4.4 Quadratische Optimierungsprobleme

Größe: px
Ab Seite anzeigen:

Download "4.4 Quadratische Optimierungsprobleme"

Transkript

1 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen (NB) sind affin Minimierung über Polyeder Beispiel 1 (Methode der kleinsten Fehlerquadrate). Ax b 2 2= x T A T Ax 2b T Ax + b T b Lösung dieses QP s lautet A b durch untere und obere Schranke ergänzt, erhält man folgendes QP: Ax b 2 2 s.t. l i x i u i, i = 1,.., n Beispiel 2 (Abstand zweier Polyeder). x 1 x s.t. A 1 x 1 b 1 A 2 x 2 b 2 (x 1, x 2 R n ) P 1 = {x 1 : A 1 x 1 b 1 } und P 1 = {x 2 : A 2 x 2 b 2 } seien 2 Polyeder dist(p 1, P 2 ) := inf{ x 1 x 2 2 2: x 1 P 1, x 2 P 2 } 1

2 2. Quadratische Programme mit quadratischen NB (QCQP) s.t. 1 2 xt P 0 x + q0 T x + r xt P i x + qi T x + r i 0, i = 1,.., m (4.35) wobei P i S n +, i = 0, 1,.., m NB sind (konvex) quadratisch P i 0: Minimierung über den Durchschnitt von Ellipsoiden 3. Second-order cone Programme (SOCP) f T x s.t. A i x + b i 2 c T i x + d i, i = 1,.., m (4.36) F x = g wobei x R n, A i R (ni n), F R (p n) A i x + b i 2 c T i x + d i heißt second-order cone constraint (A i x + b i, c T i x + d i ) R ni+1 (Lorentzkegel) Robuste lineare Programme c T x s.t. a T i x b i, i = 1,.., m Streuung in c, a i, b i zur Vereinfachung: c, b i fest und a i ε i = {a i + P i u : u 2 1} (wobei P i R (n n) ) 2

3 robustes LP: c T x s.t. a T i x b i a i ε i, i = 1,.., m (4.37) SOCP: s.t. c T x a T i x + P T i x 2 b i, i = 1,.., m 3

4 4.6 Verallgemeinerte Ungleichungs-NB Verallgemeinerung des konvexen Optimierungsproblems lautet: f 0 (x) s.t. f i (x) Ki 0, i = 1,.., m (4.48) wobei f 0 : R n R, K i R k i eigentlicher Kegel, f i : R n R k i sind K i -konvex Ungleichungs-NB sind vektorwertige Funktionen Konische Probleme c T x s.t. F x + g K 0 (4.49) heißt konisches Programm, wobei ZF linear, Ungleichungs-NB affin und K-konvex (4.49) in Standardform: c T x s.t. x K 0 Beispiel 3 (SOCP). SOCP s kann man als konische Programme schreiben: c T x s.t. (A i x + b i, c T i x + d i ) Ki 0, i = 1,.., m F x = g wobei K i = {(y, t) R ni+1 : y 2 t}, d.h. der Lorentzkegel 4

5 4.6.2 Semidefinite Programme (SDP) SDP ist ein spezielles konisches Programm, da K = S+:, k c T x s.t. x 1 F x n F n + G 0 (4.50) wobei G,F i S k (i=1,..,n) und A R (p n) (4.50) in Standardform: C, A i, X S n (i=1,..,p) tr(cx) s.t. tr(a i x) = b i, i = 1,.., p (4.51) X 0 NB bestehen aus p linearen Gleichungen und einer (Matrix) nichtnegativen Ungleichung ( n i,j=1 C ijxij) Beispiel 4 (Matrixnorm-Minimierung). geg.: A(x) = A 0 + x 1 A x n A n, A i R (p q) A(x) 2 wissen: A 2 s A T A s 2 I, (s 0) s s.t. A(x) T A(x) si (*) in den Variablen x und s, da A(x) T A(x) si Matrixkonvex in x und s (*) konvexes Optimierungsproblem mit einer NB, die eine q q Matrix-Ungleichung ist, umformen der Ungleichungs-NB in eine lineare Matrix Ungleichung der Größe (p + q) (p + q), in dem man [ ] ti A A T A t 2 I, (t 0) A T 0 ti ausnutzt SDP: s.t. t [ ] ti A A T 0 ti 5

6 4.7 Vektoroptimierung Allgemeine und konvexe Vektoroptimierungsprobleme Vektoroptimierungsproblem: (w.r.t. K) f 0(x) x D s.t. f i (x) 0, i = 1,..., m (4.56) h i (x) = 0, i = 1,..., p x R n V ariable, K R q (eigentlicher Kegel), f i : R n R Ungleichungsnebenbedingungen, h i : R n R Gleichungsnebenbedingungen, f 0 : R n R q Zielfunktion (4.56) heißt konvex falls, f 0 K-konvex, f 1,..., f m konvex und h 1,..., h p affin Besonderheit: Optimale Punkte und Optimalwerte Menge O der erreichbaren Zielfunktionswerte: O := {f 0 (x) x D, f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p} x heißt optimal für (4.56) falls O ein Minimum hat, f 0 (x) heißt dann Optimalwert. Falls ein Vektoroptimierungsproblem einen Optimalwert hat, so ist dieser eindeutig. Satz 5. x ist optimal x zulässig und O f 0 (x ) + K In der Regel existiert kein optimales Element. 6

7 4.7.3 Pareto-optimale Punkte und pareto-optimale Werte Ein zulässiger Punkt x heißt pareto-optimal (bzw. effizient) für (4.56), falls f 0 (x) imales Element von O ist. f 0 (x) heißt dann pareto-optimaler Wert für (4.56). Satz 6. x po ist pareto-optimal x po zulässig und (f 0 (x po ) K) O = {f 0 (x po )} Die Menge P aller pareto-optimalen Punkte erfüllt Skalarisierung (Standardtechnik zum Finden von pareto-optimalen Punkten) Skalarisierungsproblem: λ K 0, Rest wie in (4.56). x D λt f 0 (x) s.t. f i (x) 0, i = 1,..., m (4.60) h i (x) = 0, i = 1,..., p Satz 7. x sei optimal für (4.60) x ist pareto-optimal für (4.56) Variation von λ (Gewichtungsparameter) führt zu verschiedenen pareto-optimalen Punkten (unterschiedliche Wichtigkeit in Komponenten) 7

8 Geometrisch: finden beim Lösen von (4.60) nicht nur einen pareto-optimalen Punkt für (4.56), sondern auch einen Halbraum im R q (stützt Menge der erreichbaren Zielfunktionswerte) bei konvexen Vektoroptimierungsproblemen Finden pareto-optimale Punkte eines konvexen Vektoroptimierungsproblems mithilfe eines (standard) konvexen Optimierungsprogramms. Satz 8. (Teilumkehrung von Satz 7.) Für jeden pareto-optimalen Punkt x po eines konvexen Vektoroptimierungsproblems, λ K 0, λ 0, sodass x po Lösung von (4.60) ist. Finden in manchen Fällen alle pareto-optimalen Punkte von (4.56). Ansonsten Beispiel 9. (Minimale obere Schranke einer Menge von Matrizen) Mehrzieloptimierung/Mehrkriterienoptimierung(MCP) Spezialfall: K=R q Betrachten f 0 (x) = (F 1 (x),..., F q (x)) als Vektor von skalaren Funktionen und imieren jede Komponente. MCP heißt konvex, falls f 1,..., f m konvex, h 1,..., h p affin und die Zielfunktionen F 1,..., F q konvex. Satz 10. x ist optimal in einem MCP, falls F i (x ) F i (y), i = 1,..., q erfüllt ist (y zulässig) x ist optimal für alle Standardoptimierungsprobleme der Form: F j(x), j = 1,..., q x D s.t. f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p Die Zielfunktionen F 1,..., F q existiert. heißen nicht konkurrierend, falls ein optimaler Punkt x 8

