3.3 Eigenwerte und Eigenräume, Diagonalisierung

Größe: px
Ab Seite anzeigen:

Download "3.3 Eigenwerte und Eigenräume, Diagonalisierung"

Transkript

1 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V. Eig(φ, λ) := {x V φ(x) = λx}. Bemerkung (1) Eig(φ, 0) = Kern(φ). () Allgemeiner: Betrachte φ λ id V End K (V ): (φ λ id V )(x) = φ(x) λx. Dann ist Eig(φ, λ) = Kern(φ λ id V ). Definition λ K heißt Eigenwert von φ End K (V ) falls Eig(φ, λ) {0}, d.h. falls 0 x V mit φ(x) = λx. Jedes solche x 0 wird dann zum Eigenwert λ gehöriger Eigenvektor genannt. Satz V endlich-dimensionaler K-Vektorraum, φ End K (V ). Dann gilt: φ diagonalisierbar V besitzt eine Basis bestehend aus Eigenvektoren von φ. Satz und Definition (Direkte Summe). Sei V ein K-Vektorraum und U 1,..., U r Unterräume von V. Sei U := U U r und V i = U U i 1 + U i U r. Dann sind folgende Aussagen äquivalent: (i) i {1,..., r} gilt: U i V i = {0}; (ii) Für alle Vektorensysteme x 1,..., x r mit x i U i gilt: r i=1 x i = 0 = x i = 0 für 1 i r; (iii) Für zwei Vektorensysteme x 1,..., x r und y 1,..., y r mit x i, y i U i gilt: r i=1 x i = r i=1 y i = x i = y i für 1 i r. Falls eine (und somit jede) der obigen Aussagen erfüllt ist, so nennt man U direkte Summe der Unterräume U i, 1 i r, in Zeichen U = U 1 U... U r = r i=1 U i. Ferner gilt: Falls jedes U i endlich-dimensional ist, so ist jede der obigen Aussagen auch äquivalent zu jeder der beiden folgenden: (iv) dim U = r i=1 dim U i; (v) Falls e i1,..., e ini eine Basis von U i ist, wobei 1 i r und n i = dim U i, so ist e 11,..., e 1n1, e 1,..., e n,..., e r1,..., e rnr Basis von U. 1

2 Satz Seien λ 1,..., λ r verschiedene Eigenwerte von φ End K (V ). Dann ist r i=1 Eig(φ, λ i) = r i=1 Eig(φ, λ i) eine direkte Summe. Korollar Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig. Korollar Sei V ein n-dimensionaler K-Vektorraum, φ End K (V ). (i) φ hat höchstens n verschiedene Eigenwerte; (ii) φ ist genau dann diagonalisierbar wenn V die direkte Summe aller Eigenräume zu den verschiedenen Eigenwerten von φ ist. Definition Seien A M n (K), λ K, L A : K n K n : x A x. Wir defnieren den zu λ gehörigen Eigenraum von A als Eig(A, λ) := Eig(L A, λ). Man nennt λ einen Eigenwert von A falls λ Eigenwert von L A ist, d.h. falls 0 x K n mit A x = λ x, und jedes solche x 0 wird dann zum Eigenwert λ gehöriger Eigenvektor von A genannt. Bemerkung Eig(A, λ) = L(A λi n 0), die Lösungsmenge des homogenen LGS (A λi n 0). Aus.5.8, und folgt sofort: Satz Seien A M n (K), λ K. Dann sind äquivalent: (i) λ ist Eigenwert von A; (ii) Das homogene LGS (A λi n 0) hat eine Lösung 0 x K n ; (iii) Rang(A λi n ) < n, d.h. A λi n nicht regulär; (iv) det(a λi n ) = 0. Sei K Körper, K[X] der Polynomring über K in der Variablen X. Diesen können wir als Unterring des rationalen Funktionenkörpers K(X) betrachten. Für A = (a ij ) M n (K) betrachten wir nun über dem größeren Körper K(X) die Matrix a 11 X a 1... a 1n a 1 a X... a n A XI n =..... a n1 a n... a nn X

3 Wie üblich können wir die Determinante det(a XI n ) berechnen, (da unsere Theorie der Determinanten über Körpern entwickelt wurde und K(X) ein Körper ist), z.b. Entwicklung nach der ersten Spalte. Man sieht, dass man dabei ein Polynom erhält, genauer det(a XI n ) = c n X n + c n 1 X n c 1 X + c 0 K[X] wobei Folgendes relativ leicht gezeigt werden kann: c n = ( 1) n ; c n 1 = ( 1) n 1 (a 11 + a a nn ) = ( 1) n 1 Spur(A); c 0 = det A. Beispiel. Für A = ( ) a b c d erhält man det(a XI ) = a X b c d X = X (a + d)x + (ad bc). Definition Sei A M n (K). Man nennt P A (X) := det(a XI n ) das charakteristische Polynom von A. Korollar λ K ist Eigenwert von A M n (K) λ ist Nullstelle von P A (X) K[X]. Lemma Seien A, B M n (K) ähnliche Matrizen, d.h. S GL n (K) mit B = SAS 1. Dann gilt P A (X) = P B (X). Insbesondere haben ähnliche Matrizen dieselben Eigenwerte. Mittels 3..7 und folgt: Korollar und Definition Sei V ein n-dimensionaler K-Vektorraum, φ End K (V ) und A := M E E (φ) M n(k) die Darstellungsmatrix von φ bzgl. einer Basis E von V. Dann ist det(a XI n ) unabhängig von der Wahl der Basis E, und man definiert das charakteristische Polynom von φ als P φ (X) := P A (X) = det(a XI n ) K[X]. Satz Sei V ein n-dimensionaler K-Vektorraum, und sei entweder F End K (V ) oder F M n (K), und sei λ K. Dann gilt: λ ist Eigenwert von F λ ist Nullstelle von P F (X). 3

4 Einige Bemerkungen über K[X] Hier ist K immer ein Körper und K[X] der Polynomring in der Variablen X über K. (i) K[X] ist ein kommutativer nullteilerfreier Ring. Die Elemente 0 f K[X] kann man schreiben als f = a n X n + a n 1 X n a 1 X + a 0 für geeignetes n N 0 und mit a n 0. Man nennt n den Grad von f, in Zeichen Grad(f) = n. a n heißt Leitkoeffizient von f, und f heißt monisch (oder normiert) falls a n = 1. Man definiert Grad(0) =. (ii) Es gilt f, g K[X]: Grad(fg) = Grad(f) + Grad(g) (wobei gelten soll + m = m + ( ) = m N 0 { }). (iii) λ K heißt Nullstelle von f = r i=0 a ix i falls f(λ) = r i=0 a iλ i = 0 K. (iv) Man nennt f K[X] irreduzibel falls gilt: Grad(f) 1 und Es gibt keine g, h K[X] mit 1 Grad(g), Grad(h) < Grad(f) und f = gh. (v) Satz von der Division mit Rest in K[X]: Seien f, g K[X] mit g 0. Dann existieren eindeutig bestimmte q, r K[X] mit f = qg + r, und r = 0 oder 0 Grad(r) < Grad(g). (vi) Satz von der eindeutigen Zerlegung in irreduzible Polynome: Jedes 0 f K[X] besitzt eine Zerlegung f = αg 1 g... g r, wobei r N 0, g i K[X] monisch und irreduzibel, und α K. Diese Zerlegung ist bis auf die Reihenfolge der g i eindeutig. Hierbei ist α der Leitkoeffizient von f. (Bemerkung: Dies ist analog zur eindeutigen Primfaktorzerlegung in Z.) (vii) Sei 0 f K[X], λ K. Dann gilt: λ Nullstelle von f X λ ist ein Faktor in der Zerlegung von f in irreduzible Polynome. Insbesondere gilt: f hat höchstens Grad(f) verschiedene Nullstellen. (viii) Polynome vom Grad 1 sind immer irreduzibel. Polynome vom Grad oder 3 sind genau dann irreduzibel, wenn sie keine Nullstelle haben. 4

5 Es ist möglich, dass Polynome vom Grad > 3 keine Nullstellen haben, aber trotzdem reduzibel sind. Beispiel: (X + 1)(X + ) = X 4 + 3X + R[X] hat sicher keine Nullstellen, ist aber reduzibel. (ix) Die irreduziblen Polynome über C sind genau die Polynome vom Grad 1. Daraus folgt, dass jedes Polynom 0 f C[X] in Linearfaktoren zerfällt, d.h. sich schreiben lässt als Produkt von Polynomen vom Grad 1: f = α n i=1 (X c i), für geeignete α, c i C. Falls ein Körper K die Eigenschaft hat, dass jedes Polynom sich in ein solches Produkt von Linearfaktoren zerlegen lässt, so sagt man, K ist algebraisch abgeschlossen. (x) Die irreduziblen Polynome in R[X] sind genau die Polynome vom Grad 1 sowie diejenigen Polynome von Grad, die keine Nullstellen haben. (xi) Beispiel einer Zerlegung in R[X]: f(x) = X 4 +X 3 X 1. Suche zunächst Nullstellen: man sieht schnell: ±1 sind Nullstellen. Also taucht (X 1)(X + 1) = X 1 als Faktor auf. Verwende nun Polynomdivision und man erhält: (X 4 + X 3 X 1) : (X 1) = X + X + 1. Die Nullstellen von X + X + 1 berechnet man mit der üblichen Formel für 1± quadratische Gleichungen: 3 C \ R, also keine Nullstellen in R, daher irreduzibel. Die Faktorisierung in irreduzible Polynome über R lautet also: X 4 + X 3 X 1 = (X 1)(X + 1)(X + X + 1) Über C: X 4 + X 3 X 1 = (X 1)(X + 1)(X )(X ). Mittels der eindeutigen Zerlegung in irreduzible Polynome (insbesondere unter Berücksichtigung von obigem (vii)) erhält man: Satz und Definition (1) Sei 0 f K[X] und sei λ K Nullstelle von f. Dann existieren eindeutig bestimmte m N und g K[X] mit f = (X λ) m g und g(λ) 0. Man nennt m die Vielfachheit der Nullstelle λ, in Zeichen m(f, λ) := m. Man setzt m(f, λ) = 0 falls f(λ) 0, also falls λ keine Nullstelle von f ist. () Sei V ein n-dimensionaler K-Vektorraum, und sei entweder F End K (V ) oder F M n (K), und sei λ K ein Eigenwert von F. Dann heißt m(p F, λ) die algebraische Vielfachheit des Eigenwerts λ. Ferner nennt man dim Eig(F, λ) auch die geometrische Vielfachheit des Eigenwerts λ. Satz Sei V ein n-dimensionaler K-Vektorraum, und sei entweder F End K (V ) oder F M n (K), und sei λ K. 5

6 (i) dim Eig(F, λ) m(p F, λ). (ii) F ist genau dann diagonalisierbar, wenn die beiden folgenden Bedingungen erfüllt sind: (a) P F zerfällt in Linearfaktoren: P F (X) = ( 1) n wobei r i=1 m i = n = dim V, und (b) λ K: dim Eig(F, λ) = m(p F, λ). r (X λ i ) m i Algorithmus zur Diagonalisierung von Matrizen Sei A M n (K). Wir wollen A über K diagonalisieren, falls möglich. (1) Berechne P A (X) = det(a XI n ). () Faktorisiere P A (x): Falls nicht zerlegbar in Linearfaktoren, dann nicht diagonalisierbar: Stopp. Falls zerlegbar in Linearfaktoren: bestimme alle Nullstellen λ 1,..., λ r und deren Vielfachheiten m i := m(p A, λ i ). (3) Für jedes λ i, bestimme Eig(A, λ i ) = L(A λi n 0). Falls i mit dim Eig(A, λ i ) < m i, dann nicht diagonalisierbar: Stopp. Falls i: dim Eig(A, λ i ) = m i : diagonalisierbar, und eine zu A ähnliche Diagonalmatrix D sieht dann so aus: λ 1 I m1 D =... λ r I mr (4) (Falls verlangt). Falls A diagonalisierbar mit Diagonalmatrix D, bestimme eine Matrix S GL n (K) mit S 1 AS = D: Bestimme eine Basis für jeden der Eigenräume Eig(A, λ i ). Wir wissen (da diagonlisierbar nach Annahme): all diese Vektoren bilden eine Basis (bestehend aus Eigenvektoren) von V. Sei diese Basis e 1,..., e n, und sei jeweils µ i K der zu e i gehörige Eigenwert: A e i = µ i e i. Sei nun S = ( e 1 e i=1... e n ), und D die Diagonalmatrix µ 1 D =... µ n 6

7 Dann gilt S GL n (K) (S ist regulär da ihre Spaltenvektoren e 1,..., e n nach Konstruktion linear unabhängig). Ferner gilt AS = A( e 1... e n ) = (A e 1... A e n ) = (µ 1 e 1... µ n e n ) µ 1 = ( e 1... e n )... = SD µ n also AS = SD bzw. S 1 AS = D. 7

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Endliche Körper und Codierung

Endliche Körper und Codierung Endliche Körper und Codierung Manfred Madritsch Institut für Mathematik A Technische Universität Graz Version: SS 2010 Achtung: Bitte Anregungen und Fehler per Email an die Adresse madritsch@tugraz.at

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Algebra I Wintersemester 2006/07

Algebra I Wintersemester 2006/07 Algebra I Wintersemester 2006/07 Prof. Dr. Annette Huber-Klawitter Fassung vom 31. Januar 2007 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math. Institut 0341-97

Mehr

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08 CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Mögliche Prüfungsfragen zu VO Mathematische Software

Mögliche Prüfungsfragen zu VO Mathematische Software Mögliche Prüfungsfragen zu VO Mathematische Software SS 2009 Der Prüfungsstoff umfasst alles, was in der Vorlesung vorgetragen wurde. Die folgende Liste soll Ihnen bei der Vorbereitung helfen. Bei der

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Inhaltsverzeichnis. I Vorbemerkung 1. II Kryptologie 2. 1 Inhalt 1 1.1 Kryptologie... 1 1.2 Codierungstheorie... 1 1.3 Literatur...

Inhaltsverzeichnis. I Vorbemerkung 1. II Kryptologie 2. 1 Inhalt 1 1.1 Kryptologie... 1 1.2 Codierungstheorie... 1 1.3 Literatur... Inhaltsverzeichnis I Vorbemerkung Inhalt. Kryptologie.........................................2 Codierungstheorie.....................................3 Literatur.........................................

Mehr

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Peter Fleissner (Version 05.02.2008) Bisher wurde die Rechung nur mit zirkulierendem konstantem Kapital durchgeführt. Die

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

(PRO-)SEMINAR ZUR ALGEBRA

(PRO-)SEMINAR ZUR ALGEBRA (PRO-)SEMINAR ZUR ALGEBRA U. GÖRTZ, C. KAPPEN, WS 200/ Einführung Kettenbrüche sind Ausdrücke der Form a 0 + a + a 2+... (beziehungsweise gewisse Varianten davon). Kettenbrüche sind ein klassisches und

Mehr

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik Angriffe gegen Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 07. Dezember 2009 Angriffe gegen Outline 1 Zur Geschichte 2 3 Angriffe gegen

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr