Ähnliche Dokumente
Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude (Anfängerpraktikum) 1. Stock, Raum 430

4 DIGITALE SCHALTUNGSTECHNIK

Labor Grundlagen der Elektrotechnik

Wird jede der PN-Übergänge als Diode dargestellt, lässt sich ein vereinfachtes Ersatzschaltbild zeichnen und die Funktion erklären.

Protokoll zum Versuch Flip-Flop

Grundschaltungen der Digitaltechnik

Spannungen und Ströme

Versuch: D1 Gatter und Flipflops

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Enseignement secondaire technique

Markus Kühne Seite Digitaltechnik

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel

Das große All-in-All CPLD/FPGA Tutorial

Anleitung für Zusammenbau und Anschluss der kontaktgesteuerten Elektronikzündung, Version 4

ELEXBO A-Car-Engineering

Bauanleitung für den Kronleuchter des Grafen Zahl

Übungsaufgaben EBG für Mechatroniker

BASIC-Tiger Application Note No. 055 Rev Segment-Displays mit Jumbo-Anzeigen. Gunther Zielosko. 1. Einleitung

Logikfamilien der Digitaltechnik

Hardware»intern« Der Schaltplan en détail. Kapitel 3

Speicherung von Signalen - Flipflops, Zähler, Schieberegister

Black Box erklärt Logische Verknüpfungen

Beschreibung der Steuerung für DB0RWP DB0RWP

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2

Praktikum Elektronik

IR-Fernbedienungs- Bausatz IR8. Montageanleitung IR8. IR-Fernbedienungs-Bausatz IR8 Best.Nr

1 Einfache diskrete, digitale Verknüpfungen

VOLTmonitor. VOLTmonitor. Schritt 1: Schaltung. file://localhost/users/rainer/xp-exchange/erzeugte%20websites/p... 1 of

Passive Bauelemente, Grundgrößen

Timer-IC NE555 Multitalent mit 8 Beinen. Projektlabor SS10 Moritz Dereschkewitz 3. Mai 2010 Betreuer: Ulrich Pötter

Grundlagen der Digitalen Elektronik

9 Multiplexer und Code-Umsetzer

Logikschaltungen. Basiswissen für junge Elektroniker

Einheit 4: Logische Schaltungen und Automaten

Versuch V09: Logische Gatter

ARDF Maus. Schaltungsbeschreibung

Versuch 3 Bipolar- und Feldeffekttransistoren

5 Aufgaben einer Schaltung

AFu-Kurs nach DJ4UF. Technik A14: Digitaltechnik. Amateurfunkgruppe der TU Berlin. Stand

Digitalelektronik 4 Vom Transistor zum Bit. Stefan Rothe

Einplatinen-Mikrocomputer MICO-80 Aufbauanleitung

9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen

El BAMAS Bestückungsplan

EDT. Referat: TTL CMOS. TTL, CMOS Page 1 of 23

Materialsatz: MatPwrDigiX

Weihnachtsschmuck. Für Fragen und Auskünfte stehen Ihnen unsere qualifizierten technischen Mitarbeiter gerne zur Verfügung.

Schnupperstudium. Einführung. Aufbau einer Audioverstärkerschaltung. Audioverstärker letzte Änderung: 4. Februar S.

MOTORANSTEUERUNG. Schaltzeichen eines Relais:

Der Aufbau der Uhr ist sehr einfach, weil nur sehr wenige Bauteile eingelötet werden müssen.

1 Das Kommunikationsmodell

Bausatz S8DCCB 8-fach Servo-Decoder Version 2

Der Transistor (Grundlagen)

LAB-EXP Experimentier-Platine für das LAB-537

Integrierte Schaltungen

Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

AS-electronic, Inh.: Norbert Koppel, Zietenstr. 8, Wesel

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A

Inhaltsverzeichnis. Aufgabenstellung 2. Idee der Schaltung 2. Blockschaltbild 3. Schaltplan 4. Stückliste 11. Routen 12. Fertigen 15.

Herzlich willkommen zum Sommerfest des PING e.v.

Vorbereitung zum Versuch

Schrittmotor Parallel Port Interface Platine

Versuch P1-63 Schaltlogik Vorbereitung

Der zweite Bausatz ein Stereo-Geräuschverstärker

Schrittmotorplatine. Best.Nr Pollin Electronic GmbH Tel. (08403) Montageanleitung V 1.1.1

Laborübung Gegentaktendstufe Teil 1

8. Realisierung von Schaltnetzen mit Gattern

etwa 1.5 bis 3.5V sind beide Transistoren mehr oder weniger gleichzeitig leitend (siehe Stromverlauf I ).

M1400 Parallel Ein-/Ausgabe

Aus Widerständen und mit rotem Kopf...

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

IT 200 Pegelumsetzer und programmierbarer Impulsteiler

KLAUSUR DIGITALTECHNIK SS 00

Arbeitsaufgaben Elektronik Klasse 9

Elektronik NATURWISSENSCHAFT UND TECHNIK. 1. Halbleiter Messung der Beleuchtungsstärke (Zusatzexperiment)

Technische Grundlagen der Informatik

Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll. Jan Nabbefeld erstellt: 5. Juli 2002

Kennenlernen der Laborgeräte und des Experimentier-Boards

Signalverarbeitung 1

Speicherung digitaler Signale

}

Schaltgerät EN 2. Universelle Versorgungsspannung 3 Eingänge mit Verknüpfungsmöglichkeiten

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

Werner Nitsche DL7MWN

Humboldt-Universität zu Berlin Institut für Physik. 1. Einführung. Seite 1 von 9. Versuch 8 Digitale Logik

Versuch 5.1a: Transistorverstärker und digitale Bauelemente

Liquid Clock micro - Löt- und Aufbauanleitung

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

MGB Quick Referenz - Stand 04/2010 2

GAL 16V8. 4. Laboreinheit - Hardwarepraktikum SS 2002 VCC / +5V. Eingang / Clock. 8 konfigurierbare Ausgangszellen. 8 Eingänge GND / 0V.

Benutzte Quellen. Benutzte Bezeichnungen. Logik. Logik

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker

Terrariensteuerung mit Siemens LOGO!

Speicherregister/Latches (1) 1

Aufbauanleitung Wortwecker 135x135mm 2

Bauanleitung Quantenwürfel Version 1.0

Praktikum Digitaltechnik

Übersicht. Fernseher II Timer555-Workshop 1. In diesem Workshop geht es um Zeit-Schaltungen. Sie werden mit einem Kondensator, einem Widerstand und

Transkript:

Page 1 of 13 Fenster schließen Digitaltechnik 1. Einige Grundlagen 1.1 Signalpegel 1.2 Logische Schaltglieder 1.2.1 UND / AND - Gatter 1.2.2 ODER / OR - Gatter 1.2.3 NICHT / NOT - Gatter 1.2.4 NICHT-UND / NAND - Gatter 1.2.5 NICHT-ODER / NOR - Gatter 1.2.6 Exklusiv-ODER / XOR - Gatter 1.2.7 Inklusiv-ODER / XNOR - Gatter 1.2.8 Umformungen von Schaltgliedern 1.3 Unbenutzte Eingänge 1.3.1 Unbenutzte Eingänge von AND- und NAND-Gattern 1.3.2 Unbenutzte Eingänge von NOR-Gattern 2. Einbau von ICs mit Stecksockel 3. Koppelkondensatoren gegen unerwünschte Störungen 4. Taster an einem Eingang 5. Lange Zuleitung an einem Eingang 6. Schalten von Leuchtdioden (LEDs) Signalpegel Einige Grundlagen Laut der Datenblätter der gängigsten integrierten digitalen Schaltungen der 74xxx-Serie sind folgende Pegel definiert: Eingang Ausgang H-Signal > +2,0V bis +5,0V > +2,4V bis +5,0V L-Signal 0V bis < +0,8V 0V bis < +0,4V Die Bereiche zwischen +0,8V und +2,0V beim Eingang und zwischen +0,4V und +2,4V beim Ausgang gelten als nicht definierte Zustände und sollten immer vermieden werden. Signale in diesen Bereichen können zu Fehlfunktionen der Schaltung führen. Diese Spannungswerte können z.b. durch lange Leitungen (siehe unten) oder durch die Überschreitung des Fan-Out (Ausgangsbelastbarkeit = Anzahl der zu treibenden Eingänge; Standardausgänge können 10 Eingänge ansteuern, N=10) eines Gatters entstehen. Eingangspegel Ausgangspegel

Page 2 of 13 typisches H(igh)-Signal: +3,4V typisches L(ow)-Signal: +0,2V Bei der Auslegung und Beschaltung der Ausgänge von ICs der Baureihe 74xxx ist speziell bei der Ansteuerung von Schalttransistoren auf folgende maximale Ausgangswerte des Stromes zu achten: Standard-Bausteine Buffer-Bausteine H-Signal U out = + 2,4V I OH = - 0,4mA I OH = - 1,2mA L-Signal U out = + 0,4V I OL = 16mA I OL = 48mA Logische Schaltglieder Im folgendem werden die wichtigsten Verknüpfungen vorgestellt. Aus diesen Verknüpfungen können alle Spezialanwendungen (z.b. Speicher- und Kippschaltungen; Frequenzteiler, Zähler und Schieberegister) erzeugt werden. Bei den unten vorgestellten Gattern wird jeweils das entsprechende Schaltzeichen (Logiksymbol), eine kurze Funktionsbeschreibung, das Zustandsdiagramm, die Wahrheitstabelle und ein paar Beispiele für die Pinbelegung von einigen ICs dargestellt. Die ICs gibt es in unterschiedlichen Ausführungen - so genannte Schaltkreisfamilien - (eine kleine Auswahl): TTL Transistor-Transistor-Logic gängigste Schaltkreisfamilie 74xxx S Schottky-TTL kürzere Signal-Laufzeiten LS 74Sxxx Low Power Schottky-TTL - geringere Leistungsaufnahme - kürzere Signal-Laufzeiten 74LSxxx L Low Power-TTL geringere Leistungsaufnahme 74Lxxx AS Advanced Schottky-TTL besserer Kompromiss zwischen Verlustleistung und Geschwindigkeit 74ASxxx ALS Advanced Low Power Schottky-TTL besserer Kompromiss zwischen Verlustleistung und Geschwindigkeit 74ALSxxx

Page 3 of 13 Metal Gate CMOS Vorteile: - großer Versorgungsspannungsbereich - hohe Störsicherheit - geringe Ruheverlustleistung Nachteile: - niedrige Schaltgeschwindigkeit - geringe Ausgangs-Treiberleistung - frequenzabhängige Verlustleistung 4000 HC Silicon Gate High Speed CMOS - Arbeitsgeschwindigkeit wie bei 74LS - sehr viel kleinere Verlustleitung 74HCxxx UND / AND - Gatter Nur wenn beide Eingangssignale 1-Signal führen, schaltet der Ausgang auf 1-Signal. 7408 mit 2 Eingängen 7411 mit 3 Eingängen 7421 mit 4 Eingängen Pinbelegung des 7408 ODER / OR - Gatter

Page 4 of 13 Sobald eines der beiden Eingangssignale 1-Signal führt, schaltet der Ausgang auf 1-Signal. 7432 mit 2 Eingängen Pinbelegung des 7432 NICHT / NOT - Gatter Nur wenn das Eingangssignal 0-Signal führt, schaltet der Ausgang auf 1-Signal. Eingangs- und Ausgangssignal haben immer unterschiedliche Signalpegel. Man sagt, dass das Eingangssignal negiert wird. 7404 mit 1 Eingang

Page 5 of 13 Pinbelegung des 7404 NICHT-UND / NAND - Gatter Nur wenn beide Eingangssignale 1-Signal führen, schaltet der Ausgang auf 0-Signal. 7400 mit 2 Eingängen 7410 mit 3 Eingängen 7420 mit 4 Eingängen 7430 mit 8 Eingängen 74133 mit 13 Eingängen Pinbelegung des 7400

Page 6 of 13 NICHT-ODER / NOR - Gatter Sobald eines der beiden Eingangssignale 1-Signal führt, schaltet der Ausgang auf 0-Signal. 7402 mit 2 Eingängen 7427 mit 3 Eingängen 74260 mit 5 Eingängen Pinbelegung des 7402 Exklusiv-ODER / XOR - Gatter Nur wenn beide Eingangssignale unterschiedliche Signalpegel führen, schaltet der Ausgang auf 1-Signal.

Page 7 of 13 7486 mit 2 Eingängen Pinbelegung des 7486 Inklusiv-ODER / XNOR - Gatter Nur wenn beide Eingangssignale den gleichen Signalpegel führen, schaltet der Ausgang auf 1-Signal. 74810 mit 2 Eingängen

Page 8 of 13 Pinbelegung des 74810 Umformungen von Schaltgliedern Mit dem De Morganschen Gesetz können Schaltglieder umgewandelt werden. So kann z.b. ein NAND-Gatter durch ein OR-Gatter mit negierten Eingängen ersetzt werden, das die gleiche Schaltfunktion erfüllt. Die Richtigkeit des Gesetzes kann anhand der jeweilig zugeordneten Wahrheitstabellen kontrolliert werden. NAND OR mit negierten Eingängen NOR AND mit negierten Eingängen OR NAND mit negierten Eingängen

Page 9 of 13 AND NOR mit negierten Eingängen Unbenutzte Eingänge von ICs Um Störungen und unerwünschte Verlängerungen der Impulsverzögerungszeiten in den Bausteinen zu vermeiden, sollten alle unbenutzten Eingänge auf ein Potential gelegt werden, das die logische Funktion des Elementes sicherstellt. Es muss nämlich beachtet werden, dass unbenutzte Eingänge von ICs der Reihe 74xxx sich so verhalten, als seien sie mit H-Potential (!) beschaltet. Unbenutzte Eingänge von AND- und NAND-Gattern a. Der ungenutzte Eingang kann mit einem benutzten Eingang desselben Gatters verbunden werden. Es muss dabei jedoch beachtet werden, dass das max. Fan-Out (Ausgangsbelastbarkeit = Anzahl der zu treibenden Eingänge; Standardausgänge können 10 Eingänge ansteuern, N=10) der treibenden Schaltung nicht überschritten wird. b. Wenn sicher gestellt ist, dass die Betriebsspannung U B immer 5,5V ist, können unbenutzte Eingänge direkt an +U B angeschlossen werden. c. Kann dieses nicht sichergestellt werden, müssen die Eingänge über einen Widerstand 1kΩ (mein Erfahrungswert = 2,2kΩ) an +U B angeschlossen werden. Hierbei lassen sich bis zu 25 Eingänge an den gleichen Widerstand anschließen. Version a Version b Version c

Page 10 of 13 Unbenutzte Eingänge von NOR-Gattern a. Auch hier kann der ungenutzte Eingang mit einem benutzten Eingang desselben Gatters verbunden werden. Es muss dabei jedoch beachtet werden, dass das max. Fan-Out (Ausgangsbelastbarkeit = Anzahl der zu treibenden Eingänge; Standardausgänge können 10 Eingänge ansteuern, N=10) der treibenden Schaltung nicht überschritten wird. b. Der unbenutzte Eingang wird an Masse gelegt. Version a Version b Einbau von ICs mit Stecksockel Selbstverständlich kann man die ICs (Integrated Circuit = Integrierte Schaltung) direkt in die Platine einlöten. Dieses hat nur den kleinen Haken, dass man in einem Fehlerfall des ICs (z.b. Überlastung oder Überhitzung) den IC schwer aus der Platine herauslöten kann. Man müsste dann theoretisch alle Anschlüsse des ICs gleichzeitig erhitzen, um ihn herausziehen zu können. Man kann dazu auch eine Lötpumpe benutzen. Aber dabei ist immer die Gefahr gegeben, dass Lötpunkte oder Leiterbahnen beschädigt oder sogar von der Platine gezogen werden. Um all diesen Problemen aus dem Wege zu gehen, empfehle ich, dass die ICs in so genannte Dual-in-Line-Stecksockel gesteckt werden. Dabei handelt es sich um nicht so hitzeempfindliche Fassungen, die in die Platine eingelötet und die ICs dann in diese hineingesteckt werden. Vor dem Einsätzen des ICs bitte die IC-Pins ("Beinchen") ausrichten. Biegen sie die Anschlüsse des ICs nicht einzeln, sondern die Anschlüsse einer Seite immer zusammen. Man kann den IC bei Bedarf mit einem Schraubendreher mit passender Klingenbreite aus dem Sockel entfernen, indem man den Schraubendreher zwischen Stecksockel und IC schiebt und den IC heraushebelt. Es gibt diese Stecksockel in unterschiedlichen Größen (Anzahl der "Beinchen") und Qualitäten und kosten wirklich nicht so viel.

Page 11 of 13 Koppelkondensatoren gegen unerwünschte Störungen Damit möglichst keine unerwünschte Störungen innerhalb der Digitalschaltung auftreten, sollten sogenannte Koppelkondensatoren von etwa 0,1µF zwischen U B = +5V und Masse eingebaut werden. Sie sollten mit möglichst kurzen Verbindungen zum IC verbunden werden (siehe Schaltplan). Empfohlen wird je ein Kondensator pro IC - meines Erachtens ist dieses dann aber doch etwas übertrieben. Ich halte je nach Belastung und Anzahl der benutzten Gatter einen Kondensator pro 3-5 ICs für ausreichend. Es dürfen ausschließlich Kondensatoren vom Typ der Keramik- bzw. Tantalkondensatoren verwendet werden. Mein Vorschlag: 0,1µF Tantal 16V. Taster an einem Eingang Alle mit einem Taster verbundenen Eingänge der TTL- Bausteine sollten mit pull-up-widerständen versehen werden, damit bei geöffneten Tasterkontakten die Eingänge auf definiertem HIGH-Potential liegen. Lange Zuleitung an einem Eingang Ist die Zuleitung zu einem Eingang recht lang (> 20cm) sollte je ein pull-up- (gegen die Versorgungsspannung

Page 12 of 13 U B ) und ein pull-down-widerstand (gegen Masse) verwendet werden. Damit wird sichergestellt, dass an dem Eingang eindeutige HIGH- und LOW-Signale anliegen. Schalten von Leuchtdioden (LEDs) Die erste Schaltung zeigt die Ansteuerung einer LED über einen Transistor. In der Schaltung wurde die Diode dem Emitter des Transistors nachgeschaltet. Dadurch wird erreicht, dass sich die Spannung (U BE, Basis - Emitter / Masse) von 0,7V auf 2,3V (0,7V + 1,6V [U F der Diode]) erhöht. Damit wird sichergestellt, dass die LED nicht schon bei einem L-Pegel von 0,7V leuchtet. Bei der zweiten Schaltung muss unbedingt darauf geachtet werden, dass bei L-Signal am Ausgang des NAND-Gliedes der maximale Ausgangsstrom I OL von 16mA nicht überschritten wird. Erstellt am: 25.10.2006 Letzte Aktualisierung: 25.10.2006

Page 13 of 13 Fenster schließen