9 Kompromissanalyse x, y zwei pareto-optimale Punkte. Teile Indizes der Zielfunktionen auf: F i (x) < F i (y), i A F i (x) = F i (y), i B F i (x) > F i (y), i C, mit A B C = {1,..., q}. Aufgabe der Kompromissanalyse: Wieviel muss ich mich in einer Komponente verschlechtern, um mich in einer anderen verbessern zu können und im Verhältnis besser zu werden. Optimale Kompromissfläche: Menge der pareto-optimalen Werte eines MCP, q 0. (q=2 Kompromisskurve) Zu Beachten: Skalarisierung von MCPs Betrachten skalarisierte Summe der Zielfunktionen: λ T f 0 (x) = q λ i F i (x) mit λ i > 0 i=1 Können die Summe beeinflussen indem wir λ i so wählen wie wir die Komponenten gewichtet haben wollen. mehrere pareto-optimale Punkte Beispiel 11. (Regularisierte Methode der kleinsten Fehlerquadrate) 9

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs Algorithmische Mathematik KSL09 Aufgabe. Zeigen oder widerlegen Sie: Es existiert ein Graph mit Valenzsequenz (8,,,,,,,,,). Geben Sie im Falle der Existenz

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Seminaraufgabensammlung zur Lehrveranstaltung. Prozessoptimierung 1. 1 Formulieren und Lösen linearer Optimierungsprobleme

Seminaraufgabensammlung zur Lehrveranstaltung. Prozessoptimierung 1. 1 Formulieren und Lösen linearer Optimierungsprobleme Fachgebiet Simulation und Optimale Prozesse Fakultät für Informatik und Automatisierung Institut für Automatisierungsund Systemtechnik Seminaraufgabensammlung zur Lehrveranstaltung Prozessoptimierung Vorlesender:

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Lineare Optimierung. bei Prof. Walter Alt. Semester: SS 2006 und WS 2009

Lineare Optimierung. bei Prof. Walter Alt. Semester: SS 2006 und WS 2009 Lineare Optimierung bei Prof. Walter Alt Semester: SS 2006 und WS 2009 Vorwort Dieses Dokument wurde als Skript für die auf der Titelseite genannte Vorlesung erstellt und wird jetzt im Rahmen des Projekts

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lagrange-Relaxierung und Subgradientenverfahren

Lagrange-Relaxierung und Subgradientenverfahren Lagrange-Relaxierung und Subgradientenverfahren Wir wollen nun eine Methode vorstellen, mit der man gegebene Relaxierungen verbessern kann. Wir werden die Idee zunächst an der 1-Baum-Relaxierung des symmetrischen

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen. Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Optimierungsalgorithmen

Optimierungsalgorithmen Optimierungsalgorithmen Jakob Puchinger Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Übersicht

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

NUMERISCHE METHODEN DER OPTIMIERUNG

NUMERISCHE METHODEN DER OPTIMIERUNG NUMERISCHE METHODEN DER OPTIMIERUNG VORLESUNGSSKRIPT FS 2008 (Vorläufige Fassung vom 14. Mai 2008) D. Peterseim Institut für Mathematik Universität Zürich Inhaltsverzeichnis Inhaltsverzeichnis iii 1 Einführung

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Pulch Vorlesung im Wintersemester 2015/16 Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Inhalt:

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

Sattelpunkt-Interpretation

Sattelpunkt-Interpretation Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal

Mehr

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 Teil I Statische Optimierung 2 Allgemeine Problemstellung der statischen

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Lineare Ungleichungen und die Struktur von Polyedern

Lineare Ungleichungen und die Struktur von Polyedern KAPITEL 2 Lineare Ungleichungen und die Struktur von Polyedern Wir betrachten in diesem Kapitel endliche lineare Ungleichungssysteme und deren Lösungsmengen (d.h. Polyeder). Wir erinnern daran, dass lineare

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Methoden der linearen Optimierung

Methoden der linearen Optimierung Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................

Mehr

Konvexe Optimierung. Prof. Dr. Sven Rahmann. LS 11, Fakultät für Informatik, TU Dortmund Entwurf vom 17. Mai 2010

Konvexe Optimierung. Prof. Dr. Sven Rahmann. LS 11, Fakultät für Informatik, TU Dortmund Entwurf vom 17. Mai 2010 Konvexe Optimierung Prof. Dr. Sven Rahmann LS 11, Fakultät für Informatik, TU Dortmund 2009 2010 Entwurf vom 17. Mai 2010 Vorbemerkungen Dieses Dokument enthält Notizen zu meiner Vorlesung Konvexe Optimierung,

Mehr