Kapitel 4: Formale Verifikation

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Formale Verifikation"

Transkript

1 Kapitel 4: Formale Verifikation Inhalt 4.1 Grundlagen 4.2 Verifikation auf axiomatischer Basis 4.3 Verifikation einzelner Eigenschaften 4.4 Stärken und Schwächen formaler Verifikation Schlüsselbegriffe Korrektheitsbeweis, Semantik, (formale) Verifikation Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-1

2 4.1 Grundlagen Begriffe Verifikation ist (1) der Prozess der Beurteilung eines Systems oder einer Komponente mit dem Ziel, festzustellen, ob die Resultate einer gegebenen Entwicklungsphase den Vorgaben für diese Phase entsprechen, (2) der formale Beweis der Korrektheit eines Programms. (IEEE ) Siehe dazu auch Bild 1.2. Mit formaler Verifikation ist die Bedeutung (2) gemeint Formale Verifikation ist der Beweis, dass ein Programm P alle in einem Vorgabedokument S geforderten Eigenschaften aufweist S ist die Spezifikation die Verifikation erfolgt mit den Mitteln der mathematischen Logik formale Verifikation erfordert eine formale Definition von Syntax und Semantik der für P und S verwendeten Sprachen. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-2

3 4.1.2 Syntax und Semantik von Sprachen Syntax Regelwerk für die Konstruktion orthographisch und grammatisch korrekter Sätze einer Sprache Syntaxdefinition formaler Sprachen konstruktiv durch Übersetzer und gleichzeitig informal mit Text für Benutzer durch formale Definition einer Grammatik (zum Beispiel Backus-Naur-Form (BNF)) für Übersetzer und Benutzer Semantik Festlegung der Bedeutungen der syntaktisch korrekten Sätze einer Sprache Semantikdefinition formaler Sprachen Übersetzersemantik: Bedeutungen durch Übersetzer (Compiler) bestimmt Operationale Semantik: Bedeutungen durch Abläufe in einer abstrakten Maschine (einem Automaten) bestimmt Denotationelle Semantik: Bedeutungen durch Funktion f: E A, definiert, welche den Eingangszustand E auf den Ausgangszustand A abbildet. Axiomatische Semantik: Bedeutungen durch Axiome in Form von Voraussetzungen und Ergebniszusicherungen bestimmt Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-3

4 4.2 Verifikation auf axiomatischer Basis Ansatz Beweise (i) Wenn P terminiert, so transformiert P jeden Zustand, in dem V gilt, in einen Zustand, in dem N gilt Schreibweise: {V} P {N} (ii) P terminiert (Hoare, 1969) P zu verifizierendes Programm {V} Menge der Voraussetzungen (Vorbedingungen, Preconditions), deren Erfüllung vor Ausführung von P garantiert, dass die Ergebniszusicherungen gelten {N} Menge der Ergebniszusicherungen (Nachbedingungen, Postconditions), die nach Ausführung von P gelten N und V sind Ausdrücke der Prädikatenlogik {V} und {N} bilden zusammen die Spezifikation von P Beispiel 4.1 Gegeben sei die Spezifikation V x, y INTEGER x = X, y = Y N x = max (0, Y) Beweise: das Programm P x := y; if x < 0 then x := 0 erfüllt die Spezifikation, d.h. {V} P {N} Hinweis: x = X bedeutet, dass die Variable x den Wert X hat Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-4

5 Beweisidee: Das zu verifizierende Programm wird in Schritte gegliedert und Schritt für Schritt verifiziert: Zu beweisen sei {V} P {N} P bestehe aus einer Folge s 1, s 2,..., s n von Anweisungen. Dann werden Bedingungen Q i bestimmt mit V = Q 0, N = Q n und {Q 0 } s 1 {Q 1 } s 2 {Q 2 } s 3... {Q n-1 } s n {Q n } Nun gilt: Aus {Q i-1 } s i {Q i } für alle 1 i n folgt {V} P {N} Jeder Einzelschritt wird bewiesen, indem man ihn aus der Semantikdefinition der verwendeten Programmiersprache herleitet. Beweise dieser Art setzen eine axiomatische Semantik für die verwendete Programmiersprache voraus. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-5

6 4.2.2 Axiomatische Semantik von Programmiersprachen Die Semantik wird durch ein Axiom {V} s {N} für jede ausführbare Anweisung s der verwendeten Programmiersprache definiert. (Hoare, 1969) In den Axiomen sollen die Ergebniszusicherungen unter möglichst schwachen Voraussetzungen gelten: Gesucht ist die schwächste Voraussetzung (weakest precondition) V, für die {V} s {N} bewiesen werden kann. Schreibweise: V wp (s, N) Definiere wp(s, N) für jede ausführbare Anweisung der verwendeten Programmiersprache (Dijkstra, 1976; Gries, 1981) Die Semantik ist nur für syntaktisch korrekte Konstrukte definiert. Es wird daher im Folgenden immer vorausgesetzt, dass die zu verifizierenden Programme oder Programmteile syntaktisch korrekt sind. Bei Sprachen mit Typen, z.b. PASCAL oder Java, gehört die Typverträglichkeit aller Ausdrücke und Zuweisungen ebenfalls zur Syntax. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-6

7 Ausgewählte Axiome für die Sprache PASCAL Wertzuweisung x := E Sei x eine Variable, E ein Ausdruck vom gleichen Typ wie x und Q(x) die Ergebniszusicherung von x := E Dann ist die Semantik von x := E definiert durch wp(x:=e, Q(x)) E ist berechenbar Q(E) In Worten: Wenn E berechnet werden kann, so ergibt sich die schwächste Voraussetzung, indem alle Vorkommen von x in der Ergebniszusicherung durch E ersetzt werden. Hinweis: Situationen, in denen E nicht berechnet werden kann, ergeben sich beispielsweise, wenn E eine Division durch Null enthält. Beispiel 4.2 Seien a, b Zahlen gleichen Typs und seien gegeben Wertzuweisung b := a+1 Ergebniszusicherung b > a wp (b := a+1; b > a) = (a+1 > a) = TRUE Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-7

8 Leere Anweisung ε wp (ε, Q) Q Die leere Anweisung wird u.a. benötigt, um IF-Anweisungen ohne ELSE-Zweig zu verifizieren. Sequenz s1 ; s2 wp (s1;s2, Q) wp (s1, wp (s2, Q)) In Worten: Die schwächste Voraussetzung der zweiten Anweisung ist gleich der Ergebniszusicherung Ns1 der ersten Anweisung. Die schwächste Voraussetzung der Sequenz ist damit die schwächste Bedingung, die bei Ausführung von s1 die Bedingung Ns1 liefert. Beispiel 4.3 Seien x,y Zahlen gleichen Typs und seinen gegeben Anweisungssequenz y := x; x := 0 Ergebniszusicherung y = X x 0 wp (y := x; x := 0, (y = X x 0) ) = wp (y := x, wp (x := 0, (y = X x 0)) ) = wp (y := x, (y = X 0 0) ) = (x = X) Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-8

9 Alternative if b then s1 else s2 wp (if b then s1 else s2, Q) b wp (s1, Q) b wp (s2, Q) In Worten: ist b wahr, so hat die Alternative die Semantik der Anweisung s1, andernfalls diejenige der Anweisung s2. Beispiel 4.4 Seien x,y,z vergleichbare Objekte gleichen Typs und seien gegeben Alternative if x < y then z := y else z := x Ergebniszusicherung z = max (X, Y) wp (if x < y then z := y else z := x, z = max (X, Y) ) = (x < y) wp (z := y, z = max (X,Y)) (x < y) wp (z := x, z = max (X,Y)) = (x < y) (y = max (X, Y)) (x y) (x = max (X, Y)) = (y = Y) (x = X) Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-9

10 Iteration while b do s durch rekursive Definition zurückführbar auf Semantik einer Folge von Anweisungen : while b do s if b then begin s ; while b do s end führt zu Rekursion in der Definition von wp schwierig Besser: Verifikation über eine Schleifeninvariante Eine Schleifeninvariante Inv ist ein logischer Ausdruck, der bei jeder Prüfung der Fortsetzungsbedingung b wahr ist Da Inv bei jeder Prüfung der Fortsetzungsbedingung wahr ist, muss Inv auch nach jedem Schleifendurchlauf, d.h. nach jeder Ausführung von s wahr sein. Folglich gilt: {Inv b} s {Inv} Für den letzten Schleifendurchlauf gilt {Inv b} s {Inv b} Durch geeignete Wahl von Voraussetzungen V und einer Invarianten Inv ist zu beweisen: V Inv sowie (Inv b) N Nach den Regeln für die Zusammensetzung von Bedingungen für eine Folge von Anweisungen (vgl. p. 4-5) ist damit {V} while b do s {N} bewiesen. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-10

11 Beispiel 4.5 Gegeben sei die Iteration mit der Ergebniszusicherung while i n do begin p := p * s; i := i + 1 end {p = S**N} Die Bedingung p = S**i-1 ist Schleifeninvariante, sofern bei Eintritt in die Schleife die Voraussetzung (p = S) (i = 2) (n > 0) erfüllt ist V Inv ist trivial, weil die Voraussetzung gerade so bestimmt wurde Leite aus der Invariante die Ergebniszusicherung ab (beweise Inv b N): Nach dem letztem Schleifendurchlauf gilt i = n+1: (p = S**i-1 für alle i n+1) i = n+1 (p = S**n) (mit der trivialen Voraussetzung n = N) (p = S**N) Damit ist bewiesen: {(p = S) (i = 2) (n > 0)} while i n do begin p := p * s; i := i + 1 end {p = S**N} Hinweis: Würde man als Schleifeninitialisierung wie üblich i := 1 wählen, wäre die Voraussetzung der Schleife verletzt und damit das Ergebnis nicht mehr garantiert (nicht notwendig falsch, da die Voraussetzung nicht sicher die schwächste ist). Im konkreten Fall wäre das Ergebnis für n= 1 falsch, weil p den Initialwert S hat. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-11

12 4.2.3 Verifikation des Programms aus Beispiel 4.1 Seien x,y vom Typ INTEGER Beweise: {x = X, y = Y} x := y; if x < 0 then x := 0 {x = max (0, Y)} 1. Bestimme Q 3 = wp (x := 0, (x = max (0, Y)) = (0 = max (0, Y) ) = (Y 0) 2. Bestimme Q 2 = wp (ε, (x = max (0, Y)) = (x = max (0, Y)) 3. Bestimme Q 1 = wp (if x < 0 then x := 0, (x = max (0, Y)) = ( (x < 0) (Y 0) (x 0) (x = max (0, Y)) 4. Bestimme Q 0 = wp (x := y, Q 1 ) = ( (y < 0) (Y 0) (y 0) (y = max (0, Y)) 5. Zeige: (x = X, y = Y) Q 0 y = Y (y < 0) (y = Y) (y 0) (y = Y) (y < 0) (Y 0) (y 0) (y = max (0, Y)) 6. Zeige, dass das Programm terminiert Das Programm enthält weder Schleifen noch Rekursion das Programm terminiert Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-12

13 4.3 Verifikation einzelner Eigenschaften Häufig interessiert man sich nicht nur für den Nachweis einer korrekten Implementierung, sondern für den Beweis anderer wichtiger Eigenschaften, z.b. der Nachweis für eine Spezifikation, dass gefährliche (und daher verbotene) Systemzustände nachweislich nicht erreichbar sind der Nachweis, dass ein Modell verklemmungsfrei ist Solche Nachweise sind möglich, wenn der Untersuchungsgegenstand in einer Sprache vorliegt, die entweder eine vollständig formale Semantik hat oder für welche mindestens die für den Nachweis benötigten Elemente formal definiert sind. Beispiel 4.6: In nachstehendem Petrinetz einer (stark vereinfachten) Liftsteuerung kann die Eigenschaft, dass der Lift niemals bei offener Tür fahren kann, formal bewiesen werden. Lift steht auf Etage Tür zu Tür offen fahrbereit Lift fährt Zielknopf Stockwerksensor Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-13

14 4.4 Stärken und Schwächen formaler Verifikation Stärken: Ein formal verifiziertes Programm erfüllt nachweislich seine Spezifikation ein Test erübrigt sich das Programm liefert für alle Daten korrekte Ergebnisse Fehlfunktionen in nicht vorausgesehenen Fällen gibt es nicht Probleme: Viele Beweise ignorieren reale Randbedingungen: in Beispiel 4.2 wurde bewiesen {a, b sind Zahlen gleichen Typs} b := a+1 {b > a} Sind a und b vom Typ REAL und intern mit einer Mantisse von 24 Bit repräsentiert, so liefert dieses verifizierte Programm für alle a 2 24 das falsche Ergebnis b = a Die Verifikation ist aufwendig, insbesondere das Bestimmen von Schleifeninvarianten Es gibt keine Garantie gegen fehlerhafte Beweise. In der Literatur sind Beispiele fehlerhafter Programmbeweise dokumentiert (z.b. Gerhart und Yelowitz 1976) Der Test wird nicht überflüssig Verifikation hilft nicht gegen Spezifikationsfehler Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-14

15 Fazit Eine generelle formale Verifikation von Software ist mit den heutigen Mitteln weder machbar noch wirtschaftlich Nachträgliches Verifizieren mit seinem immensen Aufwand ist möglicherweise ein Irrweg Neue Ansätze versuchen Vorwärtsverifikation, d.h. korrektes, schrittweises Ableiten eines Programms aus seiner Spezifikation Die Erstellung und Prüfung einer vollständigen formalen Spezifikation bleibt bei großer Software ein ungelöstes Problem Formale Verifikation ist anzezeigt für eher kurze, aber sehr wichtige Algorithmen in Spezialfällen, z.b. für Kommunikationsprotokolle für sicherheitskritische Eigenschaften von Modellen Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-15

16 Aufgaben Aufgabe 4.1 Gegeben sei folgende Anforderung: Der abzugsfähige Betrag A ist der nachgewiesene Betrag B abzüglich des Selbstbehalts S, höchstens aber H. Alle Beträge sind nicht negative ganze Zahlen. a) Formen Sie diese Anforderungen in eine formale Ergebniszusicherung um. b) Ermitteln Sie die schwächste Voraussetzung, mit der folgende Anweisung in PASCAL die Ergebniszusicherung erfüllt: abzugsbetrag, nachgewbetrag, selbstbehalt, maxbetrag: INTEGER;... IF (nachgewbetrag - selbstbehalt) < maxbetrag THEN abzugsbetrag := nachgewbetrag - selbstbehalt ELSE abzugsbetrag := maxbetrag; c) Wie müsste das Programmfragment abgeändert werden, damit die Voraussetzung A S fallengelassen werden kann? Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-16

17 Zitierte Literatur Dijkstra, E.W. (1976). A Discipline of Programming. Englewood Cliffs: Prentice Hall. Gerhart, S.L., L. Yelowitz (1976). Observations on Fallibility in Applications of Modern Programming Methodologies. IEEE Transactions on Software Engineering, SE-2, 3 (Sept. 1976) Gries, D. (1981). The Science of Programming. Berlin, etc.: Springer. Hoare, C.A.R. (1969). An Axiomatic Basis for Computer Programming. Communications of the ACM 12, 10 (Oct. 1969) IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE Std IEEE Computer Society Press. Software-Qualitätsmanagement Kapitel 4: Formale Verifikation Seite 4-17

Formale Verifikation. KV Software Engineering Prof. Dr. Martin Glinz. Kapitel 4. Universität Zürich Institut für Informatik

Formale Verifikation. KV Software Engineering Prof. Dr. Martin Glinz. Kapitel 4. Universität Zürich Institut für Informatik KV Software Engineering Prof. Dr. Martin Glinz Kapitel 4 Formale Verifikation Universität Zürich Institut für Informatik 2004, 2005 by Martin Glinz. Alle Rechte vorbehalten. Reproduktion, Speicherung und

Mehr

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Nicolas Schelp. Proseminar Assertions SS 2007

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Nicolas Schelp. Proseminar Assertions SS 2007 C. A. R. Hoare An Axiomatic Basis for Computer Programming Nicolas Schelp Proseminar Assertions SS 2007 Inhalt Motivation Kurze Biographie Der Hoare-Kalkül Axiome und Inferenzregeln des Hoare-Kalküls Die

Mehr

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel Inhalt Hoare-Kalkül Formale Verifizierung Hoare-Kalkül while-sprache Terminierung Partielle / totale Korrektheit 4.0 Hoare-Kalkül entwickelt von C.A.R. (Tony) Hoare (britischer Informatiker), 1969 formales

Mehr

Algorithmen und Programmieren II Programmverifikation {V} P {N}

Algorithmen und Programmieren II Programmverifikation {V} P {N} Algorithmen und Programmieren II Programmverifikation {V} P {N} SS 2012 Prof. Dr. Margarita Esponda ALP II: Margarita Esponda, 11. Vorlesung, 22.5.2012 1 Assertions oder Zusicherungen Das Konzept der Zusicherungen

Mehr

WS 05/06 mod Verifikation

WS 05/06 mod Verifikation 3.3 Verifikation WS 05/06 mod 351 Verifikation ist der Beweis der Korrektheit eines Algorithmus relativ zu seiner Spezifikation. Die Aussagen gelten für alle Ausführungen des Algorithmus. Sie werden statisch

Mehr

Korrektheit imperativer Algorithmen

Korrektheit imperativer Algorithmen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Abschnitt 9 Korrektheit imperativer Algorithmen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester

Mehr

Verifizierende Testverfahren

Verifizierende Testverfahren Spezifikation Um einen Algorithmus zu schreiben, muss das zu lösende Problem genau beschrieben sein. Eine Spezifikation ist Verifizierende Testverfahren vollständig, wenn alle Anforderungen/alle relevanten

Mehr

4.3 Verifikation von Aussagen über Algorithmen

4.3 Verifikation von Aussagen über Algorithmen 4.3 Verifikation von Aussagen über Algorithmen Hoaresche Logik: Kalkül zum Beweisen von Aussagen über Algorithmen und Programme, Programm-Verifikation, [C.A.R. Hoare, 1969]. Mod - 4.51 Statische Aussagen

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 -

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation Spezifikation: Angabe, was ein Programm tun

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 -

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation Spezifikation: Angabe, was ein Programm tun

Mehr

n 1. Erste Schritte n 2. Einfache Datentypen n 3. Anweisungen und Kontrollstrukturen n 4. Verifikation n 5. Reihungen (Arrays)

n 1. Erste Schritte n 2. Einfache Datentypen n 3. Anweisungen und Kontrollstrukturen n 4. Verifikation n 5. Reihungen (Arrays) n 1. Erste Schritte n 2. Einfache Datentypen n 3. Anweisungen und Kontrollstrukturen n 4. Verifikation n 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation n Spezifikation: Angabe, was ein

Mehr

Formale Systeme Logik: Verifikation von Aussagen über Algorithmen. Ana Sokolova statt Robert Elsässer

Formale Systeme Logik: Verifikation von Aussagen über Algorithmen. Ana Sokolova statt Robert Elsässer Formale Systeme Logik: Verifikation von Aussagen über Algorithmen 20.12.2012 Ana Sokolova statt Robert Elsässer Verifikation von Aussagen über Algorithmen Hoaresche Logik: Kalkül zum Beweisen von Aussagen

Mehr

! 1. Erste Schritte! 2. Einfache Datentypen! 3. Anweisungen und Kontrollstrukturen! 4. Verifikation! 5. Reihungen (Arrays) II.1.4. Verifikation - 1 -

! 1. Erste Schritte! 2. Einfache Datentypen! 3. Anweisungen und Kontrollstrukturen! 4. Verifikation! 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - ! 1. Erste Schritte! 2. Einfache Datentypen! 3. Anweisungen und Kontrollstrukturen! 4. Verifikation! 5. Reihungen (Arrays) II.1.4. Verifikation - 1 - 4. Verifikation! Spezifikation: Angabe, was ein Programm

Mehr

13 Formale Spezifikation von Anforderungen

13 Formale Spezifikation von Anforderungen 13 Formale Spezifikation von Anforderungen Mögliche Formalitätsgrade einer Spezifikation 0 Ideen und Vorstellungen der Auftraggeber informale Spezifikation Zeit teilformale Spezifikation 100% formale Spezifikation

Mehr

Korrektheit und Hoare-Kalkül für Imperative Programme

Korrektheit und Hoare-Kalkül für Imperative Programme Korrektheit und Hoare-Kalkül für Imperative Programme Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06 Ziele Partielle und totale Korrektheit kennen lernen Die Regeln des Hoare-Kalkül

Mehr

Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt.

Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt. Formale Verifikation von Algorithmen 1.3 Verifikation Problem: Gegeben Spezifikation (P,Q) und Implementierung S Gesucht formaler (automatisierbarer?) Beweis, dass S (P,Q) erfüllt. Bisher nicht möglich

Mehr

Verifikation von Programmen

Verifikation von Programmen http://scam-trap.com/i/stophacking1.gif Verifikation von Programmen OOPM, Ralf Lämmel 380 Was tun? (Mit den Spezifikationen) Dokumentation Überprüfen der Bedingungen zur Laufzeit Verifizieren der Bedingungen

Mehr

4 Spezifikation und Verifikation

4 Spezifikation und Verifikation 4 Spezifikation und Verifikation Program testing can at best show the presence of errors, but never their absence. Dijkstra, http://www.cs.utexas.edu/users/ewd Beware of bugs in the above code; I have

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 4 Aufgabe 1 (8 Punkte) Programmverifikation Gegeben ist folgendes Programmfragment

Mehr

Abschnitt 11: Korrektheit von imperativen Programmen

Abschnitt 11: Korrektheit von imperativen Programmen Abschnitt 11: Korrektheit von imperativen Programmen 11. Korrektheit von imperativen Programmen 11.1 11.2Testen der Korrektheit in Java Peer Kröger (LMU München) in die Programmierung WS 16/17 931 / 961

Mehr

Übersicht Formale Semantik. Übersicht Axiomatische Semantik. Inhaltsübersicht HPS WS 2003/04. Vorlesung Höhere Programmiersprachen,

Übersicht Formale Semantik. Übersicht Axiomatische Semantik. Inhaltsübersicht HPS WS 2003/04. Vorlesung Höhere Programmiersprachen, Vorlesung Höhere Programmiersprachen, WS 2003/04 Teil 2: Formale Semantik Axiomatische Semantik Inhaltsübersicht - Grundlagen (1,2) - Konzepte imperativer Programmiersprachen (2,3) - Deklarative Programmiersprachen

Mehr

Informatik I - Programmierung Globalübung Hoare-Kalkül. Thomas Weiler. Fachgruppe Informatik RWTH Aachen. T. Weiler, RWTH Aachen - 1 -

Informatik I - Programmierung Globalübung Hoare-Kalkül. Thomas Weiler. Fachgruppe Informatik RWTH Aachen. T. Weiler, RWTH Aachen - 1 - Informatik I - Programmierung Globalübung 11.11.2003 Hoare-Kalkül Thomas Weiler Fachgruppe Informatik RWTH Aachen T. Weiler, RWTH Aachen - 1 - Ariane 5 Die Ariane 5 ist das jüngste Modell der Trägerrakete

Mehr

Verifikation von Algorithmen. OOPM, Ralf Lämmel

Verifikation von Algorithmen. OOPM, Ralf Lämmel Verifikation von Algorithmen OOPM, Ralf Lämmel Wiederholung: Was tun? (Mit den Spezifikationen) Dokumentation Überprüfen der Bedingungen zur Laufzeit Verifizieren der Bedingungen vor Laufzeit Ableitung

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Formale Programmverifikation. Referentin: Kirsten Hradek

Formale Programmverifikation. Referentin: Kirsten Hradek Formale Programmverifikation Referentin: Kirsten Hradek Formale Programmverifikation 2 Formale Programmverifikation Einführung/Motivation 2 Formale Programmverifikation Einführung/Motivation Softwareverifikation

Mehr

Ein Fragment von Pascal

Ein Fragment von Pascal Ein Fragment von Pascal Wir beschreiben einen (allerdings sehr kleinen) Ausschnitt von Pascal durch eine kontextfreie Grammatik. Wir benutzen das Alphabet Σ = {a,..., z, ;, :=, begin, end, while, do} und

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 - 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 - 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

Ein Beispielbeweis zur Verifikation des Programms zur Division mit Rest auf der Basis der Hoare-Regeln

Ein Beispielbeweis zur Verifikation des Programms zur Division mit Rest auf der Basis der Hoare-Regeln Ein Beispielbeweis zur Verifikation des Programms zur Division mit Rest auf der Basis der Hoare-Regeln Ralf Lämmel 24. Dezember 2014 1 Hoare-Regeln Im folgenden müssen wie folgende Hoare-Regeln benutzen:

Mehr

Mathematische Beweise und Symbolische Tests

Mathematische Beweise und Symbolische Tests Mathematische Beweise und Symbolische Tests Arne Meier Universität Hannover Institut für praktische Informatik Fachgebiet Software Engineering Seminar Werkzeuggestützte Softwareprüfungen 19. April 2006

Mehr

Warum Programme Verträge schließen sollten

Warum Programme Verträge schließen sollten 1 Warum Programme Verträge schließen sollten RALF HINZE Institut für Informatik, Lehrstuhl Softwaretechnik, Universität Freiburg Georges-Köhler-Allee, Gebäude 079, 79110 Freiburg i. Br. Email: ralf@informatik.uni-bonn.de

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

n 1. Der Begriff Informatik n 2. Syntax und Semantik von Programmiersprachen - 1 -

n 1. Der Begriff Informatik n 2. Syntax und Semantik von Programmiersprachen - 1 - n 1. Der Begriff Informatik n 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik n "Informatik" = Kunstwort aus Information

Mehr

Einführung in die Programmierung I Systematisches Programmieren. Thomas R. Gross. Department Informatik ETH Zürich

Einführung in die Programmierung I Systematisches Programmieren. Thomas R. Gross. Department Informatik ETH Zürich 252-0027 Einführung in die Programmierung I 10.0 Systematisches Programmieren Thomas R. Gross Department Informatik ETH Zürich Copyright (c) Pearson 2013 and Thomas Gross 2016 All rights reserved. Uebersicht

Mehr

Syntax von Programmiersprachen

Syntax von Programmiersprachen Information: ist Rohstoff der Informatik, hat eigenständige Dimension (vgl. Länge, Zeit, elektrische Ladung ist jedoch nicht im SI-System enthalten) läßt sich nicht messen, sie wird berechnet wird durch

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Skript zur Vorlesung: Einführung in die Programmierung WiSe 2009 / 2010 Skript 2009 Christian Böhm, Peer Kröger, Arthur Zimek Prof. Dr. Christian Böhm Annahita Oswald Bianca Wackersreuther Ludwig-Maximilians-Universität

Mehr

Kapitel 1. Software-Entwicklung und formale Spezifikation

Kapitel 1. Software-Entwicklung und formale Spezifikation Seite 1 Kapitel 1 Software-Entwicklung und formale Spezifikation Prof. Dr. Rolf Hennicker 22.04.2010 Ziele Seite 2 Die Grundprinzipien der Software-Entwicklung verstehen. Die Rolle formaler Methoden in

Mehr

Informatik II - Tutorium

Informatik II - Tutorium Sommersemester 2008 http://info2tut.blogspot.com 29. April 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Quellennachweis & Dank an: Joachim Wilke, Susanne Dinkler, Bernhard Müller,

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Verifikation 2 Vermeidung von Fehlern Verwendung geeigneter Werkzeuge Auswahl einer dem Problem angemessenen Programmiersprache Verwendung eines zuverlässigen Compilers

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Kapitel L:V. V. Erweiterungen und Anwendungen zur Logik

Kapitel L:V. V. Erweiterungen und Anwendungen zur Logik Kapitel L:V V. Erweiterungen und Anwendungen zur Logik Produktionsregelsysteme Inferenz für Produktionsregelsysteme Produktionsregelsysteme mit Negation Nicht-monotones Schließen Logik und abstrakte Algebren

Mehr

Kapitel L:V. V. Erweiterungen und Anwendungen zur Logik

Kapitel L:V. V. Erweiterungen und Anwendungen zur Logik Kapitel L:V V. Erweiterungen und Anwendungen zur Logik Produktionsregelsysteme Inferenz für Produktionsregelsysteme Produktionsregelsysteme mit Negation Regeln mit Konfidenzen Nicht-monotones Schließen

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Was ist mathematische Logik?

Was ist mathematische Logik? Was ist mathematische Logik? Logik untersucht allgemeine Prinzipien korrekten Schließens Mathematische Logik stellt zu diesem Zweck formale Kalküle bereit und analysiert die Beziehung zwischen Syntax und

Mehr

Semantik von Programmiersprachen SS 2012

Semantik von Programmiersprachen SS 2012 Lehrstuhl für Programmierparadigmen Andreas Lochbihler Joachim Breitner andreas.lochbihler@kit.edu breitner@kit.edu Semantik von Programmiersprachen SS 2012 http://pp.info.uni-karlsruhe.de/lehre/ss2012/semantik

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Zusammenfassung. Definition. 1 (x i ) 1 i n Sequenz von Registern x i, die natürliche Zahlen beinhalten. 2 P ein Programm. Befehle: 1 x i := x i + 1

Zusammenfassung. Definition. 1 (x i ) 1 i n Sequenz von Registern x i, die natürliche Zahlen beinhalten. 2 P ein Programm. Befehle: 1 x i := x i + 1 Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Eine Registermaschine (RM)

Mehr

Beispiel 1 zur Verifikation eines bedingten Anweisung. Hoare-Regel für die bedingte Anweisung. else

Beispiel 1 zur Verifikation eines bedingten Anweisung. Hoare-Regel für die bedingte Anweisung. else Hoare-Regel für die bedingte Anweisung I1 : I2 : {B P } S 1 {Q} { nicht B P } {Q} {P } if (B) then S 1 {Q} {B P } S 1 {Q} { nicht B P } S 2 {Q} {P } if (B) then S 1 else S 2 {Q} In der Regel für bedingte

Mehr

9.1 Grundsätzliches Fehlertoleranz vs. Fehlerintoleranz. Testen vs. Verifikation Testen. Verifikation und Test in der SW-Entwicklung

9.1 Grundsätzliches Fehlertoleranz vs. Fehlerintoleranz. Testen vs. Verifikation Testen. Verifikation und Test in der SW-Entwicklung Verlässliche Systeme Wintersemester 2016/2017 Fehlertoleranz vs. Fehlerintoleranz Verlässliche Systeme Bisher haben wir Ausfälle der Hardware betrachtet Jetzt: Betrachten Software 9. Kapitel Verifikation

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI33 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 3: Verifikationstechniken Teil 3: FH Wedel Prof. Dr. Sebastian Iwanowski GTI33

Mehr

Grundlagen der Programmierung 2. Operationale Semantik

Grundlagen der Programmierung 2. Operationale Semantik Grundlagen der Programmierung 2 Operationale Semantik Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 29. April 2009 Semantik von Programmiersprachen Semantik = Bedeutung

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Maximilian Haslbeck Fabian Mitterwallner Georg Moser David Obwaller cbr.uibk.ac.at Zusammenfassung der letzten LVA Definition Eine Registermaschine (RM) R ist

Mehr

Verschiedene Fehlerarten. Verifikation. Arten der Qualitätssicherung. Verifikation. Zusicherungen (Assertions) Beispiel für Zusicherungen

Verschiedene Fehlerarten. Verifikation. Arten der Qualitätssicherung. Verifikation. Zusicherungen (Assertions) Beispiel für Zusicherungen Verifikation Weitere gute Gründe für Verifikation: Juni 1996: Erster Start der Ariane 5 akete Gewinn durch Nichtverifikation eines Codestücks: ein paar $ Verlust durch Selbstzerstörung der akete: ca. $

Mehr

Kapitel 1: Informationsverarbeitung durch Programme

Kapitel 1: Informationsverarbeitung durch Programme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 1: Informationsverarbeitung

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

Beispiel 1 zur Verifikation eines bedingten Anweisung. Hoare-Regel für die bedingte Anweisung. Beispiel 2 zur Verifikation eines bedingten Anweisung

Beispiel 1 zur Verifikation eines bedingten Anweisung. Hoare-Regel für die bedingte Anweisung. Beispiel 2 zur Verifikation eines bedingten Anweisung Hoare-Regel für die bedingte Anweisung I1 : I2 : {B und P } S 1 {Q} { nicht B und P } {Q} {P } if (B) then S 1 {Q} {B und P } S 1 {Q} { nicht B und P } S 2 {Q} {P } if (B) then S 1 S 2 {Q} In der Regel

Mehr

Semantik von Programmiersprachen Theorie und Anwendungen (Informatik III, Wintersemester 03/04)

Semantik von Programmiersprachen Theorie und Anwendungen (Informatik III, Wintersemester 03/04) Eidgenossische Technische Hochschule Zurich Ecole polytechnique federale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich Semantik von Programmiersprachen Theorie und

Mehr

Daten und Algorithmen

Daten und Algorithmen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 3 Daten und Algorithmen Skript zur Vorlesung Einführung in die Programmierung g im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Von der Chomsky-Hierarchie

Von der Chomsky-Hierarchie Von der Chomsky-Hierarchie zur Backus-Naur-Form Ein Beitrag der Theoretischen Informatik zum Siegeszug des Computers Referat von Helmut Schnitzspan Im Rahmen des Seminars Von der EDV zu Facebook Alexander

Mehr

(Aufgaben zu Wertzuweisungen siehe Vorlesungsbeilage S. 49)

(Aufgaben zu Wertzuweisungen siehe Vorlesungsbeilage S. 49) Anweisungen Eine Anweisung ist eine in einer beliebigen Programmiersprache abgefaßte Arbeitsvorschrift für einen Computer. Jedes Programm besteht aus einer bestimmten Anzahl von Anweisungen. Wir unterscheiden

Mehr

Philosophie des Intuitionismus und sein Einfluß auf die Informatik

Philosophie des Intuitionismus und sein Einfluß auf die Informatik Philosophie des Intuitionismus und sein Einfluß auf die Informatik Christoph Kreitz Was ist Intuitionismus? Unterschiede zur klassischen Mathematik Historische Entwicklung Bezüge zur Informatik Ähnlichkeit

Mehr

Algorithmen und Datenstrukturen Korrektheit von Algorithmen

Algorithmen und Datenstrukturen Korrektheit von Algorithmen Algorithmen und Datenstrukturen Korrektheit von Algorithmen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,

Mehr

Semantik von Programmiersprachen SS 2017

Semantik von Programmiersprachen SS 2017 Lehrstuhl für Programmierparadigmen Denis Lohner Sebastian Ullrich denis.lohner@kit.edu sebastian.ullrich@kit.edu Semantik von Programmiersprachen SS 2017 http://pp.ipd.kit.edu/lehre/ss2017/semantik Lösungen

Mehr

Korrektheit durch modulare Konstruktion. Wie kann man die Korrektheit reaktiver Systeme gewährleisten?

Korrektheit durch modulare Konstruktion. Wie kann man die Korrektheit reaktiver Systeme gewährleisten? Korrektheit durch modulare Konstruktion Wie kann man die Korrektheit reaktiver Systeme gewährleisten? Ansatz: Durch systematische Konstruktion (Schlagwort: strukturierte Programmierung für parallele Programmiersprachen)

Mehr

Programmierkurs II. Prof. Dr. Wolfgang Effelsberg. Universität Mannheim. Sommersemester Wolfgang Effelsberg Programmiersprachen

Programmierkurs II. Prof. Dr. Wolfgang Effelsberg. Universität Mannheim. Sommersemester Wolfgang Effelsberg Programmiersprachen Prof. Dr. Wolfgang Effelsberg Universität Mannheim Sommersemester 2005 1-1 Inhalt (1) Teil I: Die Programmiersprache C 2. Datentypen und Deklarationen 3. Operatoren und Ausdrücke 4. Ablaufsteuerung (Kontrollstrukturen)

Mehr

Programmierkurs II. Prof. Dr. Wolfgang Effelsberg. Universität Mannheim. Sommersemester Wolfgang Effelsberg Programmiersprachen

Programmierkurs II. Prof. Dr. Wolfgang Effelsberg. Universität Mannheim. Sommersemester Wolfgang Effelsberg Programmiersprachen Prof. Dr. Wolfgang Effelsberg Universität Mannheim Sommersemester 2005 1-1 Inhalt (1) Teil I: Die Programmiersprache C 2. Datentypen und Deklarationen 3. Operatoren und Ausdrücke 4. Ablaufsteuerung (Kontrollstrukturen)

Mehr

Wie kann man die Korrektheit reaktiver Systeme gewährleisten?

Wie kann man die Korrektheit reaktiver Systeme gewährleisten? Korrektheit durch modulare Konstruktion Wie kann man die Korrektheit reaktiver Systeme gewährleisten? Ansatz: Durch systematische Konstruktion (Schlagwort: strukturierte Programmierung für parallele Programmiersprachen)

Mehr

Vor- und Nachbedingungen in imperativen Programmen OOPM, Ralf Lämmel

Vor- und Nachbedingungen in imperativen Programmen OOPM, Ralf Lämmel Wer ist denn das? Vor- und Nachbedingungen in imperativen Programmen OOPM, Ralf Lämmel Programmspezifikation mit Vor- und Nachbedingungen (C) 2007-2018, Ralf Lämmel, Universität Koblenz-Landau 2 3 Gesprächsprotokoll

Mehr

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen

Mehr

2.2 Syntax, Semantik und Simulation

2.2 Syntax, Semantik und Simulation 2.2 Syntax, Semantik und Simulation Ein Java Programm ist eine Folge von Buchstaben. Nicht jede Folge von Buchstaben ist ein korrektes Java Programm! Wie kann man alle korrekten Java Programme beschreiben?

Mehr

Kapitel 1: Informationsverarbeitung durch Programme

Kapitel 1: Informationsverarbeitung durch Programme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2018 Kapitel 1: Informationsverarbeitung

Mehr

Einführung in die Informatik. Programming Languages

Einführung in die Informatik. Programming Languages Einführung in die Informatik Programming Languages Beschreibung von Programmiersprachen Wolfram Burgard Cyrill Stachniss 1/15 Motivation und Einleitung Wir haben in den vorangehenden Kapiteln meistens

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

7. Syntax: Grammatiken, EBNF

7. Syntax: Grammatiken, EBNF 7. Syntax: Grammatiken, EBNF Teil 1 Sehr schönes Beispiel für Notwendigkeit der Theoretischen Informatik für Belange der Praktischen Informatik Vertiefung in: Einführung in die Theoretische Informatik

Mehr

Einführung in die Programmierung für NF. Rückgabewerte, EBNF, Fallunterscheidung, Schleifen

Einführung in die Programmierung für NF. Rückgabewerte, EBNF, Fallunterscheidung, Schleifen Einführung in die Programmierung für NF Rückgabewerte, EBNF, Fallunterscheidung, Schleifen FUNKTIONEN UND PROZEDUREN 3 Rückgabewerte, EBNF, Fallunterscheidung, Schleifen 2 Funk@on und Prozedur Methoden

Mehr

Abschnitt 4: Daten und Algorithmen

Abschnitt 4: Daten und Algorithmen Abschnitt 4: Daten und Algorithmen 4. Daten und Algorithmen 4.1 4.2 Syntaxdefinitionen 4.3 Eigenschaften von Algorithmen 4.4 Paradigmen der Algorithmenentwicklung Peer Kröger (LMU München) Einführung in

Mehr

7 Axiomatische Semantik

7 Axiomatische Semantik 7 Axiomatische Semantik Operationale und denotationale Semantiken legen die Bedeutung eines Programms direkt fest als Ableitungsbaum, maximale Ableitungsfolge oder partielle Funktion auf den Zuständen.

Mehr

Werkzeuge zur Programmentwicklung

Werkzeuge zur Programmentwicklung Werkzeuge zur Programmentwicklung B-15 Bibliothek Modulschnittstellen vorübersetzte Module Eingabe Editor Übersetzer (Compiler) Binder (Linker) Rechner mit Systemsoftware Quellmodul (Source) Zielmodul

Mehr

3 Syntax von Programmiersprachen

3 Syntax von Programmiersprachen 3 Syntax von Programmiersprachen Syntax ( Lehre vom Satzbau ) formale Beschreibung des Aufbaus der Worte und Sätze, die zu einer Sprache gehören; im Falle einer Programmiersprache Festlegung, wie Programme

Mehr

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung:

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung: 2.4 Schleifen Schleifen beschreiben die Wiederholung einer Anweisung bzw. eines Blocks von Anweisungen (dem Schleifenrumpf) bis eine bestimmte Bedingung (die Abbruchbedingung) eintritt. Schleifen unterscheiden

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Formale Spezifikation mit Java Modeling Language

Formale Spezifikation mit Java Modeling Language Formale Spezifikation mit Java Modeling Language Daniel Bruns Praxis der Software-Entwicklung, 25 November 2010 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Semantik von Programmiersprachen

Semantik von Programmiersprachen Semantik von Programmiersprachen Prof. Dr. Manfred Schmidt-Schauß SS 2013 Stand der Folien: 15. April 2013 Semantik von Programmen verschiedene Semantiken: operationale Semantik (Spezifikation eines Interpreters)

Mehr

5.3 Korrektheit und Verifikation

5.3 Korrektheit und Verifikation 5.3 Korrektheit und Verifikation Korrektheit bedeutet, dass ein Algorithmus oder ein Programm das in der Spezifikation beschriebene Problem für beliebige Eingabedaten korrekt löst. Die Korrektheit kann

Mehr

Kapitel 6. Programme mit Schleifen. Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt

Kapitel 6. Programme mit Schleifen. Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt Kapitel 6 Programme mit Schleifen Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt über zuweisbare Variablen, Konditionale und Schleifen, hat aber keine Prozeduren. IMP

Mehr

Informatik I Übung, Woche 40

Informatik I Übung, Woche 40 Giuseppe Accaputo 1. Oktober, 2015 Plan für heute 1. Nachbesprechung Übung 2 2. Vorbesprechung Übung 3 3. Zusammenfassung der für Übung 3 wichtigen Vorlesungsslides Informatik 1 (D-BAUG) Giuseppe Accaputo

Mehr

1 Funktionale vs. Imperative Programmierung

1 Funktionale vs. Imperative Programmierung 1 Funktionale vs. Imperative Programmierung 1.1 Einführung Programme einer funktionalen Programmiersprache (functional programming language, FPL) bestehen ausschließlich aus Funktionsdefinitionen und Funktionsaufrufen.

Mehr

Kapitel 4. Kontrollstrukturen

Kapitel 4. Kontrollstrukturen Kapitel 4 Kontrollstrukturen Kontrollstrukturen 1 Ziele Kontrollstrukturen in imperativen Programmen kennenlernen und verstehen. Realisierung der Kontrollstrukturen in Java. Kontrollstrukturen 2 Anweisungen

Mehr

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 5. Algorithmen K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 21. Okt. 2015 1. Berechne 2 n. Zu lösende Probleme 2. Berechne die Fakultät einer nat. Zahl: n! = 1 * 2 *... n 3. Entscheide,

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P)

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Syntax Semantik Signatur, Variablen Terme (induktive Definition, Baumform) Atome

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Einführung in die Programmierung mit VBA

Einführung in die Programmierung mit VBA Einführung in die Programmierung mit VBA Vorlesung vom 07. November 2016 Birger Krägelin Inhalt Vom Algorithmus zum Programm Programmiersprachen Programmieren mit VBA in Excel Datentypen und Variablen

Mehr