LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

Größe: px
Ab Seite anzeigen:

Download "LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow"

Transkript

1 LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow

2 INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9 iii

3 2 EIGENWERTE UND EIGENVEKTOREN KAPITEL EIGENWERTE UND EIGENVEKTOREN. asiswechsel Sei V ein K-Vektorraum mit zwei asen A =(v,...,v n)und =(w,...w n). Jeder Vektor w j aus hat eine eindeutige Darstellung in der asis A w j = nx S ijv i Die Transformationsmatrix des asiswechsels von A nach ist i= S A := (S) ij 2 GL(n, K). Die Transformationsmatrix kann invertiert werden und (S A ) beschreibt dann die Transformationsmatrix des asiswechsels von nach A 2. Wir definieren die Koordinatensysteme A : K n V und : K n V. Die Transformationsmatrix der Koordinaten von A nach ist T A =( ) A : K n K n T A 2 GL(n, K). ein asisvektor in A wird reingesteckt, ein asisvektor in kommt raus 2 ein asisvektor in wird reingesteckt und heraus kommt ein asisvektor in A Sei u ein Vektor des Vektorraumes V. x sind die Koordinaten von u in der asis A. y sind die Koordinaten von u in der asis u = A(x) = (y). Der Zusammenhang von der Darstellung in Koordinaten bezüglich der asis dargestellt durch die Koordinaten des Vektors in der asis A ist gegeben durch y = T A x. Die Transformationsmatrizen des asiswechsels und die Transformationsmatrizen des Koordinatensystemwechsls hängen zusammn über T A =(S A ) S A = T A. Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt. Dann transformiert die Darstellung von der asis A in asis M = T A M A(T A ). Sowohl Spur nx nx Spur(F )= a ii = i i= i= als auch Determinante ny det A = i i= sind Invarianten von Endomorphismen, ändern sich also nicht beim Wechsel von einer asis in die andere. So kann die Determinante eines Endomorphismus F definiert werden über die Determinante dessen Darstellung bezüglich einer beliebigen asis det F := det M (F )..2 Eigenwertgleichung Sei V ein K-Vektorraum und F : V V ein Endomorphismus. Eigenwert von F, falls es ein v 2 V gibt mit v 6= und F (v) =. v 6= 2 V hei st Eigenvektor, wenn es ein 2 K gibt, so dass v F (v) = v. 2 K hei st Der Vektor ~ ist nie ein Eigenvektor. Vielfache von Eigenvektoren sind wieder Eigenvektoren, da F (µv) = µv, µ 2 K. Für V = K n, A 2 M(n n; K) und einen Endomorphismus F : V V,x 7 Ax gilt: 2 K ist Eigenwert von A, wenneseinx 2 K n gibt mit x 6= und Ax = x. x ist dann ein Eigenvektor zum Eigenwert.

4 EIGENWERTGLEIHUNG 3 4 EIGENWERTE UND EIGENVEKTOREN Eigenraum Der Eigenraum eines Endomorphismus F von V zum Eigenwert als Eig(F ; ):={v 2 V : F (v) = v} V. Für die Eigenräume von zwei verschiedenen Eigenwerten 6= 2 gilt Eig(F ; ) \ Eig(F ; 2) ={} ink ist definiert Sind v,v 2 2 V Eigenvektoren zu verschiedenen Eigenwerten 6= 2,soistder Vektor (v + v 2) kein Eigenvektor von F. Für eine Matrix A 2 M(n n; K) ist der Eigenraum zum Eigenwert 2 K definiert als Eig(A; ):={v 2 V : Ax = x} K n. Eigenschaften des Eigenraums a) Eig(F ; ) V ist ein Untervektorraum b) Eig(F ; ) 6= {~}, ist ein Eigenwert von F c) Eig(F ; ) \{} ist die Menge der Eigenvektoren zum Eigenwert. d) Eig(F ; )=Ker(F id V ) e) dim Eig(F ; )=dimv rang(f id V ) erechnung von Eigenwerten Sei A 2 M(n n; K), 2 K. ist genau dann ein Eigenwert von A, wenn erechnung von Eigenvektoren det(a E n)=. Ein Vektor x 2 K n ist ein Eigenvektor von A zum Eigenwert nichttriviale 3 des linearen Gleichungssystems ist. harakteristisches Polynom (A E n)x = 2 K, wenneseine Sei V ein K-Vektorraum der Dimension dimv = n mit asis, F : V V ein Endomorphismus mit Darstellung bezüglich M = A 2 M(n n; K). Das charakteristische Polynom von F ist definiert als 3 nichttrivial: ~x 6= P F =det(a XE n) 2 K[X] und ist ein Polynom vom Grad n. Die Nullstellen des charakteristischen Polynoms sind die Eigenwerte von F. Wir geben explizit das charakteristische Polynom für n =2undn = 3 an und diskutieren Eigenschaften für allgemeines n 2 N..) n=2 2.) n=3 3.) n 2 N a X a2 det(a XE n)=det a 2 a 22 X = X 2 (a + a 22) X +(a a 22 a 2a 2) det(a XE 3)=det(a ij X ij) = X 3 +(a + a 22 + a 33)X 2 (a a 22 a 2a 2 + a a 33 a 3a 3 + a 22a 33 a 23a 32) X +deta P A =det(a XE n)=b nx n + b n X n + + b X + b. Alle b n 2 K. FürdenKoe zienten der höchsten Potenz von X gilt b n =( ) n. Für den Koe zienten der zweithöchsten Potenz von X gilt Für den Koe b n =( ) n Spur (A) =( ) n (a + + a nn). zienten des konstanten Teil des Polynoms gilt b =deta. Allgemein lässt sich ein charakteristisches Polynom schreiben als P F =(X )...(X m) Q mit,..., m den Nullstellen von P F und Q 2 K[X] einem Polynom ohne Nullstellen in K. Esistapple m apple n =dimv und m +degq = n. Es kann vorkommen, dass das charakteristische Polynom P F mehrfache Nullstellen hat, d.h. P F =(X ) r (X k) rk Q mit paarweise verschiedenen Nullstellen,..., k. Es ist r,...,r k undr +...r k = m. Ist F : V V diagonalisierbar, so zerfällt das char. Polynom P F in Linearfaktoren mit,..., n 2 K und n =dimv. Ist dim V = n, F : V V und P F = ±(X ) (X n) P F = ±(X ) (X n) mit paarweise verschiedenen Eigenwerten,... n, soistf diagonalisierbar. Eigenvektoren v...,v m 2 V einer linearen Abbildung F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig. Dabei ist m apple dim V.

5 DIAGONALISIERARKEIT 5 6 EIGENWERTE UND EIGENVEKTOREN Geometrische und Algebraische Vielfachheit Algebraische Vielfachheit Die algebraische Vielfachheit µ(p F ; ) des Eigenwerts von F ist definiert als die Vielfachheit der Nullstelle des charakteristischen Polynoms P F zu F. Geometrische Vielfachheit Die geometrische Vielfachheit d(f ; ) des Eigenwerts von F ist definiert als d(f ; ) := dim Eig(F ; ) Die geometrische Vielfachheit d(f ; ) ist die maximale Zahl linear unabhängiger Eigenvektoren zu 2 K. Ist 2 K ein Eigenwert von F,soistd(F ; ) undµ(p F ; ). Ist für einen Eigenwert 2 K das charakteristische Polynom dieses Eigenwerts P F ( ) 6=, hat das charakteristische Polynom also keine Nullstelle bei und ist demnach die algebraische Vielfachheit µ(p F ; ) =. ist dann kein Eigenwert von F, also ist auch d(f ; ) =. Für jeden Eigenwert von F gilt.3 Diagonalisierbarkeit apple d(f ; ) apple µ(p F ; ) apple dim V. Wann kann ein Endomorphismus durch eine Diagonalmatrix dargestellt werden? Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V hei st diagonalisierbar, wenn V eine asis =(v,...,v n) besitzt, die aus Eigenvektoren von F besteht. Dann gibt es zu jedem v i ein i ink, sodass F (v i)= iv i. M (F A n Eine Matrix A 2 M(n n; K) hei st diagonalisierbar, wenn F A : K n K n,x7 Ax diagonalisierbar ist. Dann existiert eine Transformationsmatrix S 2 GL(n; K), sodass SAS A n Mantra für symmetrische Matrizen: Ist A inm(n n; K) symmetrisch(a = t A, so zerfällt das charakteristische Polynom P A in reelle Linearfaktoren. A hat dann reelle Eigenwerte und je zueinander orthogonale Eigenvektoren und ist diagonalisierbar. mit paarweise verschiedenen Eigenwerten,..., n zerfällt, dann ist F diagonalisierbar. Die Eigenvektoren v,...,v m eines Endomorphismus F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig, wobei m apple dimv. Die edingung für Diagonalisierbarkeit von Endomorphismen kann auch mit Hilfe der geometrischen und algebraischen Vielfachheit der Eigenwerte formuliert werden: Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V ist genau dann diagonalisierbar, wenn a) Das charakteristische Polynom P F zerfällt in K[X] in Linearfaktoren mit,..., n 2 K. P F = ±(X ) (X n) b) Für jeden Eigenwert von F ist die geometrische Vielfachhit des Eigenwerts gleich dessen algebraischer Vielfachheit d(f ; )=µ(p F ; ). Vergleicht man die Form des charakteristischen Polynoms in diesem Fall mit der allgemeinen Form eines charakteristischen Polynoms P F =(X ) r (X k) rk Q, sieht man dass r = = r n = ist, alle Eigenwerte haben also die algebraische Vielfachheit µ(p F ; K) =. Mit apple d(f ; ) apple µ(p F ; ) = folgt d(f ; ) =. Rechenverfahren zur Diagonalisierung. harakteristisches Polynom aufstellen 2. algebraische Vielfachheiten ablesen 3. Eigenräume berechnen (LGS aufstellen und lösen) 4. geometrische Vielfachheiten ablesen 5. Eigenvektoren berechnen 6. Transformationsmatrix aus Eigenvektoren aufstellen 7. Transformationsmatrix invertieren Sei F : V V ein Endomorphismus, dessen charakteristisches Polynom in Linearfaktoren P F = ±(X ) (X n) 8. Diagonalmatrix angeben D = SAS A = S DS

6 DIAGONALISIERARKEIT 7 8 EIGENWERTE UND EIGENVEKTOREN Ähnlichkeit Wir diagonalisieren einen Endomorphismus, indem wir einen asiswechsel zu einer asis aus Eigenvektoren vornehmen, in welcher die darstellende Matrix des Endomorphismus diagonal ist. Wir erinnern uns an den asiswechsel für einen Endomorphismus: Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt, wobei eine asis aus Eigenvektoren von F ist. Dann transformiert die Darstellung von F von der asis A in asis M = T A M A(T A ). In diesem Fall besteht die Spalten Matrix aus (T A) aus den Eigenvektoren von A. Mit folgendem eispiel für n = 3 demonstrieren wir, wieso dann die Matrix A Diagonalgestalt als Diagonalmatrix D annimmt. Wir benennen der Übersicht halber die Transformationsmatrix, welche aus den Eigenvektoren besteht, also der asis in die wir von der kanonischen asis transformieren, T =(v,v 2,v 3) mit den Eigenvektoren von Fv,v 2,v 3. Es ist dann D = T AT. Für die Diagonalmatrix D gilt natürlich, wenn wir das ild des kanonischen Einheitsvektors e = t (,, ) 2 A A 3 Nun verifizieren wir, dass das ild des kanonischen Einheitsvektors unter T AT das gleiche wie eben berechnet ist. In T stehen die Eigenvektoren von A als Spalten der Transformationsmatrix. T AT e = T A(v,v 2,v A = T Av = T v Hier haben wir benutzt, dass v der Eigenvektor zum Eigenwert von A ist. So wie T den ersten kanonischen Einheitsvektor e in v transformiert hat, so transformiert T diesen wieder zurück, sodass wir als Ergebnis erhalten T AT e = T v = e. Wir haben also die Gültigkeit der Identität gezeigt 4. D = T 4 Nicht von der Notation verwirren lassen In der Matrix ganz rechts stehen die Eigenvektoren von A als Spalten, egal ob man sie jetzt T oder S nennt. AT.4 Trigonalisierung Nicht immer ist es möglich einen Endomorphismus oder eine Matrix zu diagonalisieren. Zerfällt das charakteristische Polynom in Linearfaktoren, aber d(f ; ) 6= µ(p F ; ), so ist F nicht diagonalisierbar. Es ist aber möglich eine der Darstellungsmatrix ähnliche Matrix in oberer Dreiecksform anzugeben. Diese Matrix in oberer Dreiecksform hei st Jordan-Normalform (JNF) und die Abbildung ist dann trigonalisierbar. Jordan-Normalform Die einfachste Form, in der diese obere Dreiecksmatrix angegeben werden kann, ist die Jordan-Normalform. Existiert zu einem Endomorphismus F : V V eine asis, in der die darstellende Matrix J M (F )=J A J k annimmt mit Jordan-Kästchen J,...,J k, so nennt man die Matrix J eine Jordan- Normalform von F. Eine Matrix J l hei st Jordan-Kästchen zu einem 2 K, wenn J l A Sei F : V V ein Endomorphismus und dim V <. Zerfällt P F in Linearfaktoren, so ist F trigonalisierbar und es gibt eine asis von V, in der die darstellende Matrix eine Jordan-Normalform von F ist. Die Anzahl der Jordan-Kästchen zu einem Eigenwert ist die geometrische Vilfachheit d(f ; ) des Eigenwerts. In einem Jordan-Kästchen ist nur der Vektor ein Eigenvektor von F, dessen ild die erste Spalte vom Jordan-Kästchen ist..5 Zusatzmaterial Ein sehr gutes Vorlesungsvideo zu Eigenwerten und Eigenvektoren gibt es bei MIT Open ourse Ware. video-lectures/lecture-2-eigenvalues-and-eigenvectors/

7 AUFGAEN 9 EIGENWERTE UND EIGENVEKTOREN AUFGAEN. A. a) Zeigen Sie: F hat den Eigenvektor e = t (,,, ). b) Geben Sie alle Eigenwerte von F an. Dazu brauchen Sie nicht das charakteristische Polynom von F auswerten. c) Ermitteln Sie die Potenzen F k von F für k 2 N..2 estimmen Sie die Eigenwerte und Eigenvektoren der Matrix A = 3 2 M(n n; R)..3 Es sei K ein Körper, n 2 N, A 2 M(n n; K) symmetrischmitdenzwei verschiedenen Eigenwerten, 2 2 K. Zeigen Sie, dass für jeden Eigenvektor v zum Eigenwert und jeden Eigenvektor v 2 zum Eigenwert 2 gilt:.4 Gegeben ist die Matrix A = t v v 2 = 8i 2i 2 M(2 2; ). 5i 3i estimmen Sie det A, Spur A, Rang A, sowie die Eigenwerte und Eigenvektoren von A..5 Zeigen Sie: Ist det A =,so ist 2 K ein Eigenwert von A. Was folgt daraus für Rang und Invertierbarkeit von A? Hinweis: Wie lautet die allgemeine Form des charakteristischen Polynoms? Sie dürfen im zweiten Teil der Frage annehmen, dass A diagonalisierbar ist..6 Gegeben sei die Matrix A = i i 2 M(2 2; ). a) estimmen Sie die Spur und die Determinante von A. b) estimmen Sie das charakteristische Polynom von A. c) estimmen Sie den Eigenwert von A zum Eigenvektor t (, ). d) estimmen Sie die Menge M aller Eigenwerte von A..7 Zeigen Sie, dass eine hermitesche Matrix A 2 M(n n; ) (d.h. ( tā) =A) nur reelle Eigenwerte hat. Zeigen Sie au serdem, dass die Eigenvektoren v i 2 n zu den Eigenwerten i 2 8i 2 {,...,n} zueinander orthogonal sind, also t v i v j =füri 6= j..8 eantworten Sie folgende Fragen jeweils mit einer kurzen egründung: a) Gegeben ist ein Eigenvektor v zum Eigenwert einer Matrix A. Ist v auch Eigenvektor von A 2? Zu welchem Eigenwert? Wenn A zudem invertierbar ist, ist dann v auch ein Eigenvektor zu A? Zu welchem Eigenwert? b) Wieso hat jede Matrix A 2 M(n n; K) mita 2 = E n einen der Eigenwerte ± und keine weiteren? c) Haben ähnliche Matrizen dieselben Eigenwerte? Haben diese dann gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? d) Haben die quadratischen n n-matrizen A und t A dieselben Eigenwerte? Haben diese gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? e) Gegeben sei eine nilpotente Matrix A 2 M(n n; ) mit Nilpotenzindex p 2 N, d.h. es gilt A p = und A p 6= Ist die Matrix A invertierbar? egründen Sie weiterhin: Die Matrix A hat einen Eigenwert der Vielfachheit n..9 Sei A 2 M(n n; K) eine diagonalisierbare Matrix. Zeigen Sie, dass a) b) gilt, wobei gilt, wobei ny det A = i i= i, 8i =,...n die Eigenwerte von A sind. Spur A = nx i= i, 8i =,...n die Eigenwerte von A sind. Hinweis: Matrizen innerhalb der Spur vertauschen zyklisch: Spur (A) = Spur (A) =Spur (A).. Für welche Werte von a, b, c 2 R ist die reelle Matrix über R diagonalisierbar? a b M c a ba c a i

8 AUFGAEN. Diagonalisieren Sie die Matrix.2 3 A 3 A. 2 a) Die Zeilensummen von A =(a ij) 2 M(n n; K) seien alle gleich, d.h. es gibt ein 2 K mit = P n j= aij für alle i =,...,n. Zeigen Sie (ohne enutzung des charakteristischen Polynoms), dass Eigenwert von A ist und finden Sie einen zugehörigen Eigenvektor. b) estimmen Sie eine zu der Matrix 2 A 2 A 2 ähnliche Diagonalmatrix D 2 M(3 3;. Hinweis: enutzen Sie a), um einen reellen Eigenwert zu finden. Die Transformationsmatrix ist nicht gefragt..3 egründen Sie, warum die Matrix 5 2 A A 2 5 orthogonal diagonalisierbar ist und bestimmen Sie eine Transformationsmatrix T, so dass D := t T AT diagonal ist..4 Welche der folgenden Aussagen sind richtig? egründen Sie jeweils kurz die Antworten: a) Eine diagonalisierbare Matrix mit Eigenwert ist invertierbar. b) Wenn Ax = x und x = µx gilt, dann ist µ ein Eigenwert von A. c) Die Matrix hat die Eigenwerte =, 2 = d) Ist ein Eigenwert von A 2, so ist auch ein Eigenwert von A. e) Seien A, 2 M(n n; K) diagonalisierbar und 2 K ein Eigenwert zu A, dann ist auch ein Eigenwert zu A.

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK

MATHEMATIK II FÜR STUDIERENDE DER PHYSIK - 87 - MATHEMATIK II FÜR STUDIERENDE DER PHYSIK 21 Vektorräume mit Skalarprodukt Wir halten uns hier im Wesentlichen an das Buch G.Fischer : Lineare Algebra, 14. Auflage, Kap. 5. 21.1 Definition und Beispiele

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

Musterlösung Klausur zur Linearen Algebra II

Musterlösung Klausur zur Linearen Algebra II Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

x,y A = t xay v i,v j A = e i,e j t PAP

x,y A = t xay v i,v j A = e i,e j t PAP 75 Lineare Algebra II SS 2005 Teil 6 Bilinearformen 6A Kongruenz quadratischer Matrizen Sei K ein Körper, sei A M(n n, K) eine quadratische Matrix Wie wir zu Beginn von Teil 3 gesehen haben, liefert A

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Algebra. Axiome der Linearen Algebra

Lineare Algebra. Axiome der Linearen Algebra Lineare Algebra Simon Fuhrmann Christian M. Meyer Axiome der Linearen Algebra Im Folgenden sei V ein beliebiger K-Vektorraum und P eine Punktmenge. V und P bilden einen affinen Raum. Seien außerdem U 1

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Lineare Algebra II. Prof. Dr. Karl-H. Neeb. Sommersemester 2003 Version 23. Februar 2004 (10:33)

Lineare Algebra II. Prof. Dr. Karl-H. Neeb. Sommersemester 2003 Version 23. Februar 2004 (10:33) Lineare Algebra II Prof. Dr. Karl-H. Neeb Sommersemester 3 Version 3. Februar 4 (:33) Inhaltsverzeichnis 7 Eigenvektoren und Eigenwerte 63 7. Eigenvektoren und Eigenwerte..............................

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lineare Algebra II. Prof. Dr. Dirk Ferus. Wintersemester 2001/2

Lineare Algebra II. Prof. Dr. Dirk Ferus. Wintersemester 2001/2 Lineare Algebra II Prof. Dr. Dirk Ferus Wintersemester 2001/2 22. Oktober 2004 Inhaltsverzeichnis 0 Vorbemerkungen 6 1 Eigenwerte und -vektoren 9 2 Struktursätze in unitären und Euklidischen Räumen 15

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

1 Wiederholung LA. 1.1 Vektorräume

1 Wiederholung LA. 1.1 Vektorräume 1 Wiederholung LA 1.1 Vektorräume Definition der Vektorräume über einem Körper K (siehe Fischer). Beispiele für Vektorräume sind: Der Vektorraum der Parallelverschiebungen des Anschauungsraumes. M(m n,

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr