Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen"

Transkript

1 Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli : 1 [1,1]

2 Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag Duale Optimallösung 3 Einführung Iterationsverfahren Beispiel Abstiegsrichtung Allgemeines Abstiegsverfahren 2: 2 [2,2]

3 Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag Duale Optimallösung 3 Einführung Iterationsverfahren Beispiel Abstiegsrichtung Allgemeines Abstiegsverfahren 3: 3 [3,3]

4 Nichtlineare Optimierung (NonLinear Programming) (Wdhlg) Minimiere f (x) unter h i (x) = 0 i E g i (x) 0 i I x Ω = R n f, g i, h i hinreichend glatt, C 1 (R n ) oder C 2 (R n ) E und I endliche Mengen falls E = I = : freie/unrestringierte Optimierung sonst restringierte Optimierung oder Opt. mit Nebenbed. Ziel: lokales Optimum (aber oft schon Zulässigkeit schwer!) Anw.: Optimalsteuerung, Parameterschätzung (nichtlin.), Lösung nichtlinearer Gleichungssysteme 4: 4 [4,5]

5 Nichtlineare Optimierung (NonLinear Programming) (Wdhlg) Minimiere f (x) unter h i (x) = 0 i E g i (x) 0 i I x Ω = R n Verf.: für lokal gute Konvergenz: Newton, Quasinewton,... zur Suche lokaler Mulden: Line-Search, Trust-Region, CG,... Input: Unterroutinen für Funktionswert, Gradient, (Hessematrix) Größe: einige 100 bis einige 1000 Variablen (mehr bei spez. Struktur) 4: 5 [4,5]

6 Restringierte Nichtlineare Optimierung g,h h g 0 X N 0(h) S (g) 0 5: 6 [6,6]

7 Beispiel Minimiere f (x, y) = (x 7) 2 + (y 7) 2 unter x, y R x, y 0 x + y 10 6: 7 [7,7]

8 Lagrange-Funktion Bestrafung der Verletzung von h i (x) = 0 mit Multiplikatoren µ i R und von g i (x) 0 mit λ i 0 in der Zielfunktion ergibt die Lagrange-Funktion L(x, µ, λ) = f (x) + i E µ i h i (x) + i I λ i g i (x). 7: 8 [8,8]

9 Regularität In x X ist die Regularitätsbedingung der linearen Unabhängigkeit (linear independence constraint qualification, kurz LICQ) erfüllt, wenn die Gradienten h i ( x) (i E) und g i ( x) (g i aktiv bei x) linear unabhängig sind. 8: 9 [9,9]

10 Existenz von Lagrange-Multiplikatoren Satz (Karush-Kuhn-Tucker) Sei x ein lokales Minimum von (P), in dem (LICQ) erfüllt ist. Dann gibt es (eindeutige) Lagrange-Multiplikatoren µ R E und λ R I +, sodass f (x ) + i E µ i h i (x ) + i I λ i g i (x ) = 0 λ i g i(x ) = 0 i I [Kompl.] In einem lokalen Minimum, in dem (LICQ) erfüllt ist, liegt der negative Gradient der Zielfunktion im Kegel, der von den Gradienten der aktiven Nebenbedingungen aufgespannt wird. 9: 10 [10,10]

11 Die KKT-Bedingungen Optimierungsverfahren suchen nach Lösungen der KKT-Bedingungen x L = f (x) + µ i h i (x) + λ i g i (x) = 0, µ L = h i (x) = 0, i E, λ L = g i (x) 0, i I, λ i 0, i I, g i (x)λ i = 0, i I, also nach stationären Punkten (x, µ, λ) R n R E R I + der Lagrange- Funktion. Jeder solche Punkt ist auch stationärer Punkt von (P) und jeder stationäre Punkt von (P), in dem (LICQ) erfüllt ist, lässt sich so finden. 10: 11 [11,11]

12 Mozart: das Duale optimal (Whdlg) max unter c T x Ax b x 0 (P M ) x T a 1 min b T y unter A T y c y A = 1 1, b = ( ) 3 c = 2 1 ȳ = 1 A T ȳ = 0 11: 12 [12,12] (D M ) e 1 a 2 e a +a = c ( ) 3 = c, b 2 T ȳ = 16, x = a 3 ( ) 4 2 x K

13 Kriterien 2. Ordnung (I) aktive Menge A(x) = {i I : g i (x) = 0} linearisierter Tangentialkegel zu (P) in x: T P (x) := {d R n : h i (x) T d = 0 (i E), Teilkegel g i (x) T d 0 (i A(x))} T P (x, λ ) := {d T P (x ) : d T g i (x ) = 0 mit λ i > 0} Notwendige Optimalitätsbedingung 2. Ordnung Ist x ein lokales Minimum von (P), das (LICQ) erfüllt, und sind (µ, λ ) die Lagrange-Multiplikatoren zu x, dann gilt d T xx L(x, µ, λ )d 0 für alle d T P (x, λ ). 12: 13 [13,13]

14 Kriterien 2. Ordnung (II) Hinreichende Optimalitätsbedingungen Erfüllt x X mit (µ, λ ) die KKT-Bedingungen und gilt d T xx L(x, µ, λ )d > 0 für alle d T P (x, λ ) \ {0} so ist x ein lokales Minimum von (P). 13: 14 [14,14]

15 Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag Duale Optimallösung 3 Einführung Iterationsverfahren Beispiel Abstiegsrichtung Allgemeines Abstiegsverfahren 14: 15 [15,15]

16 Simplex und dual zulässige Lösung (Wdhld. V6) Sei x primal optimale BL x N = 0, x B = A 1 B b = β, c T x = d = cb T x B = cb T A 1 B b = y T b = b T y. es zeigt sich: y = A T B c B ist dual zulässig A T y c A T B y c B und A T N y c N A T B y = AT B A T B c B = c B A T N y = AT N A T B c B = ζ + c N c N 15: 16 [16,16]

17 Direktes Ablesen einer dualen Optimallösung am Simplex-Tableau Voraussetzung Standardform kommt von Normalform pro Restriktion 1 Schlupfvariable Schlupfvariablen nicht in Zielfunktion Folgerung Dann steht im Endtableau die duale Lösung in der ZF-Zeile bei den Schlupfvariablen! 16: 17 [17,17]

18 Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag Duale Optimallösung 3 Einführung Iterationsverfahren Beispiel Abstiegsrichtung Allgemeines Abstiegsverfahren 17: 18 [18,18]

19 Aufgabe 1.5 und sqp aufgabe15 [xminloc, fminloc, INFO, ITER, NF] =... aufgabe15_fabl(xminloc) [xminloc, fminloc, INFO, ITER, NF] =... aufgabe15_fabl(xminloc) [xminloc, fminloc, INFO, ITER, NF] aufgabe15_fabl(xminloc) Programming.html 18: 19 [19,19]

20 Numerik Grundlagen Was ergibt folgender Octave-Code? a = 1; b = 2; c = 3; a+(b+c) == (a+b)+c 19: 20 [20,22]

21 Numerik Grundlagen Was ergibt folgender Octave-Code? a = 1; b = 2; c = 3; a+(b+c) == (a+b)+c Und dieser? a = rand; b = rand; c = rand; a+(b+c) == (a+b)+c 19: 21 [20,22]

22 Numerik Grundlagen Was ergibt folgender Octave-Code? a = 1; b = 2; c = 3; a+(b+c) == (a+b)+c Und dieser? a = rand; b = rand; c = rand; a+(b+c) == (a+b)+c Frage Wie rechnen Computer? 19: 22 [20,22]

23 Definition Abstiegsrichtung Seien f : R n R und x R n. d R n heißt Abstiegsrichtung von f in x, falls es ein ᾱ > 0 gibt mit f (x + αd) < f (x) 0 < α ᾱ. 20: 23 [23,23]

24 Hinreichende Bedingung für Abstiegsrichtung Hilfssatz Sei f : R n R stetig differenzierbar in x. d ist eine Abstiegsrichtung von f in x, wenn grad f (x) T d < 0 gilt. f (x + d) = f (x) + (grad f (x)) T d + o( d ) 21: 24 [24,24]

25 Algorithmus (Abstiegsverfahren) 1 Bestimme einen Startpunkt x [0] R n und setze i = 0. 2 Falls ein Abbruchkriterium erfüllt ist, STOP. 3 Berechne eine Abstiegsrichtung d [i] und eine Schrittweite α i > 0, so dass f (x [i] + α i d [i] ) < f (x [i] ) gilt und setze x [i+1] = x [i] + α i d [i]. 4 Setze i := i + 1 und gehe zu 3. 22: 25 [25,25]

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung MATTHIAS GERDTS Einführung in die lineare und nichtlineare Optimierung Address of the Author: Matthias Gerdts Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG

MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG Address of the Author: Matthias Gerdts Mathematisches Institut Universität Bayreuth D-95440 Bayreuth E-Mail: Matthias.Gerdts@uni-bayreuth.de WWW: www.staff.uni-bayreuth.de/

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Statische Optimierung unter Gleichungsrestriktionen (Lagrange)

Statische Optimierung unter Gleichungsrestriktionen (Lagrange) Kapitel 2 Statische Optimierung unter Gleichungsrestriktionen (Lagrange) 21 Einleitung/Ziel/Bedeutung/Übersicht Viele ökonomischen Fragestellungen bestehen im Kern zwar aus einem statischen Optimierungsproblem,

Mehr

Mathematische Grundlagen von Optimierungsverfahren

Mathematische Grundlagen von Optimierungsverfahren Mathematische Grundlagen von Optimierungsverfahren K. Schittkowski 1 1. Einführung 1.1 Das nichtlineare Optimierungsproblem Es werden Optimierungsaufgaben betrachtet, die dadurch charakterisiert sind,

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Griesse Numerische Mathematik Chemnitzer Skiseminar Gerlosberg, 07. 14. März 2009 Gliederung Konvexe Optimierung 1 Konvexe Optimierung Bedeutung Beispiele Charakterisierung

Mehr

Grundkurs Mathematische Optimierung (für mathematische Studiengänge) Prof. Dr. Beer

Grundkurs Mathematische Optimierung (für mathematische Studiengänge) Prof. Dr. Beer Grundkurs Mathematische Optimierung (für mathematische Studiengänge) Prof. Dr. Beer Literaturverzeichnis [1] Elster, Reinhardt, Schäuble, Donath: Einführung in die nichtlineare Optimierung, Teubner-Verlag,

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Mathematische Optimierung

Mathematische Optimierung Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Problemstellung Klassifikation Inhaltsübersicht Problemstellung und Grundbegriffe Klassifikation von Optimierungsaufgaben Vorlesung I Einführung

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh . Geodätische Woche 29 Quadratische Programmierung mit Ungleichungen als Restriktionen 1 Lutz Roese-Koerner und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK

UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK Thomas Fober Experimentelle Analyse Evolutionärer Algorithmen auf dem CEC 2005 Testfunktionensatz Diplomarbeit 01.07.2006 I N T E R N E B E R I C H T E I N T

Mehr

Optimierung in R. Michael Scholz

Optimierung in R. Michael Scholz N Optimierung in R Fortgeschrittene Mathematik: Optimierung (WiSe 09/10) Michael Scholz Institut für Statistik und Ökonometrie Georg-August-Universität Göttingen Fortgeschrittene Mathematik: Optimierung

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Optimierung. karsten.eppler@tu-dresden.de www.math.tu-dresden.de/ eppler

Optimierung. karsten.eppler@tu-dresden.de www.math.tu-dresden.de/ eppler Optimierung Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de www.math.tu-dresden.de/ eppler Vorlesungsassistent: Dr. G. Scheithauer guntram.scheithauer@tu-dresden.de

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Mathematische Optimierung. Volker John

Mathematische Optimierung. Volker John Mathematische Optimierung Volker John Sommersemester 2007 Inhaltsverzeichnis 1 Einführung 3 I Lineare Optimierung 6 1 Grundlagen 7 2 Geometrische Deutung des Linearen Programms 10 3 Basislösungen eines

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Effiziente Ableitungsbestimmung bei hochdimensionaler nichtlinearer Optimierung

Effiziente Ableitungsbestimmung bei hochdimensionaler nichtlinearer Optimierung Effiziente Ableitungsbestimmung bei hochdimensionaler nichtlinearer Optimierung Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Mathematik an der Universität Bremen vorgelegt

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Globale Newton Verfahren

Globale Newton Verfahren Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz 1 Inhaltsverzeichnis 0 Grundlegende Situation

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr