Efficient Learning of Label Ranking by Soft Projections onto Polyhedra

Größe: px
Ab Seite anzeigen:

Download "Efficient Learning of Label Ranking by Soft Projections onto Polyhedra"

Transkript

1 Efficient Learning of Label Ranking by Soft Projections onto Polyhedra Technische Universität Darmstadt 18. Januar 2008

2 Szenario Notation duales Problem Weitere Schritte Voraussetzungen Tests

3 Szenario Notation Gegeben: Menge von Instanzen (z.b. Newsfeeds) aus instance space χ Endliche Menge von Labeln: γ mit γ = {1, 2,..., k} = [k] Feeds können ein oder mehrere Label zugeordnet werden: Mapping von Feed auf Label Jedes Label hat für jeden Feed bestimmte Relevanz: Preference (Feed handelt z.b. hauptsächlich von Politik, ein wenig von Wirtschaft usw.) Problem: Wie möglichst schnell automatisch den Feeds die richtigen Labels mit den richtigen Präferenzen zuordnen???

4 Szenario Notation Also Ziel: Exaktes Mapping von instance space (Newsfeeds) zum target space (labels). dabei richtige Voraussage der label preferences möglichst schnell Hier: Lernen aus Trainingsbeispielen (batch learning) Betonung auf möglichst schnell Geht hier nur um Performance - Optimierung; dass Ziel erreichbar schon bekannt. Also zuerst: ansehen, was genau optimiert werden soll Dazu: Vorarbeiten mit Notation... :

5 Szenario Notation Ausgangspunkt: Instanz aus instance space: x χ, χ R n Vordefinierte endliche Menge von Labeln γ mit γ = {1, 2,..., k} = [k] Lernziel: Label Ranking Function: f : χ R k mit Rückgabewert: γ R k target vector / label ranking γ i R f r (x) rtes Element von γ γy > γ y γ relevanter für x als γ γy = γ y möglich Darstellung von γ als gerichteter gewichteter Graph möglich z.b. Edge (3,1): γ 3 γ 1 = 3 bei γ = ( 1, 0, 2, 0, 1)

6 Szenario Notation f γ (x) > f γ (x) γ relevanter für x als γ f r (x) = w r x; w r R n, χ R n lineare Funktion (Das aber keine echte Einschränkung (SVM Kernel trick...)

7 Szenario Notation Trainingsbeispiel: S = {(x i, γ i )} m i=1 ; x χ, γi R k Performance via Loss Function evaluiert (Notation: (a) + = max{0, a}): l : R k R k R l r,s (f(x), γ) = ((( γ r γ s ) (f r (x) f s (x))) + l r,s zeigt wieweit constraint f r (x) f s (x) γ r γ s nicht berücksichtigt wird Bis hierher nur paarweiser Vergleich der Label (r, s) Jetzt: Alle paarbasierten losses in einen loss zusammenfassen!

8 Szenario Notation Paare von Labeln in d unabhängige Mengen aufteilen. Jede Menge isomorph zu vollst. biparititem Graphen

9 Szenario Notation loss eines Subgraphen (V j, E j ): maximum über den losses der Paare im Subgraphen zusätzl. Gewichtung der einzelnen Subgraphen mit (nichtnegativem) σ j = Loss: l(f(x), γ) = d σ j max (r,s) Ej l r,s (f(x), γ) j=1

10 Szenario Notation Mit loss-function jetzt label-ranking-function bilden: constrained optimization problem definieren (mit SVM Paradigma) optimale Lösung davon: label-ranking-function mit 2 Termen: 1. empirischer loss der label-ranking-function bezgl. Trainingsset 2. penalty für Komplexität der Funktion (Regularisierungsterm), i.e. Summe der Quadrate der Normen von {w 1,..., w k } 3. Tradeoff zwischen beiden Termen durch Parameter C kontrolliert

11 Szenario Notation min w1,...,w k 1 2 k w j 2 + C j=1 m l(f(x i ), γ i ) i=1 mit : f γ (x i ) = w γ x i Und andere Notation der loss-function: l(f(x), γ) = min ξ R d + d σ j ξ j j=1 mit: j [d], (r, s) E j, f r (x) f s (x) γ r γ s ξ j

12 Szenario Notation Ergibt das quadratische Optimierungsproblem: 1 min w1,...,w k,ξ 2 k w j 2 + C j=1 m i=1 E( γ i ) j=1 σ j ξ i j mit: i [m], E j E( γ i ), (r, s) E j, w r x i w s x i γ i r γ i s ξ i j i, j, ξ i j 0

13 duales Problem Weitere Schritte Ziele Optimierung: schnell soll mit allen Dekompositionen in Subgraphen zurechtkommen. Herleitung des Algorithmus komplex!

14 duales Problem Weitere Schritte Grober Ablauf: 1. Iteration über die Trainingsbeispiele 2. Iteration über die Subgraphen 3. dort die ranking-function für neues Beispiel verbessern

15 duales Problem Weitere Schritte Kern des Algorithmus: 3. Punkt: ranking-function für neues Beispiel verbessern: Dabei Ausgangsposition: schon label-ranking-function vorhanden ( {u 1,..., u k }) E( γ) besteht aus nur einem vollständigen bipartiten Graphen Ziel: Funktion verbessern wenn neues Beispiel verarbeitet wird

16 duales Problem Weitere Schritte Ergibt constrained optimization problem: 1 min w1,...,w k,ξ 2 k w y u y 2 + Cξ y=1 mit: (r, s) E, w r x w s x γ r γ s ξ, ξ 0

17 duales Problem Weitere Schritte label-ranking function schon vorhanden, repräsentiert durch {u 1,..., u k } Erinnerung: label-ranking-function f r (x) = u r x; u r R n, χ R n Problemlösung kann aufgefasst werden als: Projektion von {u 1,..., u k } auf das Polyeder, dass mit den Beschränkungen Definiert wird. Daher Name des Algorithmus: SOft-Projection Onto POlyhedra SOPOPO

18 duales Problem Weitere Schritte Erläuterung zur Projektion (aus Wikipedia): türkis, schwarz, violett sind die Beschränkungen; erlaubte punkte im blauen Polyeder; gestrichelte Rote sollen optimiert werden (soweit wie möglich nach rechts schieben)

19 duales Problem Weitere Schritte Lösung des Problems in mehreren Schritten: Duales Problem finden Anzahl m der Variablen im dualen Problem von k 2 /4 m auf k reduzieren Aufteilung des Problems in zwei einfachere Ergebnis: Komplexität von O(k log(k))

20 duales Problem Weitere Schritte Duales Problem: primäre Zielfunktion ist konvex primäre constraints sind linear Es gibt Lösung für primäres Problem (setze w y = 0 und ξ = max (r,s) E ( γ r γ s ) = strong duality

21 duales Problem Weitere Schritte Finden des Problems: Lagrange des Primärproblems bilden: mit: (r, s) E : τ r,s 0, ζ 0

22 duales Problem Weitere Schritte teilterme fallen weg Primaervariablen können beseitigt werden Umformung führt zu Ergebnis Dann Anzahl der Variablen im dualen Problem auf k reduzieren. Problem in zwei einfache Teilprobleme aufteilen

23 Zur Ansicht: duales Problem Weitere Schritte

24 duales Problem Weitere Schritte Weiter im Algorithmus: Jetzt nur eine Projektion für einen einzigen vollständigen bipartiten Graphen Algorithmus soll aber auf jeder beliebigen Aufteilung funktionieren Gesucht also Algorithmus der Urspruengliche Aufgabe löst, indem er immer wieder SOPOPO verwendet ursprüngliches Problem vereinfachen (syntax) Mit Beschränkungen min w,ξ 1 2 w 2 + m C i ξ i i=1

25 duales Problem Weitere Schritte Für die Vereinfachung: Duales Problem suchen (Lagrange...) Dann Algorithmus der in Runden arbeitet: In jeder Runde wird eine Menge von dualen Variablen upgedatet alle anderen variablen sind fix

26 duales Problem Weitere Schritte Ansicht des Algorithmus in Pseudocode:

27 Voraussetzungen Tests LOQO: Kommerzielles Paket zur linearen Optimierung, basiert auf interior point Methode Angesteuert mit Matlab-Interface, Implementierung selbst: C++ SOPOPO: Implementiert in Matlab Testdaten immer zufällig gewählt (Normalverteilt)

28 Voraussetzungen Tests Erster Test: Performance Soft-projection auf ein Polyeder / originäres Problem

29 Voraussetzungen Tests Aber: Test unfair, da: LOQO ist general purpose, nimmt daher immer interial point Algorithmus SOPOPO optimiert immer auf:

30 Voraussetzungen Tests Daher LOQO direkt auch auf das optimierte Problem angesetzt:

31 Voraussetzungen Tests Gesamttest batchlearning: Jeweils 10x mehr Beispiele als Labels (k) generiert

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 10.6.2010 1 von 40 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 2 von

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Einführung Lineare Klassifikatoren trennen Klassen durch eine lineare Hyperebene (genauer: affine Menge) In hochdimensionalen Problemen trennt schon eine lineare

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Stützvektormethode 1 Hinführungen zur SVM Katharina Morik, Claus Weihs 26.5.2009 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 1 von 40 2 von

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Support Vector Machine Nico Piatkowski und Uwe Ligges 30.05.2017 1 von 14 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

Strukturelle SVM zum Graph-labelling

Strukturelle SVM zum Graph-labelling 23. Juni 2009 1 Was wir gerne hätten...... und der Weg dorthin Erinnerung: strukturelle SVM 2 Junction Tree Algorithmus Loopy Belief Propagation Gibbs Sampling 3 Umfang Qualität der Algorithmen Schlussfolgerungen

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

Operations Research für Logistik

Operations Research für Logistik Operations Research für Logistik Lineare Optimierung (170.202) Ao. Univ. - Prof. Norbert SEIFTER Dipl. - Ing. Stefanie VOLLAND Sommersemester 2012 Lehrstuhl Industrielogistik Lineare Optimierung Inhalte:

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 23.5.2013 1 von 48 Gliederung 1 Geometrie linearer Modelle: Hyperebenen Einführung von Schölkopf/Smola 2 Lagrange-Optimierung

Mehr

Seminar Optimierung - Approximation and fitting. Christian Bretzke

Seminar Optimierung - Approximation and fitting. Christian Bretzke Seminar Optimierung - Approximation and fitting Christian Bretzke 1 Inhaltsverzeichnis 1 Norm Approximation 3 1.1 Verschiedene Interpretation.................................. 3 1.2 Gewichtete NAP........................................

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:

Mehr

5. Klassifikation. 5.6 Support Vector Maschines (SVM)

5. Klassifikation. 5.6 Support Vector Maschines (SVM) 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Theorie: Quadratische Funktionen

Theorie: Quadratische Funktionen 1 Theorie: Quadratische Funktionen Ben Hambrecht Inhaltsverzeichnis 1 Zahlenfolgen und ihre Differenzen 2 2 Parabeln 3 3 Einfache quadratische Funktionen 4 4 Allgemeine quadratische Funktionen 5 5 Quadratische

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Integer Convex Minimization in Low Dimensions

Integer Convex Minimization in Low Dimensions DISS. ETH NO. 22288 Integer Convex Minimization in Low Dimensions A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by TIMM OERTEL Diplom-Mathematiker,

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik 6.2.2008 Überblick Lernaufgaben 2 Primales Problem 3 Duales Problem 4 Optimierung der SVMstruct 5 Anwendungen von

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 007 Teil II Rechnerpraktikum zur Optimierung III Für die Bearbeitung des Aufgabenzettels

Mehr

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:...

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:... 8. März 2011 Prof. Dr. W. Bley Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) 1 2 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Von Labyrinthen zu. Algorithmen

Von Labyrinthen zu. Algorithmen Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert)

Mehr

Instanzenbasiertes Lernen: Übersicht

Instanzenbasiertes Lernen: Übersicht Instanzenbasiertes Lernen: Übersicht k-nearest Neighbor Lokal gewichtete Regression Fallbasiertes Schließen Lernen: Lazy oder Eager Teil 11: IBL (V. 1.0) 1 c G. Grieser Instanzenbasiertes Lernen Idee:

Mehr

Electronic Design Automation (EDA) Technology Mapping

Electronic Design Automation (EDA) Technology Mapping Electronic Design Automation (EDA) Technology Mapping Überblick digitale Synthese Technology Mapping Abbildung durch die Abdeckung eines Baumes Partitionierung des DAG Dekomposition und Abdeckung Beispiel

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes Seminar Maschinelles Lernen VORTRAGENDER: SEBASTIAN STEINMETZ BETREUT VON: ENELDO LOZA MENCÍA Inhalt Vorbedingungen

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung TU München Lehrstuhl Mathematische Optimierung Prof. Dr. Michael Ulbrich Dipl.-Math. Florian Lindemann Wintersemester 008/09 Blatt 1 Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Für die

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Seminar Statistische Lerntheorie und ihre Anwendungen Support Vector Machines (SVM) Jasmin Fischer 12. Juni 2007 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Lineare Trennung 3 2.1 Aufstellung

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh . Geodätische Woche 29 Quadratische Programmierung mit Ungleichungen als Restriktionen 1 Lutz Roese-Koerner und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Lineare Klassifikatoren IV

Lineare Klassifikatoren IV Universität Potsdam Institut für Informatik Lehrstuhl Lineare Klassifikatoren IV Christoph Sawade, Blaine Nelson, Tobias Scheffer Inhalt Klassifikationsproblem Bayes sche Klassenentscheidung MAP-Modell

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Darstellung einfacher Graphen Analyse der

Mehr

Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger auf Details.

Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger auf Details. Kapitel 5 Lösungsverfahren Dieses Kapitel gibt einen Überblick über Lösungsverfahren für nichtlineare Optimierungsprobleme. Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger

Mehr

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Large Margin Methods for Structured and interdependent Output Variables

Large Margin Methods for Structured and interdependent Output Variables Large Margin Methods for Structured and interdependent Output Variables Hendrik Blom TU Dortmund 16. Juni 2009 1/68 Übersicht Vortrag 1. Lernaufgabe 2. Primales Problem 3. Duales Problem 4. Optimierungsalgorithmus

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Strukturelle Modelle SVMstruct Katharina Morik, Claus Weihs LS 8 Informatik 16.6.2009 1 von 37 Gliederung LS 8 Informatik 1 Überblick Lernaufgaben 2 Primales Problem 3

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Innere-Punkte-Verfahren Lineare Optimierung über Kegeln Second-Order-Cone Programme SOC Anwendung: Regularisierung SOC Anwendung: Klassifizierung, Support-Vektor SOC Anwendung:

Mehr

Rechnerpraktikum zur Nichtlinearen Optimierung

Rechnerpraktikum zur Nichtlinearen Optimierung Rechnerpraktikum zur Nichtlinearen Optimierung 9. März 2016 11. März 2016 Sebastian Garreis, B. Sc. Philipp Jarde, M. Sc. Technische Universität München Fakultät für Mathematik Lehrstuhl für Mathematische

Mehr

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler 1 Matroide 1.1 Definitionen und Beispiele 1. Definition (Unabhängigkeitssystem): Ein Mengensystem

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Einfache Bedingte Ausführung

Einfache Bedingte Ausführung Kontrollstrukturen Bisher Programme mit Funktionen als einfache Folge von Befehlen Ablauf von Programmen darüber hinaus steuerbar über Bedingte Ausführung: Ausführung von Programmteilen (Befehlen oder

Mehr

Einführung in Softwaretools zur Nichtlinearen Optimierung

Einführung in Softwaretools zur Nichtlinearen Optimierung Einführung in Softwaretools zur Nichtlinearen Optimierung 3. April 2017 5. April 2017 Sebastian Garreis, M. Sc. (hons) Johannes Haubner, M. Sc. Technische Universität München Fakultät für Mathematik Lehrstuhl

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

4.4 Quadratische Optimierungsprobleme

4.4 Quadratische Optimierungsprobleme 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Neuronale Netze. Prof. Dr. Rudolf Kruse

Neuronale Netze. Prof. Dr. Rudolf Kruse Neuronale Netze Prof. Dr. Rudolf Kruse Computational Intelligence Institut für Intelligente Kooperierende Systeme Fakultät für Informatik rudolf.kruse@ovgu.de Rudolf Kruse Neuronale Netze 1 Überwachtes

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Der Alpha-Beta-Algorithmus

Der Alpha-Beta-Algorithmus Der Alpha-Beta-Algorithmus Maria Hartmann 19. Mai 2017 1 Einführung Wir wollen für bestimmte Spiele algorithmisch die optimale Spielstrategie finden, also die Strategie, die für den betrachteten Spieler

Mehr