Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Größe: px
Ab Seite anzeigen:

Download "Übersicht. Definition Daten Problemklassen Fehlerfunktionen"

Transkript

1 Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung Datenmenge und Learning Curves 3 Zusammenfassung und praktische Tipps Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

2 Feststellen von Bias oder Variance Bias: Unteranpassung an Trainingsdaten (underfit). Modell nicht mächtig genug. prediction Variance: feature Überanpassung an Trainingsdaten (overfit). prediction Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten feature 9. Mai / 49

3 Feststellen von Bias oder Variance Bias: Unteranpassung an Trainingsdaten (underfit). Modell nicht mächtig genug. Zu wenige Merkmale? Zu viel Regularisierung? prediction feature Variance: Überanpassung an Trainingsdaten (overfit). Zu viele Parameter/Merkmale? Zu wenig Regularisierung? Zu wenige Daten? prediction Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten feature 9. Mai / 49

4 Fehlerrate bei Erhöhen der Modellkapazität error train error number of features Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

5 Diagnose: Underfitting oder Overfitting? Angenommen der Crossvalidierungsfehler is groß. Ist es ein Bias- (underfitting) oder Variance- (overfitting) Problem? error cv error train error number of features Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

6 Diagnose: Underfitting oder Overfitting? Angenommen der Crossvalidierungsfehler is groß. Ist es ein Bias (underfitting) oder Variance (overfitting) Problem? error high bias (underfitting) cv error high variance (overfitting) train error number of features Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

7 Diagnose: Underfitting oder Overfitting Bias (underfitting): Jtrain (θ) hoch Jcv (θ) J train (θ) Variance (underfitting): J train (θ) niedrig Jcv (θ) >> J train (θ) Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

8 Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung Datenmenge und Learning Curves 3 Zusammenfassung und praktische Tipps Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

9 Regularisierung Term zur Fehlerfunktion hinzuaddiert (und mitoptimiert) wird, und der etreme Werte für Merkmalsgewichte bestraft. Zum Beispiel L2-Norm, θ 2 J(θ) = 1 2m m (h θ ( (i) ) y (i) ) 2 + λ i=1 Ausmaß der Regularisierung wird durch Hyperparameter λ gewählt. Kleines, genau richtiges and großes λ: n j=1 θ 2 n prediction prediction prediction feature feature feature Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

10 Auswahl des Regularisierungs-Parameters J(θ): zu optimierende Fehlerfunktion auf Trainingsdaten mit Regularisierungsterm. J train (θ), J cv (θ), J test (θ): Fehlerfunktionen ohne Regularisierungsterm. Welches λ sollte gewählt werden? 0, 0.01, 0.02, 0.05, ? Separates Modell für jeden Wert trainieren. Das Beste Modell auf Kreuzvalidierungsdaten wählen. Ergebnis auf den Testdaten berechnen. Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

11 Overfitting und Underfitting in Abhängigkeit von λ error high bias (underfitting) high variance (overfitting) cv error train error low λ λ high λ Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

12 Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung Datenmenge und Learning Curves 3 Zusammenfassung und praktische Tipps Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

13 Learning Curves Learning Curve : Fehlerfunktion in Abhängigkeit von der Datenmenge. Je mehr Daten im Training vorhanden sind, desto schwieriger ist es ein Modell zu finden, dass alle Trainingsdaten perfekt modelliert... error train error training set size m Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

14 Learning Curves Learning Curve : Fehlerfunktion in Abhängigkeit von der Datenmenge Je mehr Daten im Training vorhanden sind, desto schwieriger ist es ein Modell zu finden, dass alle Trainingsdaten perfekt modelliert jedoch steigt bei mehr Trainingsdaten die Qualität der Vorhersage für ungesehene Daten. error cv error train error training set size m Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

15 Learning Curves bei underfitting-modellen Bei underfitting-modellen ändert sich der Fehler in Abhängigkeit von zusätzlichen Daten nicht wesentlich. error cv error train error training set size m Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

16 Learning Curves bei overfitting-modellen Großer Unterschied zwischen Trainings- und Testfehler. Zusätzliche Trainingsdaten reduzieren den Testfehler. Zusätzliche Trainingsdaten erhöhen den Trainingsfehler (weniger Overfitting) error cv error train error training set size m Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

17 Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung Datenmenge und Learning Curves 3 Zusammenfassung und praktische Tipps Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

18 Sind mehr Daten immer besser? Daten zu gewinnen ist mit Aufwand verbunden. Wann lohnt sich dieser Aufwand? Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

19 Sind mehr Daten immer besser? Banko and Brill 2001: It s not who has the best algorithm that wins. It s who has the most data. Annahmen: Merkmale enkodieren alle wesentlichen Informationen, so dass ein Mensch die Entscheidung souverän treffen könnte. Der Lernalgorithmus hat eine hohe Kapazität (hohe Varianz, overfitting). Unter diesen Annahmen ist es eine gute Idee, mehr Daten zu gewinnen. Ansonsten ist es vielversprechender, an Merkmalen und Algorithmus zu arbeiten. Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

20 Zusammenfasssung: Verbessern von Performanz Ausgangssituation: Klassifikator hat zu große Fehlerrate auf Kreuzvalidierungsdaten. Diagnostik: Learning Curves Testfehler und CV-Fehler für 10%, 20%, % der Testdaten anzeigen. Overfitting oder Underfitting. Nächste Schritte: Problem ist Overfitting: λ erhöhen Weniger Merkmale Mehr Trainingsdaten Problem ist Underfitting: λ erniedrigen Merkmalskombinationen Zusätzliche Merkmale Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

21 Fehleranalyse Beginne mit einem einfachen Algorithmus, der schnell implementiert werden kann. Auf Kreuzvalidierungsdaten testen und Hyperparameter optimieren. Learning Curves anzeigen, um zu sehen ob mehr Daten oder mehr Features helfen könnten. Fehleranalyse: Von Hand Beispiele in den Kreuzvalidierungsdaten suchen, bei denen der Algorithmus Fehler gemacht hat. Gibt es systematische Fehler? Falls das Problem Underfitting war, neue Features anhand der Beobachtungen konstruieren. Falls das Problem Overfitting war, Features anhand der Beobachtungen generalisieren (oder neue Daten gewinnen). Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

22 Fehleranalyse: Spam- Beispiel 500 Beispiele in Kreuzvalidierungsset 100 falsch klassifiziert Durchsehen und von Hand kategorisieren: Welche Art von Pharma Gefälschte Produkte Fishing- s andere Welche Features könnten helfen: Länge der Beabsichtigte 5chreibfehl3r andere Bestimmte Merkmale müssen quantitativ evaluiert werden: Stemming, Muster in der Groß- und Kleinschreibung... Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

23 Noch Fragen? Benjamin Roth (CIS LMU München) Planen and Evaluieren von Machine Learning Eperimenten 9. Mai / 49

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38 Planen and Evaluieren von Machine Learning Eperimenten Marina Sedinkina Folien von Benjamin Roth CIS LMU München Evaluieren von Machine Learning Eperimenten 1 / 38 Übersicht 1 Entwickeln von maschinellen

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Modell Komplexität und Generalisierung

Modell Komplexität und Generalisierung Modell Komplexität und Generalisierung Christian Herta November, 2013 1 von 41 Christian Herta Bias-Variance Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Machine-learning Basics; Dateninstanzen in Python; Unit Tests

Machine-learning Basics; Dateninstanzen in Python; Unit Tests Machine-learning Basics; Dateninstanzen in Python; Unit Tests Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine-learning Basics; Dateninstanzen in Python; Unit Tests 1 / 46 Übersicht

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

Repetitorium der Computerlinguistik

Repetitorium der Computerlinguistik Repetitorium der Computerlinguistik Marina Sedinkina Ludwig Maximilian University of Munich Center for Information and Language Processing 9.April 2018 Marina Sedinkina (LMU) Repetitorium der Computerlinguistik

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen

Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Automatisierte Hyperparameter Optimierung im Maschinellen Lernen Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL)

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 1. Übungsblatt 1 1. Anwendungsszenario Überlegen

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Sh Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Paul Prasse Tobias Scheffer Sawade/Landwehr/Prasse/Scheffer, Maschinelles Lernen

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

A linear-regression analysis resulted in the following coefficients for the available training data

A linear-regression analysis resulted in the following coefficients for the available training data Machine Learning Name: Vorname: Prof. Dr.-Ing. Klaus Berberich Matrikel: Aufgabe 1 2 3 4 Punkte % % (Bonus) % (Gesamt) Problem 1 (5 Points) A linear-regression analysis resulted in the following coefficients

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Computerlinguistische Textanalyse

Computerlinguistische Textanalyse Computerlinguistische Textanalyse 10. Sitzung 06.01.2014 Einführung in die Textklassifikation Franz Matthies Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Wiederholung: Von Bayes schem Schließen zu Maximum Likelihood

Wiederholung: Von Bayes schem Schließen zu Maximum Likelihood Wiederholung: Von Bayes schem Schließen zu Maimum Likelihood Bayes sche Datenmodellierung: 1 p ( D) = p( D p( p( D) p( D) Gute Näherung durch MAP: MAP-Näherung: Verende das Modell mit der größten a-posteriori-wahrscheinlichkeit

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Von schwachen zu starken Lernern

Von schwachen zu starken Lernern Von schwachen zu starken Lernern Wir nehmen an, dass ein schwacher Lernalgorithmus L mit vielen Beispielen, aber großem Fehler ε = 1 2 θ gegeben ist. - Wie lässt sich der Verallgemeinerungsfehler ε von

Mehr

Innovative Datenanalyse für die Medizin

Innovative Datenanalyse für die Medizin Innovative Datenanalyse für die Medizin IDEALearning Intelligent Data Evaluation and Analysis by Machine Learning Dr. Susanne Winter winter:science Technologiezentrum Ruhr Universitätsstr. 142 44799 Bochum

Mehr

Behandelte Themen. 0. Motivation : Lernen in Statistik und Biologie. 1. Überblick über statistische Datenmodellierungs-Verfahren

Behandelte Themen. 0. Motivation : Lernen in Statistik und Biologie. 1. Überblick über statistische Datenmodellierungs-Verfahren Behandelte Themen 0. Motivation : Lernen in Statistik und Biologie 1. Überblick über statistische Datenmodellierungs-Verfahren 2. Das lineare Modell (Regression) 3. Perceptron und Multilagen-Perceptron

Mehr

Schwierigkeitsbestimmung von C-Test-Lücken. Lisa Beinborn Assozierte Doktorandin UKP-DIPF UKP Lab, TU Darmstadt 09 July 2013

Schwierigkeitsbestimmung von C-Test-Lücken. Lisa Beinborn Assozierte Doktorandin UKP-DIPF UKP Lab, TU Darmstadt 09 July 2013 Schwierigkeitsbestimmung von C-Test-Lücken Lisa Beinborn Assozierte Doktorandin UKP-DIPF UKP Lab, TU Darmstadt 09 July 2013 Virtualisierung vereinfacht individuelle Förderung Anpassung von Lernmaterialien

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Feature Selection / Preprocessing

Feature Selection / Preprocessing 1 Feature Selection / Preprocessing 2 Was ist Feature Selection? 3 Warum Feature Selection? Mehr Variablen führen nicht automatisch zu besseren Ergebnissen. Lernen von unwichtigen Daten Mehr Daten notwendig

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta Multivariate Lineare Regression Christian Herta Oktober, 2013 1 von 34 Christian Herta Multivariate Lineare Regression Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung I WS 2010/2011 Manfred Pinkal Wortartinformation Wortartinformation ist eine wichtige Voraussetzung für die syntaktische Analyse. Woher kommt

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Neuronale Netze u. Anwendungen, 17. Jan. 2012

Neuronale Netze u. Anwendungen, 17. Jan. 2012 Neuronale Netze u. Anwendungen, 17. Jan. 2012 Backpropagation Implementation Speed, Training Generalization Choice of Architecture Algorithms Backpropagation is Computer Intenstive during Training very

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer?

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? ASQF Automation Day 2018 - Predictive Analytics Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? Vasilij Baumann Co-Founder/Co-CEO vasilij.baumann@instrunext.com +49 931

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Tobias Scheffer Michael Brückner Hypothesenbewertung Ziel: gute Vorhersagen treffen. Bayesian model averaging,

Mehr

Maschinelles Lernen Vorlesung

Maschinelles Lernen Vorlesung Maschinelles Lernen Vorlesung SVM Kernfunktionen, Regularisierung Katharina Morik 15.11.2011 1 von 39 Gliederung 1 Weich trennende SVM 2 Kernfunktionen 3 Bias und Varianz bei SVM 2 von 39 SVM mit Ausnahmen

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken, Häufige Mengen Nico Piatkowski und Uwe Ligges 09.05.2017 1 von 15 Überblick Was bisher geschah... Heute Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Projekt-INF Folie 1

Projekt-INF Folie 1 Folie 1 Projekt-INF Entwicklung eines Testbed für den empirischen Vergleich verschiedener Methoden des maschinellen Lernens im Bezug auf die Erlernung von Produktentwicklungswissen Folie 2 Inhalt Ziel

Mehr

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015 Space Usage Rules? InformatiCup 2015 1 Agenda 1. Vorstellung des Teams 2. Entwicklungsprozess und Umsetzung 3. Verbesserung der Strategien 4. Auswertung der Strategien 5. Ausblick 6. Fazit 2 Vorstellung

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Inhalt. Einleitung... XIII

Inhalt. Einleitung... XIII Inhalt Einleitung................................................. XIII 1 Vektoren, Matrizen und Arrays.................................. 1 1.0 Einführung.......................................... 1 1.1

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Multivariate Pattern Analysis. Jan Mehnert, Christoph Korn

Multivariate Pattern Analysis. Jan Mehnert, Christoph Korn Multivariate Pattern Analysis Jan Mehnert, Christoph Korn Übersicht 1. Motivation 2. Features 3. Klassifizierung 4. Statistik 5. Annahmen & Design 6. Similarity 7. Beispiel Grenzen & Probleme der klassischen

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Übung Aufgabe 5: Gen-Erkennung mit Maschinellen Lernen Mario Sänger Problemstellung Erkennung von Genen in Texten NEU: Beachtung von Multi-Token-Entitäten (B-/I-protein)

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Wintersemester 2015/16 Musterlösung für das 7. Übungsblatt Aufgabe 1 Evaluierungsmethoden Ein Datenset enthält 2 n Beispiele, wobei genau n Beispiele positiv sind und

Mehr

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

SKOPOS Webinar 22. Mai 2018

SKOPOS Webinar 22. Mai 2018 SKOPOS Webinar 22. Mai 2018 Marktforschung 2020: Künstliche Intelligenz und automatische Text Analysen? Christopher Harms, Consultant Research & Development 2 So? Terminator Exhibition: T-800 by Dick Thomas

Mehr

Neuronale Netze. Volker Tresp

Neuronale Netze. Volker Tresp Neuronale Netze Volker Tresp 1 Einführung Der Entwurf eines guten Klassifikators/Regressionsmodells hängt entscheidend von geeigneten Basisfunktion en ab Manchmal sind geeignete Basisfunktionen (Merkmalsextraktoren)

Mehr

Grundlagen 1: Modelle & Mengen

Grundlagen 1: Modelle & Mengen Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 > Kapitel 2 Grundlagen 1: Modelle & Mengen 2.1 Modelle Grundlagen der Modellierung

Mehr

Logistische Regression

Logistische Regression Logistische Regression Christian Herta August, 2013 1 von 45 Christian Herta Logistische Regression Lernziele Logistische Regression Konzepte des maschinellen Lernens (insb. der Klassikation) Entscheidungsgrenze,

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung WS 2011/2012 Manfred Pinkal Wortartinformation Wortartinformation ist eine wichtige Voraussetzung für die syntaktische Analyse. Woher kommt

Mehr

Prädiktion und Klassifikation mit

Prädiktion und Klassifikation mit Prädiktion und Klassifikation mit Random Forest Prof. Dr. T. Nouri Nouri@acm.org Technical University NW-Switzerland /35 Übersicht a. Probleme mit Decision Tree b. Der Random Forests RF c. Implementation

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Heiko Spindler Apache Spark - Components Machine Learning Machine learning explores the construction and study of algorithms that can learn from

Mehr

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen 1 22.06.16 Kognitive Systeme Übung 2 22.06.2016 Klassifikation und Spracherkennung Matthias Sperber, Thai Son Nguyen KIT, Institute for Anthropomatics

Mehr

Erweitern von Aqqu durch AutoSklearn

Erweitern von Aqqu durch AutoSklearn Erweitern von Aqqu durch AutoSklearn Bachelorarbeit von Daniel Bindemann Übersicht Motivation Funktionsweise von Auto-Sklearn Funktionsweise von Aqqu Ansatz Evaluation Motivation What is the time zone

Mehr

Objektmerkmale für die räumlich-spektrale Klassifikation

Objektmerkmale für die räumlich-spektrale Klassifikation Objektmerkmale für die räumlich-spektrale Klassifikation AG Geomatik Geographisches Institut Ruhr-Universität Bochum AK Fernerkundung, Bochum 2012 Übersicht Ansatz zur automatischen Bildinterpretation:

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Diskriminatives Training, Neue Wort Problem. Sebastian Stüker

Diskriminatives Training, Neue Wort Problem. Sebastian Stüker Institut für Anthropomatik Diskriminatives Training, Neue Wort Problem Sebastian Stüker 03.02.2010 Interactive Systems Labs EM findet gute Modellparameter,indem es maximiert: X T P(X λ) T: Menge der Trainingsäußerungen

Mehr

Unüberwachte Nächste Nachbarn

Unüberwachte Nächste Nachbarn Unüberwachte Nächste Nachbarn Ein effizientes Verfahren zur Dimensionsreduktion Oliver Kramer Department für Informatik Carl von Ossietzky Universität Oldenburg 4. Mai 2012 (Oliver Kramer, Abteilung CI)

Mehr

elaboratum InsureFin Digital Day 2018 Was kann KI für die Finanzdienstleistungs- und Versicherungsbranche leisten?

elaboratum InsureFin Digital Day 2018 Was kann KI für die Finanzdienstleistungs- und Versicherungsbranche leisten? elaboratum InsureFin Digital Day 2018 Was kann KI für die Finanzdienstleistungs- und Versicherungsbranche leisten? Wolfgang Beinhauer Fraunhofer IAO Seite 1 Mensch oder Maschine? Der Turing-Test (Alan

Mehr