Fachhochschule Bochum Fachhochschule Südwestfalen

Größe: px
Ab Seite anzeigen:

Download "Fachhochschule Bochum Fachhochschule Südwestfalen"

Transkript

1 Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten Name, Vorname Matrikelnummer Aufgabe Note a b c a b c d e a b c a b c a b c d e Soll Ist Hinweise: Lesen Sie zunächst alle Aufgaben durch. Vergewissern Sie sich, dass die Aufgabenstellung vollständig ist, Sie umfasst das Deckblatt und 7 Aufgabenblätter. Versehen Sie das Deckblatt mit Ihrem Namen und der Matrikelnummer. Für die Lösung ist auf den Aufgabenblättern Platz vorgesehen, die Rückseiten können dafür ebenfalls verwendet werden. Sollte der Platz dann immer noch nicht ausreichen, verweisen Sie am Seitenende auf eine konkretes (Seitennummer) der von der Prüfungsaufsicht zur Verfügung gestellten Zusatzblätter, die Sie bitte nummerieren und ebenfalls mit Ihrem Namen kennzeichnen. Eigenes Papier darf für die Lösungen nicht verwendet werden. Kennzeichnen Sie insbesondere auf Zusatzblättern bitte immer eindeutig, zu welcher Aufgabe/Teilaufgabe eine Lösung gehört. Aus Ihren Lösungen sollten die Lösungswege erkennbar sein. Falls Sie den Taschenrechner für komplexere Lösungsschritte verwenden, vermerken Sie dies bitte, z.b. Nullstelle / Gleichung... mit dem Taschenrechner bestimmt / gelöst ; Das Lösen der Teilaufgaben sind i. Allg. unabhängig voneinander möglich, d.h. Sie können Aufgabe 3.e auch lösen, wenn Sie 3.a - 3.d nicht gelöst haben! 1

2 1. In einem Inserat werden Kredite bis zu maximal e angeboten, wobei für eine Laufzeit von 4 Monaten die folgenden Bedingungen angegeben werden: Einmalige Bearbeitungsgebühr: 50 e (fällig am Tag der Kreditvergabe); 4% Zinsen (für die 4 Monate, fällig am Ende der Kreditlaufzeit); Welchem Effektivzins entspricht dieses Angebot, wenn man zu diesen Bedingungen einen Kredit in Höhe von e aufnimmt? 2

3 2. Herr X. verfügt über ein ausreichendes Einkommen, wovon er seit Januar 2002 monatlich, jeweils zum Monatsende, e auf ein Konto einzahlt. Für das Konto gilt (für alle Teilaufgaben) ein Zinssatz von 4.5%. Zusätzlich zahlt er am Ende jeden Jahres von seinem 13. Monatsgehalt e auf dieses Konto ein. (a) Über welches Guthaben kann Herr X. verfügen, wenn er vom an seinen Ruhestand genießen will? (b) Wie lange kann er von diesem Guthaben monatlich, beginnend im Januar 2022, immer zum Anfang des Monats e abheben. (c) Wie viel könnte er davon monatlich, wieder im Januar 2022 beginnend, immer zum Anfang des Monats abheben, wenn das Geld 20 Jahre reichen soll, er aber am Ende dieser 20 Jahre als Sicherheit noch e auf seinem Konto haben möchte? Hinweis: Falls Sie die Aufgabe (a) nicht lösen konnten, gehen Sie in (b) und (c) von einem Guthaben in Höhe von e aus. 3

4 3. In einem monopolistischen 1-Produkt-Unternehmen wurde der Absatz x in Abhängigkeit vom Preis p erfasst, Preis p in e/me Absatzmenge x in ME woraus sich die folgende Nachfrage-Funktion (Preis-Absatz-Funktion) ergibt. { p, p [50, 70] x N (p) = p, p (70, 120] (a) Geben Sie an, welche Eigenschaften diese Funktion hat (Monotonie, Krümmungseigenschaften, Stetigkeit, Differenzierbarkeit). (b) Bestimmen Sie zur gegebenen Preis-Absatz-Funktion x N (p) eine Erlösfunktion und daraus den Preis p 0 [50, 120], bei dem der Erlös maximal wird sowie das zugehörige Erlösmaximum. (c) Für das Unternehmen wurde eine Angebotsfunktion x A (p) = (p 40) ermittelt. Bestimmen Sie den Preis p 1, bei dem die Angebotsmenge und die absetzbare Menge identisch sind. (d) Bestimmen Sie zu dem in Aufgabe (c) ermittelten Preis p 1 die Konsumentenrente, wobei Sie davon ausgehen sollen, dass das Produkt für p > 120 nicht mehr absetzbar ist. Falls Sie Aufgabe (c) nicht lösen konnten, gehen Sie dazu von einem Preis p 1 = 64 e aus. (e) Wie würde die Nachfrage-Funktion x N (p) aussehen, wenn der Absatz bei einem Preis von 70 e auf 4000 ME sinkt, während er bei den Preisen von 50 und 120 e so bleibt, wie er in der Tabelle vorgegeben war? 4

5 4. Die Geschwindigkeit eines aus großer Höhe fallenden Körpers nähert sich wegen der der Gravitationskraft m g entgegenwirkenden Luftwiderstandskraft k v 2 einer Grenzgeschwindigkeit m g v grenz = k. Dies gilt natürlich auch für einen Fallschirmspringer, wobei sich m = m 1 +m 2 dann aus der Masse m 1 des Springers und der Masse m 2 = 10 kg der Ausrüstung zusammensetzt. Für Fallschirmspringer mit einer Körpermasse von m 1 = 80 [kg] wird ein Fallschirm mit einem Luftwiderstandsfaktor k = 36 [kg/m] empfohlen, so dass sich dann mit g 10ms 2 die angestrebte Grenzgeschwindigkeit von ca. 5 m/s ergibt. Bestimmen Sie mit Hilfe der Differentialrechnung (Fehlerrechnung mit Hilfe des Differentials), um wie viel ein Springer maximal schwerer (als 80 kg) sein darf, damit seine Grenzgeschwindigkeit um nicht mehr als 10% über dem angestrebten Wert liegt? 5

6 5. Die folgende Produktionsfunktion gibt die Produktionsmenge x eines Produktes in Abhängigkeit von den Einsatzmengen r 1, r 2 zweier Inputfaktoren an (alle Angaben in ME). x(r 1, r 2 ) = 1000 r r 1 2 2, r 1 > 0, r 2 > 0. (a) Die Einkaufspreise für die Inputfaktoren betragen p 1 = 40 und p 2 = 100 [e/me]. Ermitteln Sie für einen vorgegebenen Output von ME den kostenminimalen Faktoreinsatz nach der Methode der Lagrange-Multiplikatoren und weisen Sie nach, dass es sich dabei tatsächlich um ein Minimum handelt! (b) Wie groß ist der Lagrange-Multiplikator im Minimumspunkt und was gibt er an? (c) Der Verkaufspreis des Produktes liegt bei 0.44 e/me. Um wie viel würde der Gewinn (Differenz aus dem Verkaufserlös und den Kosten für die beiden Inputfaktoren) näherungsweise wachsen oder fallen, wenn 100 ME mehr hergestellt werden könnten? 6

7 6. In einem Unternehmen werden aus drei Rohteilen R 1, R 2 und R 3 in der Vorfertigung die beiden Zwischenprodukte Z 1 und Z 2 und in der Endfertigung werden aus diesen Zwischenprodukten und weiteren Rohteilen R 1 und R 2 die drei Endprodukte E 1, E 2 und E 3 hergestellt. Der spezifische Teilebedarf für die beiden Fertigungsstufen ist in den beiden Tabellen rechts zusammengestellt. Z 1 Z 2 R R R E 1 E 2 E 3 Z Z R R (a) Wie viele der Rohteile R 1, R 2 und R 3 müssen für die Produktion bereitgestellt werden, wenn Teile E 1, Teile E 2 und Teile E 3 gefertigt werden sollen? (b) Wie hoch sind die Materialkosten für die Endprodukte [in e /Stück], wenn die Rohteile zu Preisen von 4 e (R 1 ), 2 e (R 2 ) und 3 e (R 3 ) je Stück eingekauft werden? (c) Die Preise für die Endprodukte sind am Markt auf 40 e (E 1 ), 35 e (E 2 ) und 80 e (E 3 ) je Stück gefallen. Das Unternehmen kann dadurch nicht mehr mit Gewinn arbeiten und muss die Produktion umstellen, so dass noch vorhandene Rohteile dann nicht mehr genutzt werden können. Um nicht den gesamten Lagerbestand als Verlust buchen zu müssen, soll dieser noch weitestgehend zu Endprodukten verarbeitet werden. Stellen Sie ein mathematisches Modell auf, mit dessen Hilfe man berechnen kann, wie das Unternehmen vor der geplanten Produktionsumstellung auf neue Produkte den vorhandenen Lagerbestand r (L) = so zu Endprodukten verarbeiten kann, dass noch ein maximaler Erlös erzielt wird! Dabei ist zu beachten, dass die vorhandenen Rohteile, wenn man sie nicht selbst zu Endprodukten verarbeitet, an einen anderen Produzenten verkauft werden könnten, jedoch nur zu Preisen von 3 e (R 1 ), 1 e (R 2 ) und 2 e (R 3 ) je Stück, d.h. ebenfalls unter den ehemaligen Einkaufspreisen. 7

8 7. Gegeben ist das folgende lineare Optimierungsproblem (Produktionsplanungsproblem, Variable x j sind Prod.-mengen in ME) mit den Restriktionen R1 bis R4: z = 13x 1 + 7x 2 + 8x 3 max x 1 + x 2 + 2x 3 12 (R1) 3x 1 + x 2 + 2x 3 20 (R2) x 1 + 2x 2 + x 3 25 (R3) 4x 1 + x 3 20 (R4) x 1, x 2, x 3 0 Dabei steht die Zielfunktion für den Erlös, ihre Koeffizienten c j sind die Verkaufspreise der Produkte P j in e, z.b. steht c 2 für einen Preis von 6 e bei Produkt P 2. x 3 x 1 x 4 1 Die Restriktionen stehen für beschränkt x verfügbare Rohstoffe [in ME]. x Bei der Lösung des obigen LOP hat sich nach einem oder mehreren Schritten x mit der Simplex-Methode das nebenstehende x Simplextableau ergeben. Dabei sind x 4,..., x 7 die Schlupfvariablen der Restriktionen R1,..., R4. z (a) Bestimmen Sie davon ausgehend alle optimalen Lösungen und den optimalen Zielfunktionswert! (b) Welche Änderungen des Verkaufspreises für Produkt P 3 (Zielfunktionskoeffizient von x 3 ) hätten keinen Einfluss auf die optimale Lösung? (c) In welchem Bereich dürfte sich der Verkaufspreis für Produkt P 1 (Zielfunktionskoeffizient von x 1 ) ändern, ohne dass sich die optimale Lösung ändert? Bliebe in diesem Bereich auch der Zielfunktionswert konstant, falls nicht, wie würde er sich ändern? (d) Ist die Restriktion R3 aktiv oder inaktiv und was bedeutet dies? (e) Von jedem der Rohstoffe könnte zu Preisen von 3.30 e (R1), 3.80 e (R2), 1.50 e (R3) und 2.40 e (R4) (Preise je ME) mehr zur Verfügung gestellt werden. Bei welchen der Rohstoffe wäre dies lohnend? 8

9 Lösungen 1. i eff = % 2. (a) e (b) Monate (c) e 3. (a) streng monoton fallend, konvex, stetig, nicht differenzierbar { p 80 p (b) E(p) = 2, p [50, 70] p 40 p 2, E, p (70, 120] max = e bei p = 90 e/me (c) p 1 = e/me (d) KR = e (bzw. KR = e bei p 1 = 64) { p, p [50, 70] (e) x N (p) = p, p (70, 120] kg 5. (a) r 1 = x 2 = K min = e 6. (a) (b) λ = = Grenzkosten ca e/me (c) G 3 e/100me r = (b) Preisvektor = (c) [e/stück] z = 40e e e 3 +3r 1 +r 2 +2r 3 max 6e 1 + 6e e 3 +r e 1 + 6e e 3 +r e 1 + 2e 2 + 7e 3 +r (a) x opt = (4, 8, 0 0, 0, 5, 4), z max = 108 (b) keine änderungen, solange c 3 14 (c) c 1 = 13 + t = z max = t t [ 6, 8 ] e 1, e 2, e 3, r 1, r 2, r 3 0 (d) R3 nicht aktiv, 5 Einheiten von R3 nicht genutzt. (e) Bei R1 ( 4 = 4 > 3.30) 9

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 7. September 2013 Bearbeitungszeit:

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 2 (Modul) Termin: 15.

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: Februar

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 5..3 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 3 4 5 6 7 8 gesamt erreichbare P. 4 6 3

Mehr

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang:

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn

Mehr

Übungsserie 11: bedingte Extremwerte

Übungsserie 11: bedingte Extremwerte HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik II Funktionen mit mehreren Variablen Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 11: bedingte Extremwerte

Mehr

Klausur Mikroökonomik

Klausur Mikroökonomik Prof. Dr. Ulrich Schwalbe Sommersemester 2005 Klausur Mikroökonomik Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Sommersemester 2005 Klausur Mikroökonomik Die Klausur dauert 90 Minuten. Bitte

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 4.2.24 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Übungsserie 11: Modellierung

Übungsserie 11: Modellierung HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Lineare Optimierung Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie : Modellierung Die über die Modellierung

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix.

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix. Lineare lgebra / nalytische Geometrie Leistungskurs ufgabe 4 Kosten und Gewinne Ein Betrieb stellt aus den Rohstoffen R 1, R 2, R 3 und R 4 die Zwischenprodukte Z 1, Z 2, Z 3 und Z 4 her und aus diesen

Mehr

Klausur Mikroökonomik

Klausur Mikroökonomik Prof. Dr. Ulrich Schwalbe Sommersemester 2004 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn Aufgaben. Auf dem Klausurbogen befindet sich nach jeder Teilaufgabe ein Kästchen. In dieses Kästchen schreiben

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250.

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250. Aufgabe 1 Auf einem Wohnungsmarkt werden 5 Wohnungen angeboten. Die folgende Tabelle gibt die Vorbehaltspreise der Mietinteressenten wieder: Mietinteressent A B C D E F G H Vorbehaltspreis 250 320 190

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen

Mehr

Übungen zu Kapitel 1: Vollkommener Wettbewerb und Monopol

Übungen zu Kapitel 1: Vollkommener Wettbewerb und Monopol Übungen zu Kapitel 1: Vollkommener Wettbewerb und Monopol Aufgabe 1.1 Angenommen die Nachfragefunktion lautet D(p) = 300 5p, die Angebotsfunktion lautet S(p) = 10p. 1) Bestimmen Sie den Gleichgewichtspreis!

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Aufgaben zu Teil I 1. 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff.

Aufgaben zu Teil I 1. 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff. Aufgaben zu Teil I 1 1 Aus: Götze, U.: Kostenrechnung und Kostenmanagement, 5. Aufl., Berlin u. a. 2010, S. 23 ff. Kontrollfragen 1 1) Was versteht man unter dem Betriebswirtschaftlichen Rechnungswesen,

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Übung zu Mikroökonomik II

Übung zu Mikroökonomik II Prof. Dr. G. Rübel SS 2005 Dr. H. Möller-de Beer Dipl.-Vw. E. Söbbeke Übung zu Mikroökonomik II Aufgabe 1: Eine gewinnmaximierende Unternehmung produziere ein Gut mit zwei kontinuierlich substituierbaren

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 4

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 4 Georg Nöldeke Frühjahrssemester 2010 VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 4 1. (a) Sind beide Inputfaktoren variabel, so ist die Kostenfunktion eines Unternehmens durch C(y) = y 2 /2 gegeben.

Mehr

Name: Matr.-Nr.: Sitzplatz-Nr.: Modulklausur im Grundstudium (Dipl.) und ersten Studienabschnitt (B.Sc.) (PO 2005, PO 2008) Mikroökonomik I

Name: Matr.-Nr.: Sitzplatz-Nr.: Modulklausur im Grundstudium (Dipl.) und ersten Studienabschnitt (B.Sc.) (PO 2005, PO 2008) Mikroökonomik I Name: Matr.-Nr.: Sitzplatz-Nr.: Modulklausur im Grundstudium (Dipl.) und ersten Studienabschnitt (B.Sc.) (PO 2005, PO 2008) Mikroökonomik I Prof. Dr. P. Michaelis 26. Februar 2014 Dauer: 90 Minuten 5 Leistungspunkte

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

AVWL I (Mikro) - Prof. Sven Rady Ph.D. - Klausur am 12.02.2007. Abschlussklausur AVWLI

AVWL I (Mikro) - Prof. Sven Rady Ph.D. - Klausur am 12.02.2007. Abschlussklausur AVWLI AVWL I (Mikro) - Prof. Sven Rady Ph.D. - Klausur am.0.007 Name: Matr. Nr.: Studienfach: Abschlussklausur AVWLI Bitte bearbeiten Sie die folgenden drei Aufgaben mit allen Teilaufgaben. Benutzen Sie für

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Klausur Kosten- und Erlösrechnung im Sommersemester 2011 am 03.08.2010 (Wirtschaftsinformatik, Nebenfach)

Klausur Kosten- und Erlösrechnung im Sommersemester 2011 am 03.08.2010 (Wirtschaftsinformatik, Nebenfach) TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Wirtschaftswissenschaften Lehrstuhl für Betriebswirtschaftslehre - Controlling Prof. Dr. Gunther Friedl Klausur Kosten- und Erlösrechnung im Sommersemester 2011

Mehr

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2010

Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2010 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-

Mehr

FernUniversität in Hagen September 2014 Fakultät für Wirtschaftswissenschaft

FernUniversität in Hagen September 2014 Fakultät für Wirtschaftswissenschaft FernUniversität in Hagen September 2014 Fakultät für Wirtschaftswissenschaft Bitte beachten Sie, dass auf den Notenbescheiden des Prüfungsamtes nicht die in der Klausur erreichte Punktzahl, sondern die

Mehr

Klausur Mathematik. Note:

Klausur Mathematik. Note: Fachhochschule Südwestfalen Fachhochschule Münster Hochschule Bochum Verbundstudiengang Wirtschaftsingenieurwesen Hochschule Bochum Hochschule für Technik und Wirtschaft Klausur Mathematik Datum: 18.09.2010

Mehr

Mathematik-Klausur vom 28.01.2008

Mathematik-Klausur vom 28.01.2008 Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben

Mehr

Übungsaufgaben zur Vorlesung BWL A Produktion:

Übungsaufgaben zur Vorlesung BWL A Produktion: Betriebswirtschaftslehre, insbes. Produktionswirtschaft Prof. Dr. Stefan Betz Übungsaufgaben zur Vorlesung BWL A Produktion: Aufgabe 1 Definieren Sie die folgenden Begriffe, und grenzen Sie diese voneinander

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1. Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1..1 Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF 1.--. Die anteilmässigen

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil 2: Analysis Sommersemester Folgen und Reihen Aufgabe 1 Ein Betrieb erreiche im ersten Jahr einen Umsatz von 120 Mio e. Der

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

Diplom-Vorprüfung / Bachelor Modulprüfung Teilklausur BWL II (Einführung in Produktion und Logistik) Sommersemester 2009 10.08.

Diplom-Vorprüfung / Bachelor Modulprüfung Teilklausur BWL II (Einführung in Produktion und Logistik) Sommersemester 2009 10.08. Technische Universität Braunschweig Institut für Automobilwirtschaft und Industrielle Produktion Lehrstuhl für Produktion und Logistik Diplom-Vorprüfung / Bachelor Modulprüfung Teilklausur BWL II (Einführung

Mehr

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft

VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft Wirtschafts- und Sozialwissenschaftliche Fakultät der Universität Rostock Lehrstuhl für Finanzwissenschaft Prof. Dr. Robert Fenge Sommersemester

Mehr

Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001)

Matrikelnummer. Name: Vorname: Modulklausur: Einführung in die Wirtschaftswissenschaft (31001) Name: Vorname: Termin: Prüfer: 27.09.2011, 15.30 17.30 Uhr Aufgabe 1 2 3 4 5 6 Gesamt Maximale Punktzahl 7 9 16 10 4 4 50 Erreichte Punktzahl - 1 - Hinweise zur Bearbeitung der Klausur! 1. Die Klausur

Mehr

Mathematik-Klausur vom 10. Februar 2003

Mathematik-Klausur vom 10. Februar 2003 Mathematik-Klausur vom 10. Februar 2003 Aufgabe 1 Für eine Hausrenovierung wurde ein Kredit von 25 000 bei einem Zinssatz von,5% (p.a.) aufgenommen. Die Laufzeit soll 30 Jahre betragen. a) Berechnen Sie

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Technischer Fachwirt:

Technischer Fachwirt: IHK-Kurs, Geprüfter Technischer Fachwirt, Skript KLR Seite 1 Technischer Fachwirt: Kosten-Leistungsrechnung, Skript 5.1 Inhalt Break Even Analyse zu Vollkosten Dr. W. Grasser, Stand November 2012 IHK-Kurs,

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 0.02.206 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P. 5

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol Michael Buhlmann Schülerkurs Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polpol An der Schnittstelle zwischen Wirtschaftsunternehmen und Markt (im wirtschaftswissenschaftlichen

Mehr

Kosten- und Leistungsrechnung Relative Deckungsbeitragsrechnung

Kosten- und Leistungsrechnung Relative Deckungsbeitragsrechnung Teil I: Relativer ohne Berücksichtigung von Mindestproduktionsmengen Aufgabe I.01 Ein Unternehmen stellt drei Produkte her, für die die folgenden Angaben gelten: Produkt A B C / Stück 400,00 300,00 350,00

Mehr

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag

Mehr

Formelsammlung Wirtschaftsmathematik

Formelsammlung Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Strobel Stefan 29. Januar 2006 Inhaltsverzeichnis I. Mathematik 2 1. Umrechnung von Dezimalzahlen in Brüche 2 2. Differentiationsregeln 2 2.1. Summenregel..................................

Mehr

KOSTEN- UND PREISTHEORIE

KOSTEN- UND PREISTHEORIE KOSTEN- UND PREISTHEORIE Eine Anwendung der Differentialrechnung in der Wirtschaft Das Modellieren realer Situationen durch mathematische Modelle hat viele Anwendungsbereiche. Die hier beschriebenen Überlegungen

Mehr

Klausur Einführung in die VWL

Klausur Einführung in die VWL Otto-Friedrich-Universität Bamberg Lehrstuhl für Volkswirtschaftslehre insb. Finanzwissenschaft Dr. Felix Stübben Klausur Einführung in die VWL im SS 2012 HINWEIS: Es sind sämtliche Aufgaben zu bearbeiten.

Mehr

Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2012

Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und Leistungsrechnung im Sommersemester 2012 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten- und

Mehr

Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer Aufgabenblatt 5

Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer Aufgabenblatt 5 Übungen zu Aktivitätsanalyse und Kostenbewertung im Sommer 2013 Aufgabenblatt 5 Aufgabe 1: Relative Deckungsbeitragsrechnung Ein Unternehmen fertigt die Produkte A, B, C und D. Für die Herstellung der

Mehr

Kosten- und Preistheorie

Kosten- und Preistheorie Kosten- und Preistheorie Mag. Martin Bruckbauer 8. November 2005 1 Kostenfunktion Unter Kosten versteht man im Allgemeinen den in Geld bewerteten Güterverzehr, der für die Erstellung betrieblicher Leistungen

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Klausur / Rechnungswesen II, Kosten- und Leistungsrechnung PW-REW-P21-011222

Klausur / Rechnungswesen II, Kosten- und Leistungsrechnung PW-REW-P21-011222 Studiengang Wirtschaft postgradual Fach Rechnungswesen II, Kosten- und Leistungsrechnung Art der Leistung Prüfungsleistung Klausur-Knz. Datum 22.12.01 Die Klausur enthält 13 Aufgaben, zu deren Lösung Ihnen

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen . Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Master Planning mit Advanced Planning Systems

Master Planning mit Advanced Planning Systems Horst Tempelmeier Master Planning mit Advanced Planning Systems Modelle und Beispiele Vorwort Vorwort Der vorliegende Text soll einen Einblick in die Grundstruktur der mathematischen Modelle verschaffen,

Mehr

QM I (W-Mathe)-Klausur am

QM I (W-Mathe)-Klausur am QM I (W-Mathe)-Klausur am 06.07.206 Aufgabe a) Berechnen Sie den folgenden Grenzwert: 3 2 36+05 lim 5 4 20 b) Die Preis-Absatz Funktion eines Unternehmens sei gegeben durch: (p) = 8 0,6p. Bestimmen Sie

Mehr

Klausur Mikroökonomik I. Wichtige Hinweise

Klausur Mikroökonomik I. Wichtige Hinweise Prof. Dr. Anke Gerber Klausur Mikroökonomik I 2. Termin Sommersemester 2014 22.09.2014 Wichtige Hinweise 1. Lösen Sie nicht die Heftung der ausgeteilten Klausur. 2. Verwenden Sie nur das ausgeteilte Papier.

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Übungsserie 7: Anwendung der Differentialrechnung

Übungsserie 7: Anwendung der Differentialrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik II Differentialrechnung Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 7: Anwendung der Differentialrechnung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

WIRTSCHAFTLICHES RECHNEN

WIRTSCHAFTLICHES RECHNEN Wirtschaftliches Rechnen Herbert Paukert 1 WIRTSCHAFTLICHES RECHNEN Eine Einführung, Version 2.0 Herbert Paukert Betriebswirtschaftliche Funktionen [ 01 ] Formeln zur Kosten- und Preistheorie [ 08 ] Zwei

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Übungen zur Vorlesung Mathematik 1

Übungen zur Vorlesung Mathematik 1 Fachbereich Technische Betriebswirtschaft Übungen zur Vorlesung Mathematik S. Hochgräber N. Hüser T. Skrotzki S. Böcker Mathe Übungsaufgaben V5..docx Übung Mathematik Böcker/Hochgräber Übung Grundlagen

Mehr

Materialverflechtung

Materialverflechtung Materialverflechtung In einem Unternehmen mit mehrstufigem Fertigungsablauf seien die festen Mengenbeziehungen zwischen Rohstoffen, Zwischen- und Endprodukten durch folgenden Graph gegeben: 00 0 6 E E

Mehr

Lineare Gleichungssysteme mit zwei Variablen Lösungen

Lineare Gleichungssysteme mit zwei Variablen Lösungen Lineare Gleichungssysteme mit zwei Variablen Lösungen. Bestimme rechnerisch und grafisch die Lösungsmenge L der folgenden Gleichungssysteme. a) b) c) I. x y I. 5y (x ) 5 II. x y II. x y I. 5y (x ) 5 II.

Mehr

Nachfrage, Angebot, Gleichgewicht, Effizienz auf perfekt kompetitivem Markt Aber: Marktversagen (Part 3)

Nachfrage, Angebot, Gleichgewicht, Effizienz auf perfekt kompetitivem Markt Aber: Marktversagen (Part 3) Zwischenstand Mikroökonomik (Part 1, 2) Nachfrage, Angebot, Gleichgewicht, Effizienz auf perfekt kompetitivem Markt Aber: Marktversagen (Part 3) Unvollständiger Wettbewerb Externalitäten Informationsökonomik

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

Übungsaufgaben zum Lerntransfer Controlling

Übungsaufgaben zum Lerntransfer Controlling Übungsaufgaben zum Lerntransfer Controlling Copyright by carriere & more, private Akademie, 2010 1 1. Erläutern Sie den Ablauf des Controlling und dessen Zielsetzung. 2. Grenzen Sie das strategische vom

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr