LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

Größe: px
Ab Seite anzeigen:

Download "LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow"

Transkript

1 LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow

2 INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9 iii

3 2 EIGENWERTE UND EIGENVEKTOREN KAPITEL EIGENWERTE UND EIGENVEKTOREN. asiswechsel Sei V ein K-Vektorraum mit zwei asen A =(v,...,v n)und =(w,...w n). Jeder Vektor w j aus hat eine eindeutige Darstellung in der asis A w j = nx S ijv i Die Transformationsmatrix des asiswechsels von A nach ist i= S A := (S) ij 2 GL(n, K). Die Transformationsmatrix kann invertiert werden und (S A ) beschreibt dann die Transformationsmatrix des asiswechsels von nach A 2. Wir definieren die Koordinatensysteme A : K n V und : K n V. Die Transformationsmatrix der Koordinaten von A nach ist T A =( ) A : K n K n T A 2 GL(n, K). ein asisvektor in A wird reingesteckt, ein asisvektor in kommt raus 2 ein asisvektor in wird reingesteckt und heraus kommt ein asisvektor in A Sei u ein Vektor des Vektorraumes V. x sind die Koordinaten von u in der asis A. y sind die Koordinaten von u in der asis u = A(x) = (y). Der Zusammenhang von der Darstellung in Koordinaten bezüglich der asis dargestellt durch die Koordinaten des Vektors in der asis A ist gegeben durch y = T A x. Die Transformationsmatrizen des asiswechsels und die Transformationsmatrizen des Koordinatensystemwechsls hängen zusammn über T A =(S A ) S A = T A. Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt. Dann transformiert die Darstellung von der asis A in asis M = T A M A(T A ). Sowohl Spur nx nx Spur(F )= a ii = i i= i= als auch Determinante ny det A = i i= sind Invarianten von Endomorphismen, ändern sich also nicht beim Wechsel von einer asis in die andere. So kann die Determinante eines Endomorphismus F definiert werden über die Determinante dessen Darstellung bezüglich einer beliebigen asis det F := det M (F )..2 Eigenwertgleichung Sei V ein K-Vektorraum und F : V V ein Endomorphismus. Eigenwert von F, falls es ein v 2 V gibt mit v 6= und F (v) =. v 6= 2 V hei st Eigenvektor, wenn es ein 2 K gibt, so dass v F (v) = v. 2 K hei st Der Vektor ~ ist nie ein Eigenvektor. Vielfache von Eigenvektoren sind wieder Eigenvektoren, da F (µv) = µv, µ 2 K. Für V = K n, A 2 M(n n; K) und einen Endomorphismus F : V V,x 7 Ax gilt: 2 K ist Eigenwert von A, wenneseinx 2 K n gibt mit x 6= und Ax = x. x ist dann ein Eigenvektor zum Eigenwert.

4 EIGENWERTGLEIHUNG 3 4 EIGENWERTE UND EIGENVEKTOREN Eigenraum Der Eigenraum eines Endomorphismus F von V zum Eigenwert als Eig(F ; ):={v 2 V : F (v) = v} V. Für die Eigenräume von zwei verschiedenen Eigenwerten 6= 2 gilt Eig(F ; ) \ Eig(F ; 2) ={} ink ist definiert Sind v,v 2 2 V Eigenvektoren zu verschiedenen Eigenwerten 6= 2,soistder Vektor (v + v 2) kein Eigenvektor von F. Für eine Matrix A 2 M(n n; K) ist der Eigenraum zum Eigenwert 2 K definiert als Eig(A; ):={v 2 V : Ax = x} K n. Eigenschaften des Eigenraums a) Eig(F ; ) V ist ein Untervektorraum b) Eig(F ; ) 6= {~}, ist ein Eigenwert von F c) Eig(F ; ) \{} ist die Menge der Eigenvektoren zum Eigenwert. d) Eig(F ; )=Ker(F id V ) e) dim Eig(F ; )=dimv rang(f id V ) erechnung von Eigenwerten Sei A 2 M(n n; K), 2 K. ist genau dann ein Eigenwert von A, wenn erechnung von Eigenvektoren det(a E n)=. Ein Vektor x 2 K n ist ein Eigenvektor von A zum Eigenwert nichttriviale 3 des linearen Gleichungssystems ist. harakteristisches Polynom (A E n)x = 2 K, wenneseine Sei V ein K-Vektorraum der Dimension dimv = n mit asis, F : V V ein Endomorphismus mit Darstellung bezüglich M = A 2 M(n n; K). Das charakteristische Polynom von F ist definiert als 3 nichttrivial: ~x 6= P F =det(a XE n) 2 K[X] und ist ein Polynom vom Grad n. Die Nullstellen des charakteristischen Polynoms sind die Eigenwerte von F. Wir geben explizit das charakteristische Polynom für n =2undn = 3 an und diskutieren Eigenschaften für allgemeines n 2 N..) n=2 2.) n=3 3.) n 2 N a X a2 det(a XE n)=det a 2 a 22 X = X 2 (a + a 22) X +(a a 22 a 2a 2) det(a XE 3)=det(a ij X ij) = X 3 +(a + a 22 + a 33)X 2 (a a 22 a 2a 2 + a a 33 a 3a 3 + a 22a 33 a 23a 32) X +deta P A =det(a XE n)=b nx n + b n X n + + b X + b. Alle b n 2 K. FürdenKoe zienten der höchsten Potenz von X gilt b n =( ) n. Für den Koe zienten der zweithöchsten Potenz von X gilt Für den Koe b n =( ) n Spur (A) =( ) n (a + + a nn). zienten des konstanten Teil des Polynoms gilt b =deta. Allgemein lässt sich ein charakteristisches Polynom schreiben als P F =(X )...(X m) Q mit,..., m den Nullstellen von P F und Q 2 K[X] einem Polynom ohne Nullstellen in K. Esistapple m apple n =dimv und m +degq = n. Es kann vorkommen, dass das charakteristische Polynom P F mehrfache Nullstellen hat, d.h. P F =(X ) r (X k) rk Q mit paarweise verschiedenen Nullstellen,..., k. Es ist r,...,r k undr +...r k = m. Ist F : V V diagonalisierbar, so zerfällt das char. Polynom P F in Linearfaktoren mit,..., n 2 K und n =dimv. Ist dim V = n, F : V V und P F = ±(X ) (X n) P F = ±(X ) (X n) mit paarweise verschiedenen Eigenwerten,... n, soistf diagonalisierbar. Eigenvektoren v...,v m 2 V einer linearen Abbildung F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig. Dabei ist m apple dim V.

5 DIAGONALISIERARKEIT 5 6 EIGENWERTE UND EIGENVEKTOREN Geometrische und Algebraische Vielfachheit Algebraische Vielfachheit Die algebraische Vielfachheit µ(p F ; ) des Eigenwerts von F ist definiert als die Vielfachheit der Nullstelle des charakteristischen Polynoms P F zu F. Geometrische Vielfachheit Die geometrische Vielfachheit d(f ; ) des Eigenwerts von F ist definiert als d(f ; ) := dim Eig(F ; ) Die geometrische Vielfachheit d(f ; ) ist die maximale Zahl linear unabhängiger Eigenvektoren zu 2 K. Ist 2 K ein Eigenwert von F,soistd(F ; ) undµ(p F ; ). Ist für einen Eigenwert 2 K das charakteristische Polynom dieses Eigenwerts P F ( ) 6=, hat das charakteristische Polynom also keine Nullstelle bei und ist demnach die algebraische Vielfachheit µ(p F ; ) =. ist dann kein Eigenwert von F, also ist auch d(f ; ) =. Für jeden Eigenwert von F gilt.3 Diagonalisierbarkeit apple d(f ; ) apple µ(p F ; ) apple dim V. Wann kann ein Endomorphismus durch eine Diagonalmatrix dargestellt werden? Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V hei st diagonalisierbar, wenn V eine asis =(v,...,v n) besitzt, die aus Eigenvektoren von F besteht. Dann gibt es zu jedem v i ein i ink, sodass F (v i)= iv i. M (F A n Eine Matrix A 2 M(n n; K) hei st diagonalisierbar, wenn F A : K n K n,x7 Ax diagonalisierbar ist. Dann existiert eine Transformationsmatrix S 2 GL(n; K), sodass SAS A n Mantra für symmetrische Matrizen: Ist A inm(n n; K) symmetrisch(a = t A, so zerfällt das charakteristische Polynom P A in reelle Linearfaktoren. A hat dann reelle Eigenwerte und je zueinander orthogonale Eigenvektoren und ist diagonalisierbar. mit paarweise verschiedenen Eigenwerten,..., n zerfällt, dann ist F diagonalisierbar. Die Eigenvektoren v,...,v m eines Endomorphismus F : V V zu paarweise verschiedenen Eigenwerten,..., m sind stets linear unabhängig, wobei m apple dimv. Die edingung für Diagonalisierbarkeit von Endomorphismen kann auch mit Hilfe der geometrischen und algebraischen Vielfachheit der Eigenwerte formuliert werden: Sei V ein K-Vektorraum mit dim V = n<. Ein Endomorphismus F : V V ist genau dann diagonalisierbar, wenn a) Das charakteristische Polynom P F zerfällt in K[X] in Linearfaktoren mit,..., n 2 K. P F = ±(X ) (X n) b) Für jeden Eigenwert von F ist die geometrische Vielfachhit des Eigenwerts gleich dessen algebraischer Vielfachheit d(f ; )=µ(p F ; ). Vergleicht man die Form des charakteristischen Polynoms in diesem Fall mit der allgemeinen Form eines charakteristischen Polynoms P F =(X ) r (X k) rk Q, sieht man dass r = = r n = ist, alle Eigenwerte haben also die algebraische Vielfachheit µ(p F ; K) =. Mit apple d(f ; ) apple µ(p F ; ) = folgt d(f ; ) =. Rechenverfahren zur Diagonalisierung. harakteristisches Polynom aufstellen 2. algebraische Vielfachheiten ablesen 3. Eigenräume berechnen (LGS aufstellen und lösen) 4. geometrische Vielfachheiten ablesen 5. Eigenvektoren berechnen 6. Transformationsmatrix aus Eigenvektoren aufstellen 7. Transformationsmatrix invertieren Sei F : V V ein Endomorphismus, dessen charakteristisches Polynom in Linearfaktoren P F = ±(X ) (X n) 8. Diagonalmatrix angeben D = SAS A = S DS

6 DIAGONALISIERARKEIT 7 8 EIGENWERTE UND EIGENVEKTOREN Ähnlichkeit Wir diagonalisieren einen Endomorphismus, indem wir einen asiswechsel zu einer asis aus Eigenvektoren vornehmen, in welcher die darstellende Matrix des Endomorphismus diagonal ist. Wir erinnern uns an den asiswechsel für einen Endomorphismus: Ein Endomorphismus F : V V werde bezüglich der asen A und dargestellt, wobei eine asis aus Eigenvektoren von F ist. Dann transformiert die Darstellung von F von der asis A in asis M = T A M A(T A ). In diesem Fall besteht die Spalten Matrix aus (T A) aus den Eigenvektoren von A. Mit folgendem eispiel für n = 3 demonstrieren wir, wieso dann die Matrix A Diagonalgestalt als Diagonalmatrix D annimmt. Wir benennen der Übersicht halber die Transformationsmatrix, welche aus den Eigenvektoren besteht, also der asis in die wir von der kanonischen asis transformieren, T =(v,v 2,v 3) mit den Eigenvektoren von Fv,v 2,v 3. Es ist dann D = T AT. Für die Diagonalmatrix D gilt natürlich, wenn wir das ild des kanonischen Einheitsvektors e = t (,, ) 2 A A 3 Nun verifizieren wir, dass das ild des kanonischen Einheitsvektors unter T AT das gleiche wie eben berechnet ist. In T stehen die Eigenvektoren von A als Spalten der Transformationsmatrix. T AT e = T A(v,v 2,v A = T Av = T v Hier haben wir benutzt, dass v der Eigenvektor zum Eigenwert von A ist. So wie T den ersten kanonischen Einheitsvektor e in v transformiert hat, so transformiert T diesen wieder zurück, sodass wir als Ergebnis erhalten T AT e = T v = e. Wir haben also die Gültigkeit der Identität gezeigt 4. D = T 4 Nicht von der Notation verwirren lassen In der Matrix ganz rechts stehen die Eigenvektoren von A als Spalten, egal ob man sie jetzt T oder S nennt. AT.4 Trigonalisierung Nicht immer ist es möglich einen Endomorphismus oder eine Matrix zu diagonalisieren. Zerfällt das charakteristische Polynom in Linearfaktoren, aber d(f ; ) 6= µ(p F ; ), so ist F nicht diagonalisierbar. Es ist aber möglich eine der Darstellungsmatrix ähnliche Matrix in oberer Dreiecksform anzugeben. Diese Matrix in oberer Dreiecksform hei st Jordan-Normalform (JNF) und die Abbildung ist dann trigonalisierbar. Jordan-Normalform Die einfachste Form, in der diese obere Dreiecksmatrix angegeben werden kann, ist die Jordan-Normalform. Existiert zu einem Endomorphismus F : V V eine asis, in der die darstellende Matrix J M (F )=J A J k annimmt mit Jordan-Kästchen J,...,J k, so nennt man die Matrix J eine Jordan- Normalform von F. Eine Matrix J l hei st Jordan-Kästchen zu einem 2 K, wenn J l A Sei F : V V ein Endomorphismus und dim V <. Zerfällt P F in Linearfaktoren, so ist F trigonalisierbar und es gibt eine asis von V, in der die darstellende Matrix eine Jordan-Normalform von F ist. Die Anzahl der Jordan-Kästchen zu einem Eigenwert ist die geometrische Vilfachheit d(f ; ) des Eigenwerts. In einem Jordan-Kästchen ist nur der Vektor ein Eigenvektor von F, dessen ild die erste Spalte vom Jordan-Kästchen ist..5 Zusatzmaterial Ein sehr gutes Vorlesungsvideo zu Eigenwerten und Eigenvektoren gibt es bei MIT Open ourse Ware. video-lectures/lecture-2-eigenvalues-and-eigenvectors/

7 AUFGAEN 9 EIGENWERTE UND EIGENVEKTOREN AUFGAEN. A. a) Zeigen Sie: F hat den Eigenvektor e = t (,,, ). b) Geben Sie alle Eigenwerte von F an. Dazu brauchen Sie nicht das charakteristische Polynom von F auswerten. c) Ermitteln Sie die Potenzen F k von F für k 2 N..2 estimmen Sie die Eigenwerte und Eigenvektoren der Matrix A = 3 2 M(n n; R)..3 Es sei K ein Körper, n 2 N, A 2 M(n n; K) symmetrischmitdenzwei verschiedenen Eigenwerten, 2 2 K. Zeigen Sie, dass für jeden Eigenvektor v zum Eigenwert und jeden Eigenvektor v 2 zum Eigenwert 2 gilt:.4 Gegeben ist die Matrix A = t v v 2 = 8i 2i 2 M(2 2; ). 5i 3i estimmen Sie det A, Spur A, Rang A, sowie die Eigenwerte und Eigenvektoren von A..5 Zeigen Sie: Ist det A =,so ist 2 K ein Eigenwert von A. Was folgt daraus für Rang und Invertierbarkeit von A? Hinweis: Wie lautet die allgemeine Form des charakteristischen Polynoms? Sie dürfen im zweiten Teil der Frage annehmen, dass A diagonalisierbar ist..6 Gegeben sei die Matrix A = i i 2 M(2 2; ). a) estimmen Sie die Spur und die Determinante von A. b) estimmen Sie das charakteristische Polynom von A. c) estimmen Sie den Eigenwert von A zum Eigenvektor t (, ). d) estimmen Sie die Menge M aller Eigenwerte von A..7 Zeigen Sie, dass eine hermitesche Matrix A 2 M(n n; ) (d.h. ( tā) =A) nur reelle Eigenwerte hat. Zeigen Sie au serdem, dass die Eigenvektoren v i 2 n zu den Eigenwerten i 2 8i 2 {,...,n} zueinander orthogonal sind, also t v i v j =füri 6= j..8 eantworten Sie folgende Fragen jeweils mit einer kurzen egründung: a) Gegeben ist ein Eigenvektor v zum Eigenwert einer Matrix A. Ist v auch Eigenvektor von A 2? Zu welchem Eigenwert? Wenn A zudem invertierbar ist, ist dann v auch ein Eigenvektor zu A? Zu welchem Eigenwert? b) Wieso hat jede Matrix A 2 M(n n; K) mita 2 = E n einen der Eigenwerte ± und keine weiteren? c) Haben ähnliche Matrizen dieselben Eigenwerte? Haben diese dann gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? d) Haben die quadratischen n n-matrizen A und t A dieselben Eigenwerte? Haben diese gegebenenfalls auch dieselben algebraischen und geometrischen Vielfachheiten? e) Gegeben sei eine nilpotente Matrix A 2 M(n n; ) mit Nilpotenzindex p 2 N, d.h. es gilt A p = und A p 6= Ist die Matrix A invertierbar? egründen Sie weiterhin: Die Matrix A hat einen Eigenwert der Vielfachheit n..9 Sei A 2 M(n n; K) eine diagonalisierbare Matrix. Zeigen Sie, dass a) b) gilt, wobei gilt, wobei ny det A = i i= i, 8i =,...n die Eigenwerte von A sind. Spur A = nx i= i, 8i =,...n die Eigenwerte von A sind. Hinweis: Matrizen innerhalb der Spur vertauschen zyklisch: Spur (A) = Spur (A) =Spur (A).. Für welche Werte von a, b, c 2 R ist die reelle Matrix über R diagonalisierbar? a b M c a ba c a i

8 AUFGAEN. Diagonalisieren Sie die Matrix.2 3 A 3 A. 2 a) Die Zeilensummen von A =(a ij) 2 M(n n; K) seien alle gleich, d.h. es gibt ein 2 K mit = P n j= aij für alle i =,...,n. Zeigen Sie (ohne enutzung des charakteristischen Polynoms), dass Eigenwert von A ist und finden Sie einen zugehörigen Eigenvektor. b) estimmen Sie eine zu der Matrix 2 A 2 A 2 ähnliche Diagonalmatrix D 2 M(3 3;. Hinweis: enutzen Sie a), um einen reellen Eigenwert zu finden. Die Transformationsmatrix ist nicht gefragt..3 egründen Sie, warum die Matrix 5 2 A A 2 5 orthogonal diagonalisierbar ist und bestimmen Sie eine Transformationsmatrix T, so dass D := t T AT diagonal ist..4 Welche der folgenden Aussagen sind richtig? egründen Sie jeweils kurz die Antworten: a) Eine diagonalisierbare Matrix mit Eigenwert ist invertierbar. b) Wenn Ax = x und x = µx gilt, dann ist µ ein Eigenwert von A. c) Die Matrix hat die Eigenwerte =, 2 = d) Ist ein Eigenwert von A 2, so ist auch ein Eigenwert von A. e) Seien A, 2 M(n n; K) diagonalisierbar und 2 K ein Eigenwert zu A, dann ist auch ein Eigenwert zu A.

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Mögliche Prüfungsfragen zu VO Mathematische Software

Mögliche Prüfungsfragen zu VO Mathematische Software Mögliche Prüfungsfragen zu VO Mathematische Software SS 2009 Der Prüfungsstoff umfasst alles, was in der Vorlesung vorgetragen wurde. Die folgende Liste soll Ihnen bei der Vorbereitung helfen. Bei der

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Übungsaufgaben mit Lösungsvorschlägen

Übungsaufgaben mit Lösungsvorschlägen Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden für die nachfolgenden Untersuchungen wesentliche Grundlagen bereitgestellt. 2.1 Differentiell-algebraische Gleichungssysteme 2.1.1 Einführung

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Semidiskretisierung der PDA-Systeme

Semidiskretisierung der PDA-Systeme Kapitel 4 Semidisretisierung der PDA-Systeme Eine Möglicheit zur numerischen Behandlung von Anfangsrandwertproblemen partieller Differentialgleichungen ist die Linienmethode method of lines, MOL, vgl.

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08 CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

http://www.mathematik.uni-kl.de/ gramlich

http://www.mathematik.uni-kl.de/ gramlich Vorwort MATLAB ist inzwischen in vielen Hochschulen, Universitäten und Fachhochschulen gleichermaßen ein etabliertes Programmsystem, das sowohl im Fach Mathematik selbst als auch in noch stärkerem Maße

Mehr

2 Multivariate Statistik

2 Multivariate Statistik MS13 1 2 Multivariate Statistik 21 Grundbegriffe In diesem Abschnitt sollen die ersten wichtigen Grundbegriffe der Multivariaten Statistik eingeführt werden: Mehrdimensionale Variablen, Erwartungswerte,

Mehr

Höhere Mathematik für Ingenieure IV. Volker John

Höhere Mathematik für Ingenieure IV. Volker John Höhere Mathematik für Ingenieure IV Volker John Sommersemester 2007 Inhaltsverzeichnis I Weiterführende Integralrechung 2 1 Kurvenintegrale 3 11 Kurven 3 12 Skalares Kurvenintegral 4 13 Vektorielles Kurvenintegral

Mehr

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Peter Fleissner (Version 05.02.2008) Bisher wurde die Rechung nur mit zirkulierendem konstantem Kapital durchgeführt. Die

Mehr

Post-quantum cryptography

Post-quantum cryptography Post-quantum cryptography Post-quantum cryptography 1. Komplexität & Quantencomputer 2. Kryptografie in Gittern 3. FHE Eine Revolution im Datenschutz? WIESO? KOMPLEXITÄT Public-Key-Kryptografie Grafiken:

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

4 Runge-Kutta-Verfahren

4 Runge-Kutta-Verfahren Numerik gewöhnlicher Differentialgleichungen 43 4 Runge-Kutta-Verfahren 4. Konstruktion Ausgangspunkt wie immer (Substitution: s = t + τh, 0 τ ) y(t + h) = y(t) + [y(t + h) y(t)] = y(t) + = y(t) + h 0

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Multivariate Analyse: FS 2012. Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour

Multivariate Analyse: FS 2012. Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour Multivariate Analyse: FS 2012 Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour by PD Dr. Daniel Mandallaz Chair of Land Use Engineering Department of Environmental

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr