LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

Größe: px
Ab Seite anzeigen:

Download "LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow"

Transkript

1 LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow

2 INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9 iii

3 2 EIGENWERTE UND EIGENVEKTOREN KAPITEL EIGENWERTE UND EIGENVEKTOREN. asiswechsel Sei V ein K-Vektorraum mit zwei asen A =(v,...,v n)und =(w,...w n). Jeder Vektor w j aus hat eine eindeutige Darstellung in der asis A w j = nx S ijv i Die Transformationsmatrix des asiswechsels von A nach ist i= S A := (S) ij 2 GL(n, K). Die Transformationsmatrix kann invertiert werden und (S A ) beschreibt dann die Transformationsmatrix des asiswechsels von nach A 2. Wir definieren die Koordinatensysteme A : K n V und : K n V. Die Transformationsmatrix der Koordinaten von A nach ist T A =( ) A : K n K n T A 2 GL(n, K). ein asisvektor in A wird reingesteckt, ein asisvektor in kommt raus 2 ein asisvektor in wird reingesteckt und heraus kommt ein asisvektor in A Sei u ein Vektor des Vektorraumes V. x sind die Koordinaten von u in der asis A. y sind die Koordinaten von u in der asis u = A(x) = (y). Der Zusammenhang von der Darstellung in Koordinaten bezüglich der asis dargestellt durch die Koordinaten des Vektors in der asis A ist gegeben durch y = T A x. Die Transformationsmatrizen des asiswechsels und die Transformationsmatrizen des Koordinatensystemwechsls hängen zusammn über T A =(S A ) S A = T A. Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt. Dann transformiert die Darstellung von der asis A in asis M = T A M A(T A ). Sowohl Spur nx nx Spur(F )= a ii = i i= i= als auch Determinante ny det A = i i= sind Invarianten von Endomorphismen, ändern sich also nicht beim Wechsel von einer asis in die andere. So kann die Determinante eines Endomorphismus F definiert werden über die Determinante dessen Darstellung bezüglich einer beliebigen asis det F := det M (F )..2 Eigenwertgleichung Sei V ein K-Vektorraum und F : V V ein Endomorphismus. Eigenwert von F, falls es ein v 2 V gibt mit v 6= und F (v) =. v 6= 2 V hei st Eigenvektor, wenn es ein 2 K gibt, so dass v F (v) = v. 2 K hei st Der Vektor ~ ist nie ein Eigenvektor. Vielfache von Eigenvektoren sind wieder Eigenvektoren, da F (µv) = µv, µ 2 K. Für V = K n, A 2 M(n n; K) und einen Endomorphismus F : V V,x 7 Ax gilt: 2 K ist Eigenwert von A, wenneseinx 2 K n gibt mit x 6= und Ax = x. x ist dann ein Eigenvektor zum Eigenwert.

4 EIGENWERTGLEIHUNG 3 4 EIGENWERTE UND EIGENVEKTOREN Eigenraum Der Eigenraum eines Endomorphismus F von V zum Eigenwert als Eig(F ; ):={v 2 V : F (v) = v} V. Für die Eigenräume von zwei verschiedenen Eigenwerten 6= 2 gilt Eig(F ; ) \ Eig(F ; 2) ={} ink ist definiert Sind v,v 2 2 V Eigenvektoren zu verschiedenen Eigenwerten 6= 2,soistder Vektor (v + v 2) kein Eigenvektor von F. Für eine Matrix A 2 M(n n; K) ist der Eigenraum zum Eigenwert 2 K definiert als Eig(A; ):={v 2 V : Ax = x} K n. Eigenschaften des Eigenraums a) Eig(F ; ) V ist ein Untervektorraum b) Eig(F ; ) 6= {~}, ist ein Eigenwert von F c) Eig(F ; ) \{} ist die Menge der Eigenvektoren zum Eigenwert. d) Eig(F ; )=Ker(F id V ) e) dim Eig(F ; )=dimv rang(f id V ) erechnung von Eigenwerten Sei A 2 M(n n; K), 2 K. ist genau dann ein Eigenwert von A, wenn erechnung von Eigenvektoren det(a E n)=. Ein Vektor x 2 K n ist ein Eigenvektor von A zum Eigenwert nichttriviale 3 des linearen Gleichungssystems ist. harakteristisches Polynom (A E n)x = 2 K, wenneseine Sei V ein K-Vektorraum der Dimension dimv = n mit asis, F : V V ein Endomorphismus mit Darstellung bezüglich M = A 2 M(n n; K). Das charakteristische Polynom von F ist definiert als 3 nichttrivial: ~x 6= P F =det(a XE n) 2 K[X] und ist ein Polynom vom Grad n. Die Nullstellen des charakteristischen Polynoms sind die Eigenwerte von F. Wir geben explizit das charakteristische Polynom für n =2undn = 3 an und diskutieren Eigenschaften für allgemeines n 2 N..) n=2 2.) n=3 3.) n 2 N a X a2 det(a XE n)=det a 2 a 22 X = X 2 (a + a 22) X +(a a 22 a 2a 2) det(a XE 3)=det(a ij X ij) = X 3 +(a + a 22 + a 33)X 2 (a a 22 a 2a 2 + a a 33 a 3a 3 + a 22a 33 a 23a 32) X +deta P A =det(a XE n)=b nx n + b n X n + + b X + b. Alle b n 2 K. FürdenKoe zienten der höchsten Potenz von X gilt b n =( ) n. Für den Koe zienten der zweithöchsten Potenz von X gilt Für den Koe b n =( ) n Spur (A) =( ) n (a + + a nn). zienten des konstanten Teil des Polynoms gilt b =deta. Allgemein lässt sich ein charakteristisches Polynom schreiben als P F =(X )...(X m) Q mit,..., m den Nullstellen von P F und Q 2 K[X] einem Polynom ohne Nullstellen in K. Esistapple m apple n =dimv und m +degq = n. Es kann vorkommen, dass das charakteristische Polynom P F mehrfache Nullstellen hat, d.h. P F =(X ) r (X k) rk Q mit paarweise verschiedenen Nullstellen,..., k. Es ist r,...,r k undr +...r k = m. Ist F : V V diagonalisierbar, so zerfällt das char. Polynom P F in Linearfaktoren mit,..., n 2 K und n =dimv. Ist dim V = n, F : V V und P F = ±(X ) (X n) P F = ±(X ) (X n) mit paarweise verschiedenen Eigenwerten,... n, soistf diagonalisierbar. Eigenvektoren v...,v m 2 V einer linearen Abbildung F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig. Dabei ist m apple dim V.

5 DIAGONALISIERARKEIT 5 6 EIGENWERTE UND EIGENVEKTOREN Geometrische und Algebraische Vielfachheit Algebraische Vielfachheit Die algebraische Vielfachheit µ(p F ; ) des Eigenwerts von F ist definiert als die Vielfachheit der Nullstelle des charakteristischen Polynoms P F zu F. Geometrische Vielfachheit Die geometrische Vielfachheit d(f ; ) des Eigenwerts von F ist definiert als d(f ; ) := dim Eig(F ; ) Die geometrische Vielfachheit d(f ; ) ist die maximale Zahl linear unabhängiger Eigenvektoren zu 2 K. Ist 2 K ein Eigenwert von F,soistd(F ; ) undµ(p F ; ). Ist für einen Eigenwert 2 K das charakteristische Polynom dieses Eigenwerts P F ( ) 6=, hat das charakteristische Polynom also keine Nullstelle bei und ist demnach die algebraische Vielfachheit µ(p F ; ) =. ist dann kein Eigenwert von F, also ist auch d(f ; ) =. Für jeden Eigenwert von F gilt.3 Diagonalisierbarkeit apple d(f ; ) apple µ(p F ; ) apple dim V. Wann kann ein Endomorphismus durch eine Diagonalmatrix dargestellt werden? Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V hei st diagonalisierbar, wenn V eine asis =(v,...,v n) besitzt, die aus Eigenvektoren von F besteht. Dann gibt es zu jedem v i ein i ink, sodass F (v i)= iv i. M (F A n Eine Matrix A 2 M(n n; K) hei st diagonalisierbar, wenn F A : K n K n,x7 Ax diagonalisierbar ist. Dann existiert eine Transformationsmatrix S 2 GL(n; K), sodass SAS A n Mantra für symmetrische Matrizen: Ist A inm(n n; K) symmetrisch(a = t A, so zerfällt das charakteristische Polynom P A in reelle Linearfaktoren. A hat dann reelle Eigenwerte und je zueinander orthogonale Eigenvektoren und ist diagonalisierbar. mit paarweise verschiedenen Eigenwerten,..., n zerfällt, dann ist F diagonalisierbar. Die Eigenvektoren v,...,v m eines Endomorphismus F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig, wobei m apple dimv. Die edingung für Diagonalisierbarkeit von Endomorphismen kann auch mit Hilfe der geometrischen und algebraischen Vielfachheit der Eigenwerte formuliert werden: Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V ist genau dann diagonalisierbar, wenn a) Das charakteristische Polynom P F zerfällt in K[X] in Linearfaktoren mit,..., n 2 K. P F = ±(X ) (X n) b) Für jeden Eigenwert von F ist die geometrische Vielfachhit des Eigenwerts gleich dessen algebraischer Vielfachheit d(f ; )=µ(p F ; ). Vergleicht man die Form des charakteristischen Polynoms in diesem Fall mit der allgemeinen Form eines charakteristischen Polynoms P F =(X ) r (X k) rk Q, sieht man dass r = = r n = ist, alle Eigenwerte haben also die algebraische Vielfachheit µ(p F ; K) =. Mit apple d(f ; ) apple µ(p F ; ) = folgt d(f ; ) =. Rechenverfahren zur Diagonalisierung. harakteristisches Polynom aufstellen 2. algebraische Vielfachheiten ablesen 3. Eigenräume berechnen (LGS aufstellen und lösen) 4. geometrische Vielfachheiten ablesen 5. Eigenvektoren berechnen 6. Transformationsmatrix aus Eigenvektoren aufstellen 7. Transformationsmatrix invertieren Sei F : V V ein Endomorphismus, dessen charakteristisches Polynom in Linearfaktoren P F = ±(X ) (X n) 8. Diagonalmatrix angeben D = SAS A = S DS

6 DIAGONALISIERARKEIT 7 8 EIGENWERTE UND EIGENVEKTOREN Ähnlichkeit Wir diagonalisieren einen Endomorphismus, indem wir einen asiswechsel zu einer asis aus Eigenvektoren vornehmen, in welcher die darstellende Matrix des Endomorphismus diagonal ist. Wir erinnern uns an den asiswechsel für einen Endomorphismus: Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt, wobei eine asis aus Eigenvektoren von F ist. Dann transformiert die Darstellung von F von der asis A in asis M = T A M A(T A ). In diesem Fall besteht die Spalten Matrix aus (T A) aus den Eigenvektoren von A. Mit folgendem eispiel für n = 3 demonstrieren wir, wieso dann die Matrix A Diagonalgestalt als Diagonalmatrix D annimmt. Wir benennen der Übersicht halber die Transformationsmatrix, welche aus den Eigenvektoren besteht, also der asis in die wir von der kanonischen asis transformieren, T =(v,v 2,v 3) mit den Eigenvektoren von Fv,v 2,v 3. Es ist dann D = T AT. Für die Diagonalmatrix D gilt natürlich, wenn wir das ild des kanonischen Einheitsvektors e = t (,, ) 2 A A 3 Nun verifizieren wir, dass das ild des kanonischen Einheitsvektors unter T AT das gleiche wie eben berechnet ist. In T stehen die Eigenvektoren von A als Spalten der Transformationsmatrix. T AT e = T A(v,v 2,v A = T Av = T v Hier haben wir benutzt, dass v der Eigenvektor zum Eigenwert von A ist. So wie T den ersten kanonischen Einheitsvektor e in v transformiert hat, so transformiert T diesen wieder zurück, sodass wir als Ergebnis erhalten T AT e = T v = e. Wir haben also die Gültigkeit der Identität gezeigt 4. D = T 4 Nicht von der Notation verwirren lassen In der Matrix ganz rechts stehen die Eigenvektoren von A als Spalten, egal ob man sie jetzt T oder S nennt. AT.4 Trigonalisierung Nicht immer ist es möglich einen Endomorphismus oder eine Matrix zu diagonalisieren. Zerfällt das charakteristische Polynom in Linearfaktoren, aber d(f ; ) 6= µ(p F ; ), so ist F nicht diagonalisierbar. Es ist aber möglich eine der Darstellungsmatrix ähnliche Matrix in oberer Dreiecksform anzugeben. Diese Matrix in oberer Dreiecksform hei st Jordan-Normalform (JNF) und die Abbildung ist dann trigonalisierbar. Jordan-Normalform Die einfachste Form, in der diese obere Dreiecksmatrix angegeben werden kann, ist die Jordan-Normalform. Existiert zu einem Endomorphismus F : V V eine asis, in der die darstellende Matrix J M (F )=J A J k annimmt mit Jordan-Kästchen J,...,J k, so nennt man die Matrix J eine Jordan- Normalform von F. Eine Matrix J l hei st Jordan-Kästchen zu einem 2 K, wenn J l A Sei F : V V ein Endomorphismus und dim V <. Zerfällt P F in Linearfaktoren, so ist F trigonalisierbar und es gibt eine asis von V, in der die darstellende Matrix eine Jordan-Normalform von F ist. Die Anzahl der Jordan-Kästchen zu einem Eigenwert ist die geometrische Vilfachheit d(f ; ) des Eigenwerts. In einem Jordan-Kästchen ist nur der Vektor ein Eigenvektor von F, dessen ild die erste Spalte vom Jordan-Kästchen ist..5 Zusatzmaterial Ein sehr gutes Vorlesungsvideo zu Eigenwerten und Eigenvektoren gibt es bei MIT Open ourse Ware. video-lectures/lecture-2-eigenvalues-and-eigenvectors/

7 AUFGAEN 9 EIGENWERTE UND EIGENVEKTOREN AUFGAEN. A. a) Zeigen Sie: F hat den Eigenvektor e = t (,,, ). b) Geben Sie alle Eigenwerte von F an. Dazu brauchen Sie nicht das charakteristische Polynom von F auswerten. c) Ermitteln Sie die Potenzen F k von F für k 2 N..2 estimmen Sie die Eigenwerte und Eigenvektoren der Matrix A = 3 2 M(n n; R)..3 Es sei K ein Körper, n 2 N, A 2 M(n n; K) symmetrischmitdenzwei verschiedenen Eigenwerten, 2 2 K. Zeigen Sie, dass für jeden Eigenvektor v zum Eigenwert und jeden Eigenvektor v 2 zum Eigenwert 2 gilt:.4 Gegeben ist die Matrix A = t v v 2 = 8i 2i 2 M(2 2; ). 5i 3i estimmen Sie det A, Spur A, Rang A, sowie die Eigenwerte und Eigenvektoren von A..5 Zeigen Sie: Ist det A =,so ist 2 K ein Eigenwert von A. Was folgt daraus für Rang und Invertierbarkeit von A? Hinweis: Wie lautet die allgemeine Form des charakteristischen Polynoms? Sie dürfen im zweiten Teil der Frage annehmen, dass A diagonalisierbar ist..6 Gegeben sei die Matrix A = i i 2 M(2 2; ). a) estimmen Sie die Spur und die Determinante von A. b) estimmen Sie das charakteristische Polynom von A. c) estimmen Sie den Eigenwert von A zum Eigenvektor t (, ). d) estimmen Sie die Menge M aller Eigenwerte von A..7 Zeigen Sie, dass eine hermitesche Matrix A 2 M(n n; ) (d.h. ( tā) =A) nur reelle Eigenwerte hat. Zeigen Sie au serdem, dass die Eigenvektoren v i 2 n zu den Eigenwerten i 2 8i 2 {,...,n} zueinander orthogonal sind, also t v i v j =füri 6= j..8 eantworten Sie folgende Fragen jeweils mit einer kurzen egründung: a) Gegeben ist ein Eigenvektor v zum Eigenwert einer Matrix A. Ist v auch Eigenvektor von A 2? Zu welchem Eigenwert? Wenn A zudem invertierbar ist, ist dann v auch ein Eigenvektor zu A? Zu welchem Eigenwert? b) Wieso hat jede Matrix A 2 M(n n; K) mita 2 = E n einen der Eigenwerte ± und keine weiteren? c) Haben ähnliche Matrizen dieselben Eigenwerte? Haben diese dann gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? d) Haben die quadratischen n n-matrizen A und t A dieselben Eigenwerte? Haben diese gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? e) Gegeben sei eine nilpotente Matrix A 2 M(n n; ) mit Nilpotenzindex p 2 N, d.h. es gilt A p = und A p 6= Ist die Matrix A invertierbar? egründen Sie weiterhin: Die Matrix A hat einen Eigenwert der Vielfachheit n..9 Sei A 2 M(n n; K) eine diagonalisierbare Matrix. Zeigen Sie, dass a) b) gilt, wobei gilt, wobei ny det A = i i= i, 8i =,...n die Eigenwerte von A sind. Spur A = nx i= i, 8i =,...n die Eigenwerte von A sind. Hinweis: Matrizen innerhalb der Spur vertauschen zyklisch: Spur (A) = Spur (A) =Spur (A).. Für welche Werte von a, b, c 2 R ist die reelle Matrix über R diagonalisierbar? a b M c a ba c a i

8 AUFGAEN. Diagonalisieren Sie die Matrix.2 3 A 3 A. 2 a) Die Zeilensummen von A =(a ij) 2 M(n n; K) seien alle gleich, d.h. es gibt ein 2 K mit = P n j= aij für alle i =,...,n. Zeigen Sie (ohne enutzung des charakteristischen Polynoms), dass Eigenwert von A ist und finden Sie einen zugehörigen Eigenvektor. b) estimmen Sie eine zu der Matrix 2 A 2 A 2 ähnliche Diagonalmatrix D 2 M(3 3;. Hinweis: enutzen Sie a), um einen reellen Eigenwert zu finden. Die Transformationsmatrix ist nicht gefragt..3 egründen Sie, warum die Matrix 5 2 A A 2 5 orthogonal diagonalisierbar ist und bestimmen Sie eine Transformationsmatrix T, so dass D := t T AT diagonal ist..4 Welche der folgenden Aussagen sind richtig? egründen Sie jeweils kurz die Antworten: a) Eine diagonalisierbare Matrix mit Eigenwert ist invertierbar. b) Wenn Ax = x und x = µx gilt, dann ist µ ein Eigenwert von A. c) Die Matrix hat die Eigenwerte =, 2 = d) Ist ein Eigenwert von A 2, so ist auch ein Eigenwert von A. e) Seien A, 2 M(n n; K) diagonalisierbar und 2 K ein Eigenwert zu A, dann ist auch ein Eigenwert zu A.

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A

Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Klausur Linearen Algebra 1 Musterlösung: Aufgabe A Wir betrachten den Unterraum V = K[X] 4 aller Polynome vom Grad 4 und die lineare Abbildung f : V K 2 ; P (P (1), P (0)). Es bezeichne v 1,..., v 5 die

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

1 Wiederholung LA. 1.1 Vektorräume

1 Wiederholung LA. 1.1 Vektorräume 1 Wiederholung LA 1.1 Vektorräume Definition der Vektorräume über einem Körper K (siehe Fischer). Beispiele für Vektorräume sind: Der Vektorraum der Parallelverschiebungen des Anschauungsraumes. M(m n,

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5 Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band,.Aufl. Version, Kapitel 5 Bilinear-und Sesquilinearformen Abschnitt.A, Aufg., p. 6.6. : Man bestimme die

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik

Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik Mathematik II (für Informatiker, ET und IK) Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Inhalt 7 Lineare Algebra 7 Lineare Algebra II Oliver Ernst (Numerische Mathematik) Mathematik

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math.

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math. Das QZ-Verfahren Bachelor-Arbeit im 1-Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Janina Gnutzmann Erstgutachter:

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr