DIFFERENTIALGLEICHUNGEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "DIFFERENTIALGLEICHUNGEN"

Transkript

1 DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung n-ter Ordnung. Diese Gleichung kann aber auch Ableitungen niedrigerer Ordnung enthalten, sowie die unabhängige Variable x. Die Gleichung ist dabei entweder in der impliziten Form f(x; y; y';...; y (n) )= 0 z.b. x+yy'=0 oder, falls die Gleichung nach y (n) auflösbar ist, in der expliziten Form y (n) = f(x; y; y';...; y (n- 1) ) z.b. y'= 2x darstellbar. Ordnung Die Ordnung einer gewöhnlichen Differentialgleichung wird durch die Ordnung der höchsten in ihr auftretenden Ableitung bestimmt. Lösung einer Differentialgleichung Eine Funktion y = y(x) heisst eine Lösung der Differentialgleichung, wenn sie mit ihren Ableitungen die Differentialgleichung identisch erfüllt. Dabei wird noch zwischen der allgemeinen Lösung und der speziellen oder partikulären Lösung unterschieden: 1. Die allgemeine Lösung einer Differentialgleichung n-ter Ordnung enthält noch n voneinander unabhängige Paramater (Integrationskonstanten). 2. Eine spezielle oder partikuläre Lösung wird aus der allgemeinen Lösung gewonnen, indem man aufgrund zusätzlicher Bedingungen den n Parametern feste Werte zuweist. Anfangs- und Randwertproblem Bei einem Anfangswertproblem werden der Lösungsfunktion y = y(x) insgesamt n Werte vorgeschrieben; nämlich der Funktionswert, sowie die Werte der ersten n-1 Ableitungen an der Stelle x 0 : y(x 0 ), y'(x 0 ), y''(x 0 ),..., y (n-1) (x 0 ). Bei einem Randwertproblem werden der gesuchten speziellen Lösung an n verschiedenen Stellen x 1, x 2, x 3,..., x n der Reihe nach die Funktionswerte y(x 1 ), y(x 2 ),...y(x n ) vorgeschrieben.

2 DIFFERENTIALGLEICHUNGEN 1. ORDNUNG Geometrische Betrachtung Die Differentialgleichung y'= f(x;y) besitzt die Eigenschaft, dass durch jeden Punkt P 0 (x 0 ;y 0 ) genau eine Lösungskurve verlauft. Die Steigung der Lösungskurve in P 0 kann direkt aus der Funktionsgleichung berechnet werden: m=y'(x0)= f(x0;y0). Dadurch wird jedem Punkt der Funktion ein Richtungs- oder Steigungswert zugeordnet und kann im Koordinatensystem als Linienelement der Tangente dargestellt werden. Die Gesamtheit der Linienelemente bildet das Richtungsfeld. Unter einer Isokline versteht man die Verbindungslinie aller Punkte, welche die gleiche Steigung besitzen. Eine Näherung für die Lösungskurve findet man, indem man eine Kurve zeichnet, die in ihrem Schnittpunkt mit den Isoklinen den gleichen Anstieg besitzen. Beispiel: x+yy'=0

3 Trennung der Variablen Eine Differentialgleichung vom Typ y'= f(x)*g(y) oder!" = f(x)*g(y) lässt sich folgendermassen umschreiben:!"!(!) =f(x) dx Die linke Seite der Gleichung enthält nur noch die Variable y und deren Differential dy, die rechte Seite dagegen nur noch die Variable x und deren Differenzial dx. Damit wurden die Variablen getrennt und es kann auf beiden Seiten integriert werden:!"!(!) = f(x) dx Nun liegt eine Lösung in der impliziten Form F1(y)=F2(x)+C vor und es kann nach y aufgelöst werden. Somit erhält man die allgemeine Lösung der Differentialgleichung in der expliziten Form. Beispiel: y'=y Trennen der Variablen: dy dy = y => dx y = dx Aus der Beidseitigen Integration erhält man: ln y = x + C Nach dem umformen nach y resultiert die allgemeine Lösung: y = C e!!"

4 Substitution mit Differentialgleichungen vom Typ y'= f(ax+by+c) Solche Differentialgleichungen lassen sich durch lineare Substitution u=ax+by+c lösen. Durch die Differentiation dieser Gleichung nach x erhalten wir: u'=a+by' Beispiel: y'=2x-y u= 2x- y und u'=2- y' Nun setzen wir für y und y' die entsprechenden werte ein und wir erhalten die neue Differentialgleichung: 2- u'=u Durch die Trennung der Variablen erhalten wir: Durch beidseitige Integration erhalten wir: Nach dem Auflösen nach u resultiert: du u 2 = dx ln u 2 = x + C u = C e!! + 2 Die Rücksubstitution ergibt die allgemeine Lösung der Differentialgleichung: y = 2x C e!! 2

5 Substitution mit Differentialgleichung vom Typ y = f( y x ) Solche Differentialgleichungen lassen sich durch lineare Substitution u = y x dh. y = x u lösen. Wir differenzieren nach x und erhalten: y! = u + x u Danach analog weiterfahren wie im vorherigen Unterkapitel: 1. Durchführung der Substitution 2. Trennen der Variablen 3. Integration der beiden Terme 4. Rücksubstitution und auflösen nach y LÖSEN VON LINEAREN DIFFERENTIALGLEICHUNGEN 1. ORDNUNG Eine Differentialgleichung 1.Ordnung heisst linear, wenn sie in der Form y! + f x y = g(x) ist. Die Funktion g(x) wird als Störfunktion bezeichnet. Fehlt diese Funktion (g(x)=0), so handelt es sich um eine lineare homogene Differentialgleichung, ansonsten ist es eine inhomogene Differentialgleichung. Will man eine lineare inhomogene Differentialgleichung 1. Ordnung lösen, so muss zuerst die homogene Gleichung gelöst werden, man setzt die Störfunktion gleich Null. Integration der homogenen linearen Differentialgleichung Die allgemeine Lösung einer homogenen linearen Differentialgleichung ist: y = C e!!!"

6 Integration der inhomogenen linearen Differentialgleichung Eine solche Differentialgleichung lässt sich mit zwei Methoden lösen. Variation der Konstanten Zunächst muss einmal die homogene lineare Differentialgleichung gelöst werden. Dies führt zur allgemeinen Lösung : y = C e!!!" Nun wird die Integrationskonstante C durch eine unbekannte Funktion C(x) ersetzt. Bei der Differentiation der Lösung erhalten wir: y! = C! x e!!!" C x f x e!!!" Durch einsetzten der gefundenen Funktionsterme für y und y' in die inhomogene Differentialgleichung und durch weiteres vereinfachen erhalten wir: Durch Integration erhalten wir: C! x = g x e!!!" C x = g x e!!!" dx + C Diesen Ausdruck wird jetzt bei der homogenen Gleichung eingesetzt und wir erhalten die allgemeine Lösung der inhomogenen linearen Differentialgleichung: Aufsuchen einer partikulären Lösung y = g x e!!!" dx + C e!!!" Die allgemeine Lösung für eine inhomogene lineare Differentialgleichung lässt sich aus der Lösung der homogenen Gleichung y0 sowie einer partikulären Lösung der inhomogenen Gleichung yp zusammensetzen: Für y 0 erhalten wir : y=y0+yp y0= C e!!!"

7 Die partikuläre Lösung lässt mit Hilfe eines geeigneten Lösungsansatzes finden. Beispiel: y'- (tan x)*y=2*sin x Für y 0 finden wir: y0=!!"#! Für die partikuläre Lösung wählt man den Lösungsansatz: yp= A cos x Denn so enthalten beide Summanden auf der linken Seite der Differentialgleichung einen Sinus, wenn man für y und y' den Ansatz bzw. die Differentiation des Ansatzes in die differentialgleichung einsetzt: yp'- (tan x)*yp=2*sin x wird zu - A*sin x- A*sin x =2*sin x => A=1 Nun finden wir die allgemeine Lösung: y=! cos x!"#! Lineare Differntialgleichung 1.Ordnung mit konstanten Koeffizienten Liegt eine Differentialgleichung vom Typ y'+ay=g(x) lässt sich die homogene Lösung durch y0= C e!!" finden. Die inhomogene Differentialgleichung wird entweder durch Varation der Konstanten oder durch das Aufsuchen einer partikulären Lösung gelöst, wobei der Lösungsansatz für die partikuläre Lösung nach der untenstehendentabelle erfolgt:

8 DIFFERENTIALGLEICHUNGEN 2.ORDNUNG HOMOGENE DIFFERENTIALGLEICHUNGEN 2. ORDNUNG MIT KONSTANTEN KOEFFIZIENTEN Ansatz: Ableitungen:

9 Diese Gleichung wird erfüllt genau dann, wenn Diese Gleichung heißt charakteristische Gleichung. LöSUNG: Fall: sind reell (zwei reelle Lösungen). sind Lösungen, und damit auch ihre Summe:

10 BEISPIEL Lösung von Der Ansatz Gleichung führt zur charakteristischen mit den Nullstellen allgemeine Lösung: Fall: ist reell (doppelte Nullstelle) Zweite Lösung:

11 Zeigen: ist Lösung Es gilt aber: Eingesetzt: und ALLGEMEINE LöSUNG:

12 BEISPIEL Lösung von charakteristische Gleichung: allgemeine Lösung: Fall: sind komplex Lösungen: Reelle Lösungen:

13 ALLGEMEINE LöSUNG: mit BEISPIEL charakteristische Gleichung:

14 allgemeine Lösung: INHOMOGENE DIFFERENTIALGLEICHUNGEN 2. ORDNUNG MIT KONSTANTEN KOEFFIZIENTEN Tabelle: Lösungsansatz für eine partikuläre Lösung der inhomogenen linearen Differentialgleichung 2. Ordnung mit konstanten Koeffizienten vom Typ in Abhängigkeit vom Typ der Störfunktion g(x) Störfunktion g(x) Lösungsansatz Polynomfunktion vom Grade n Polynom vom Grade n Exponentialfunktion Sinusfunktion oder Kosinusfunktion oder Linearkombination von beiden Parameter: Koeffizienten des Polynomes 1. c ist keine Lösung der charakteristischen Gleichung Parameter: A 2. c ist eine einfache Lösung der charakteristischen Gleichung Parameter: A 3. c ist eine doppelte Lösung der charakteristischen Gleichung Parameter: A 1. ist keine Lösung der charakteristischen Gleichung oder

15 Parameter: A, B bzw. C, 2. ist eine Lösung der charakteristischen Gleichung oder Parameter: A, B bzw. C, 1. ist keine Lösung der charakteristischen Gleichung oder ( sei Polynomfunktion vom Grad n) Polynome vom Grad n Parameter: Koeffizienten der Polynome und 2. ist eine Lösung der charakteristischen Gleichung Polynome vom Grad n Parameter: Koeffizienten der Polynome und Beispiele: Gesucht ist die allgemeine Lösung der inhomogenen DGL wobei für die Störfunktion im Folgenden verschiedene Funktionstypen vorgegeben werden. Zunächst wird die zugehörige homogene DGL gelöst. Sie besitzt die charakteristische Gleichung

16 mit den reellen Lösungen und Dies führt zu der Fundamentalbasis und damit zur allgemeinen Lösung der homogenen Gleichung Nun werden verschiedene Störfunktionen vorgegeben und mit Hilfe der oben stehenden Tabelle kann eine partikuläre Lösung der inhomogenen Gleichung ermittelt werden. Störfunktion g(x) Lösungsansatz Begründung/Anmerkung Parameter: Parameter: ist keine Lösung der charakteristischen Gleichung Parameter: ist eine einfache Lösung der charakteristischen Gleichung Parameter: ist eine Lösung der charakteristischen Gleichung Parameter: ist keine Lösung der charakteristischen Gleichung Parameter: zu 1.: Wir gehen mit dem Ansatz in die DGL:

17 Die Glieder werden noch nach fallenden Potenzen geordnet: Durch Koeffizientenvergleich folgt weiter: Dieses gestaffelte lineare Gleichungssystem wird durch Damit ist gelöst. und die allgemeine Lösung der inhomogenen DGL besitzt die Form mit zu 2.: Lösung: mit zu 3.: Lösung: mit zu 4.:

18 Mit dem Lösungsansatz folgt durch Einsetzen in die DGL: Somit ist eine partikuläre Lösung der inhomogenen DGL und die allgemeine Lösung dieser Gleichung lautet mit zu 5.: Wir gehen mit dem Lösungsansatz in die DGL: Nach Division durch und Ordnen der Glieder folgt weiter: Ein Koeffizienten Vergleich auf beiden Seiten dieser Gleichung führt zu dem gestaffelten linearen Gleichungssystem

19 mit der eindeutig bestimmten Lösung Somit ist eine partikuläre Lösung und mit die allgemeine Lösung der inhomogenen DGL. zu 6.: Mit dem Lösungsansatz folgt durch Einsetzen in die inhomogene DGL: Wir ordnen nun die Glieder nach Sinus und Kosinus Funktionen: Durch Koeffizienten Vergleich folgt weiter: Dieses lineare Gleichungssystem besitzt die Lösung Somit ist Die allgemeine Lösung der inhomogenen DGL lautet daher: mit

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Homogene lineare Differentialgleichung 1. Ordnung

Homogene lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Lineare Differenzialgleichung und verwandte Fälle

Lineare Differenzialgleichung und verwandte Fälle Lineare Differenzialgleichung und verwandte Fälle 1. Die lineare Differenzialgleichung Eine lineare Differenzialgleichung 1. Ordnung besitzt die Form y + g(x)y = h(x), wobei g(x) und h(x) stetig sind.

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen XIV Gewöhnliche Differentialgleichungen Definition 4. : Sei n IN, F : D(F IR n+2 IR. Gewöhnliche DGL n ter Ordnung a F (x, y, y,..., y (n = heißt gewöhnliche Differentialgleichung (DGL n ter Ordnung. Läßt

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

11.2. Lineare Differentialgleichungen erster Ordnung

11.2. Lineare Differentialgleichungen erster Ordnung 112 Lineare Differentialgleichungen erster Ordnung Dynamische Entwicklung von Populationen Entwickelt sich eine bestimmte Größe, zb die einer Population oder eines einzelnen Organismus, nicht nur proportional

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

(a b c = ) ( (

(a b c = ) ( ( Funktionssynthese / Trassierung Beide Themen gehören schon ein wenig zusammen, denn bei beiden Themen werden Eigenschaften, die die spätere Funktion haben soll, vorher definiert. Über die definierten Eigenschaften

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr