b. Compensation 5. Experimental Results 6. Summary and Conclusion -15-

Transmitter IQ-Imbalance Impairments Tx IQ-Imbalance: Loss of power balance between I- & Q-branch amplitude imbalance Loss of orthogonality between I- & Q-branch phase imbalance Data symbols of n th SC: r k h G s k h G s k * n( ) n 1, n n( ) n 2, n n( ) Imbalance ICI Tx g Tx I Q 90 Tx G 1, n 1 g Tx, n 2 e j Tx, n, G 2, n 1g Tx, n 2 e j Tx, n. A f -2 0, g 1 8, g 0.8 Tx Tx -2 Tx Tx -1-1 0 0 f n f n f 1 OSNR = 16 db 2-2 -1 0 1 2 1 OSNR = 16 db 2-2 -1 0 1 2 Schenk, T. (2008), RF-Imperfections in high-rate wireless systems: impact and digital compensation. -16-

Transmitter IQ-Imbalance Compensation Training symbols for compensation & equalization: 1 st Channel estimation 2 nd IQ-Imbalance estimation s s n n (1) (2) n subcarrier n 1-1 -1 1 1 1 1-1 -1 1-1 1 1-1 -1 1 1-1 -1 1 Compensation & EQ * sˆ ( k) ˆ ( ) ˆ ˆ ( ) ˆ ( ) n h k G h k G n 1, n n 2, n r k n ˆ* ˆ ˆ* ˆ * sˆ ( k) ( ) ( ) ( k) n h k G h k G r n 2, n n 1, n n EVM [%] 45 40 35 30 25 20 15-17-, g 0.8 Tx 8 IQ-imb.-comp. ZF-EQ 6 8 10 12 14 16 18 OSNR [db] Tx Realteil Realteil -2-1 -2-1 0 1 2-2 -1 0 1 2 Imaginärteil 0 1 2-2 -1 0 1 2 Imaginärteil

CO-OFDM WDM Experimental Setup Ch. 2 ECL Avanex Q50 IQ- Modulator Waveshaper EDFA P Tx = 1 dbm Att./PM 100 km Att./PM EDFA OSA ECL 3 db Ch. 1 & 3 Amplifier IQ- Modulator Codeon 10060 Amplifier x2 P Rx = -10 dbm BPF Att./PM LPF LPF PBS 10 GS/s AWG Offline DSP Transmitter 10 GS/s AWG Preamble: 1 Sync-TS, 2 IQ-TS or 2 EQ-TS Load: 50 Data-Symbols N FFT = 512 N = 354 (70%) N CP = 24 Gap = 41 subcarriers -18- ECL PBS 5.6 Gbaud/ch 11.2 Gbit/s/ch X Coherent Receiver 50 GS/s Scope Offline DSP Receiver Coherent Receiver Chair for Communications Y

EVM [%] EVM [%] Phase Imbalance Variation (B2B) B2B, OSNR = 40 db I Variation of bias voltage from phase modulator Comparison between ZF-Equalizer and IQ-imbalance compensation Q 90 Tx 50 40 Pilot tone approach: ZF-EQ IQ-Imb. Compensation 50 40 S&C TS approach: 30 30 20 20 10 10-10 0 10 20 30 40 Tx[ ] -19- -10 0 10 20 30 40 Tx[ ]

CFO Variation (200km) Pilot tone approach S&C TS approach 25 24 23 OSNR = 20 db Pilot EQ Pilot IQ 25 24 23 S&C EQ S&C IQ OSNR = 20 db 22 22 EVM [%] 21 20 19 EVM [%] 21 20 19 18 18 17 17 16 16 15-200 0 200 400 600 800 2.4, g 1.06 Tx CFO [MHz] Tx Only ZF-EQ: 18.4% w IQ-Imb. Comp.: 17.5% 15 Mean EVM: -200 0 200 400 600 800 CFO [MHz] Only ZF-EQ: 18.4% w IQ-Imb. Comp.: 18.2% -20-

OSNR Variation (200km) 10-1 10-2 Pilot EQ Pilot IQ S&C EQ S&C IQ f c 2.65 g Tx Tx 150 MHz 1.16 IQ-Imb. Comp. BER 10-3 10-4 ZF: 10-5 7.5 10 12.5 15 17.5 OSNR [db] OSNR @ BER = 10-3 : Ideal EQ (Simulation): 9,1 db Pilot EQ: 11,75 db S&C EQ: 14,6 db -21-

Summary + Conclusion Summary Experimental verification for CFO + PN compensation methods Experimental evaluation of an IQ-imbalance compensation method Conclusion Pilot tone based CFO + PN compensation: Robust, IQ-imbalances can be compensated TS based CFO + PN compensation (pilot subcarriers): Degraded performance with IQ-imbalances Thank you for your attention! -22-