Schranken für zulässige Lösungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schranken für zulässige Lösungen"

Transkript

1 Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung des dualen Programms ist, dann gilt: Beweis. c T x apple b T u c T x apple (A T u) T x = u T Ax = u T b = b T u Peter Becker (H-BRS) Operations Research I Sommersemester / 298

2 Folgerung 5.10 Gilt c T x = b T u,dannistx eine optimale Lösung des primalen LP und u eine optimale Lösung des dualen LP. Bemerkungen: Satz 5.9 gilt analog für alle zueinander dualen Probleme: Ist das primale Problem ein Maximierungsproblem, dann gilt stets ansonsten c T x apple b T u c T x b T u Dementsprechend gilt natürlich auch Folgerung 5.10 für alle zueinander dualen Probleme. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

3 Dualitätstheorem der linearen Programmierung Satz 5.11 Gegeben seien ein primales LP (max) und das zugehörige duale LP (min). Dann gilt: Besitzt sowohl das primale LP als auch das duale LP eine zulässige Lösung x bzw. u, so haben beide LPs auch optimale Lösungen x bzw. u und es gilt: z max = c T x = b T u = Z min Ist die Zielfunktion des primalen LP nicht nach oben beschränkt, dann hat das duale LP keine zulässige Lösung. Ist die Zielfunktion des dualen LP nicht nach unten beschränk, dann hat das primale LP keine zulässige Lösung. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

4 Spezialfall: Max-Flow-Min-Cut-Theorem Aus der Vorlesung Graphentheorie kennen wir das Max-Flow-Min-Cut-Theorem: In einem Flussnetzwerk ist der Wert (f ) eines Maximalflusses f gleich der Kapazität c(a S ) eines minimalen Schnittes A S. Dies ist ein Spezialfall des Dualitätstheorems Jeder trennende Schnitt hat eine Kapazität dem Wert eines Maximalflusses. Umgekehrt ist der Wert eines beliebiges Flusses stets apple der Kapazität eines minimalen Schnittes. In den Optima tre en sich die Werte: Das Maximalflussproblem und das Problem der Bestimmung eines minimalen Schnittes sind zueinander dual. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

5 Charakterisierung optimaler Lösungen Satz 5.12 Gegeben seien primales und duales LP in asymmetrischer Form. Eine zulässige Lösung x des primalen LP und eine zulässige Lösung u des dualen LP sind genau dann optimal, wenn gilt: x j > 0 ) (a j ) T u = mx a ij u i = c j i=1 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

6 Beweis. Für die x und u gilt nach Satz 5.9: 0 apple b T u x T c = x T A T u x T c = x T (A T u c) Sind x und u jeweils optimal, dann gilt nach dem Dualitätstheorem = 0. Also muss für x j > 0 gelten, dass die j-te Komponente des Vektors A T u c gleich 0 ist. Umgekehrt folgt aus x j > 0 ) (a j ) T u = mx a ij u i = c j i=1 dass gilt x T (A T u c) =0 und damit b T u = c T x.alsosindx und u nach dem Dualitätstheorem optimal. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

7 Satz vom Komplementären Schlupf Satz 5.13 Gegeben seien primales und duales LP in symmetrischer Form. Durch Einführen von m Schlupfvariablen x n+1, x n+2,...,x n+m für das primale LP und n Schlupfvariablen u m+1, u m+2,...,u m+n für das duale LP gegen die LPs über in die Normalform. Eine zulässige Lösung x des primalen LP und eine zulässige Lösung u des dualen LP sind genau dann optimal, wenn gilt: x i u m+i =0für i =1,...,n und u j x n+j =0für j =1,...,m Bemerkung: Die Strukturvariablen des primalen LP korrespondieren mit den Schlupfvariablen des dualen LP und umgekehrt. Ist für die optimale Lösung des primalen LP x i > 0, so ist u m+i = 0. Analog gilt: u j > 0impliziertx n+j = 0. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

8 Beweis. Wir betrachten die LPs Dualität max u.d.n. z = c T x Ax apple b x 0 und min Z = b T u u.d.n. A T u c u 0 Wir führen Vektoren x 0 =(x n+1,...,x n+m )undu 0 =(u m+1,...,u n+m )an Schlupfvariablen ein. max u.d.n. z = c T x Ax + Ex 0 = b x, x 0 0 und min Z = b T u u.d.n. A T u Eu 0 = c u, u 0 0 Hieraus folgt (Ax + Ex 0 ) T u = b T u (A T u Eu 0 ) T x = c T x Peter Becker (H-BRS) Operations Research I Sommersemester / 298

9 Fortsetzung Beweis. Mit Satz 5.9 ergibt sich (x T A T + x 0 T )u (u T A u 0 T )x T 0 Nach dem Dualitätstheorem sind nun x, x 0, u, u 0 optimale Lösungen der beiden zueinander dualen LPs genau dann, wenn gilt: (x T A T + x 0 T )u (u T A u 0 T )x T =0 bzw. x 0 T u + u 0T x =0 Wegen den Vorzeichenbedingungen entspricht dies genau dem Satz vom komplementären Schlupf. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

10 Beispiel zum komplementären Schlupf Beispiel 5.14 Das Problem aus Beispiel 4.6 haben wir bereits mit dem primalen Simplexalgorithmus gelöst. + siehe Endtableau Das zugehörige duale Problem haben wir in Beispiel 5.6 formuliert. + siehe LP Wir lösen dieses LP mit dem dualen Simplexalgorithmus. 1. Tableau: BV u 1 u 2 u 3 u 4 u 5 Z c u u Z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

11 Fortsetzung Beispiel. 2. Tableau: BV u 1 u 2 u 3 u 4 u 5 Z c u u 3 2/5 4/ /60 0 2/3 Z Tableau: BV u 1 u 2 u 3 u 4 u 5 Z c u 2 5/ / /12 u 3 14/ /30 1/60 0 1/3 Z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

12 Fortsetzung Beispiel. Wir vergleichen die beiden Endtableaus: primales Programm Strukturvariablen Schlupfvariablen BV x 1 x 2 x 3 x 4 x 5 z b x /3 14/ x /24 1/ x / z /12 1/ Wert der Wert der Schlupfvariablen Strukturvariablen duales Programm Peter Becker (H-BRS) Operations Research I Sommersemester / 298

13 Fortsetzung Beispiel. duales Programm Strukturvariablen Schlupfvariablen BV u 1 u 2 u 3 u 4 u 5 Z c u 2 5/ / /12 u 3 14/ /30 1/60 0 1/3 Z Wert der Wert der Schlupfvariablen Strukturvariablen primales Programm Peter Becker (H-BRS) Operations Research I Sommersemester / 298

14 Interpretation: komplementärer Schlupf Die Variablen des dualen LP entsprechen Bewertungsfaktoren bzw. Preisen für die Maschinenzeiten, die so festzulegen sind, dass der Gesemtwert aller Maschinenzeiten möglichst klein ist: min b T u, die Kosten für die Erzeugung der einzelnen Produkte mindestens gleich den mit diesen Produkten erzielten Gewinnen sind: A T u Eu 0 = c und die Werte für die Maschinenzeiten nicht negativ sind: u 0. Bei optimaler Planung stimmen Gesamtgewinn der Produktion und Gesamtkosten für die Maschinenzeiten überein, die Zielfunktionswerte von primalem und dualem LP sind gleich. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Mathematische Planungsverfahren

Mathematische Planungsverfahren Mathematische Planungsverfahren Stefan Etschberger Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 12 April 2005 Organisatorisches Literatur Starke Orientierung an Hauke/Opitz:

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte)

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte) Dr. Jörg Kalcsics 11.0.008 Diplomprüfung (Wiederholungsprüfung gem. NPO) Operations Research I WS 007/008 ( Punkte) Vorbemerkung: Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner. Beginnen

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Kapitel 3 und Varianten Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Inhalt Inhalt 3 und Varianten Anwendungsbeispiele Branch-and-Cut Peter Becker (H-BRS) Operations Research

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Mathematische Optimierung

Mathematische Optimierung Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Lösungen zu Aufgabenblatt 6

Lösungen zu Aufgabenblatt 6 Fachbereich Informatik Prof. Dr. Peter Becker Vorlesung Graphentheorie Operations Research Wintersemester 2004/05 3. Januar 2005 Lösungen zu Aufgabenblatt 6 Aufgabe 1 (Modellierung von LPs) Formulieren

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Vorlesungsmitschrift Operations Research I und II

Vorlesungsmitschrift Operations Research I und II Vorlesungsmitschrift Operations Research I und II Bemerkung: Dies ist eine Überarbeitung der beiden Skripte [1] und [2] zu den oben genannten Vorlesungen von Prof. Sebastian, ergänzt um Anmerkungen, die

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de)

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de) Lineare Optimierung Vorlesung von Prof Christiane Tammer Author : Georg Kuschk (Quelle : wwwrikutide) 11 August 2006 Inhaltsverzeichnis 1 Einleitung, Beispiele 2 2 Das allgemeine lineare Optimierungsproblem

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

Statistik und Graphentheorie

Statistik und Graphentheorie Statistik und Graphentheorie Sommersemester 2012 3. Juli 2012 Teil Graphentheorie Name: Matrikelnummer: 1 (12) 2 (12) 3 (12) 4 (12) 5 (12) (60) Aufgabe 1 (12 Punkte) Gegeben sei das folgende Netzwerk:

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

1. Entscheidung bei Unsicherheit

1. Entscheidung bei Unsicherheit Prof. Dr. Ma C. Wewel Lösungen zu den Übungsaufgaben Management Science Seite. Entscheidung bei Unsicherheit A. B. C. 6 km 6 km 6 km D. a) Nutzenmatri (Kundenanteile von K in %) u(k A,M A ), 6 +, 6 +,

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010 Prof. Dr. S. Dempe Inhaltsverzeichnis Kapitel 0. Einleitung 5 0.1. Historische Entwicklung 5 0.2. Begriff des Operations

Mehr

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Klausur Management Science. Donnerstag, 19. Februar 2015

Klausur Management Science. Donnerstag, 19. Februar 2015 run Lehrstuhl fiir Operations Management Prof. Dr. Rainer Kolisch ArcisstraBe 21, 80333 Miinchen Klausur Management Science Donnerstag, 19. Februar 2015 Name: Vorname: Matrikelnummer: Studiengang: Fachsemester:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr