Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Erinnerung/Zusammenfassung zu Abbildungsmatrizen"

Transkript

1 Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend ein Körper, z.b. K = R oder C). Wenn V ein K-Vektorraum der Dimension n ist und B = (b,..., b n ) eine Basis von V, so ist die Koordinatenabbildung bezüglich B die nach Satz 3. (siehe unten) eindeutig bestimmte bijektive lineare Abbildung K B V K n für welche K B (b i ) = e i ( i n) gilt (K B ist bijektiv weil (e,..., e n ) eine Basis von K n ist). Damit ist K B (λ b + + λ n b n ) = wobei λ i K ( i n). K B ordnet einem Vektor v V das n-tupel K B (v), seine B- Koordinaten, zu. Beachte dass K E = id K n. Als allererstes sehen wir ein dass jede (m n)-matrix A = (a ij ) K m n eine lineare Abbildung L A K n K m, x A x = a... a n a m... a mn λ λ 2 λ n induziert. Beachte dass in den Spalten von A genau die Bilder der Standardbasisvektoren von K n unter L A stehen. Umgekehrt, gegeben eine lineare Abbildung F V W zwischen K- Vektorräumen V, W der Dimensionen dim V = n, dim W = m können wir diese vollständig durch eine (m n)-matrix ausdrücken; dafür müssen wir aber eine Basis A = (a,..., a n ) in V und eine Basis B = (b,..., b m ) in W wählen! Diese Matrix heisst Abbildungsmatrix von F bzgl. der Basis A im Startraum V und der Basis B im Zielraum W, und ist definiert durch M BA (F ) (f ij ) wobei 2 F (a j ) = f kj b k ( j n). () Es bezeichne e i =, x x n = j= x j a j a mj K n, wobei die an der i-ten Stelle steht ( i n). (e,..., e n) ist die Standardbasis von K n. 2 Beachte die Stellung von A (Startraumbasis) und B (Zielraumbasis) im Index!,

2 2 KOORDINATEN-TRANSFORMATIONSMATRIZEN 2 (Für jedes j n sind die Koeffizienten f kj ( k m) durch () wohldefiniert, denn da B eine Basis von W ist lässt sich F (a j ) W als eindeutige Linearkombination der b k darstellen.) Diese Definition ist so gewählt dass in den Spalten von M BA (F ) genau die Bilder der Startraum- Basisvektoren unter der Abbildung F ausgedrückt in Zielraumbasis-Koordinaten stehen, d.h. es gilt M BA (F ) = (K B (F (a )) K B (F (a n ))), (2) und insbesondere M EmE n (L A ) = A, wobei A eine beliebige (m n)-matrix ist und E n = (e,..., e n ) die Standardbasis von K n. Aus obiger Definition () von M BA (F ) bekommt man direkt die folgenden drei fundamentalen Identitäten Wenn F V W und G W Z lineare Abbildungen sind (V, W, Z endlichdimensionale K-Vektorräume) und A, B bzw. C Basen von V, W bzw. Z sind, so gilt M CA (G F ) = M CB (G) M BA (F ) und M AA (id V ) = I n, (3) (hier bezeichnet I n K n n die Einheitsmatrix) sowie K B (F (v)) = M BA (F )K A (v). (4) Beweis von (3). Es seien A = (a,, a n ), B = (b,, b m ) und C = (c,, c l ). M BA (F ) (f ij ) ist gegeben durch () und M CB (G) (g ij ) durch G(b k ) = l i= g ikc i ( k m). Es gilt G F (a j ) = G( f kj b k ) = f kj G(b k ) = f kj i= l g ik c i = l ( g ik f kj )c i i= für j n, und m g ikf kj ist nach Definition der Matrizenmultiplikation gerade der Eintrag von M CB (G)M BA (F ) an der Stelle (i, j). Mit der Definition von M CA (G F ) ergibt sich die Behauptung. Die zweite Identität in (3) ist offensichtlich. Beweis von (4). Wenn K A (v) = (λ λ n ) T so folgt mit (2) und der Linearität von K B und F, M BA (F )K A (v) = n i= λ ik B (F (a i )) = K B (v). Die zwei Identitäten in (3) haben sehr nützliche Konsequenzen. Zum Beispiel wenn F bijektiv ist (dann gilt m = n), dann folgt aus (3) dass M AB (F )M BA (F ) = M AA (id V ) = I n, also M BA (F ) = M AB (F ). (5) Oder wenn A, A Basen von V und B, B Basen von W sind so folgt durch zweifache Ausführung von (3) die folgende Transformationsformel M B A (F ) = M B B(id W ) M BA (F ) M AA (id V ). (6) 2 Koordinaten-Transformationsmatrizen Obige Diskussion lässt sich auf den Spezialfall V = W, F = id V V V reduzieren. Wenn A, B Basen von V sind, so folgt aus (3) dass M AB (id V )M BA (id V ) = M AA (id V ) = I n, also M BA (id V ) = M AB (id V ). (7)

3 3 BEMERKUNGEN 3 Die Matrix M BA (id V ) heisst Koordinaten-Transformationsmatrix von der Basis A in die Basis B (beachte die Reihenfolge!). Nach (4) führt M BA (id V ) genau A-Koordinaten in B-Koordinaten über K B (v) = M BA (id V )K A (v). (8) Die Komponenten c ij von M BA (id V ) (c ij ) sind nach () durch die Gleichungen a j = c kj b k ( j n) (9) gegeben. Anders ausgedrückt gilt wegen (2) dass M BA (F ) = (K B (a ) K B (a n )). Für praktische Zwecke besonders nützlich ist die Beobachtung dass im Fall V = K n die Matrix M EA (id K n) die besonders einfache Form M EA (id K n) = (a a n ) () annimmt, wobei E = (e,..., e n ) die Standardbasis von K n ist und A = (a,..., a n ). Die Matrix M AE (id K n) hat keine so einfache Form, nach (7) ist sie aber einfach das Inverse der schnell bestimmbaren Matrix M EA (id K n) in (). Der einfachste Weg um die Einträge der Koordinatentransformationsmatrix M BA (id K n) zu bestimmen ist im Allgemeinen die Formel M BA (id K n) = [M EB (id K n)] M EA (id K n) welche aus (3) und (7) folgt 3. (Wenn n klein ist kann man die Komponenten c kj in (9) eventuell direkt raten.) 3 Bemerkungen 3. Satz (Konstruktion linearer Abbildungen). Es seien V, W Vektorräume über einem Körper K. Gegeben eine Basis (v i ) i I von V (I Indexmenge) und eine durch I indizierte Familie {w i i I} W, so existiert genau eine lineare Abbildung F V W so dass F (v i ) = w i für alle i I. Wenn (w i ) i I eine Basis von W ist, dann ist F ein Isomorphismus. Hier sind wir nur an der Situation interessiert wo die Vektorräume V, W endlich dimensional sind; sei n = dim V und m = dim W. Im Abschnitt über Abbildungsmatrizen haben wir gesehen dass jede Matrix D = (d ij ) K m n eine lineare Abbildung L D K n K m induziert. Dieser Sachverhalt lässt sich noch ein wenig verallgemeinern. Sei A = (a,..., a n ) eine Basis von V, B = (b,..., b m ) eine Basis von W und sei D = (d ij ) K m n. Dann existiert nach Satz 3. genau eine lineare Abbildung F = L BA (D) V W so dass F (a j ) = 3 Es gilt M BA(id K n) (3) = M BE(id K n)m EA(id K n) (7) = M EB(id K n) M EA(id K n). d kj b k ( j n). ()

4 4 BEISPIELE 4 Es gilt L EmE n (D) = L D. Wir kennen nun die Abbildungen 4 M BA Hom(V, W ) K m n, F M BA (F ) L BA K m n Hom(V, W ), D L BA (D). Beide sind linear, und aufgrund von () und () sogar invers zueinander. Damit haben wir gezeigt dass Hom(V, W ) = K m n für endlich dimensionale Vektorräume V, W mit dim V = n und dim W = m. Die Transformationsformel (6) lässt sich auch graphisch veranschaulichen. Es gilt das folgende kommutative Diagramm K n L MBA (F ) K m K A K B L MAA (F ) V F W L MB B (id) K n K A L MB A (F ) K B K m 4 Beispiele Aufgabe 4.. Betrachte die Basen P = (p, p 2, p 3 ) und Q = (q, q 2, q 3 ) von R 2 [X] gegeben durch p = X, p 2 = + X + 2X 2, p 3 = + X + 3X 2, q = 2 + X 2, q 2 = + X, q 3 = + X 2. sowie die lineare Abbildung F R 2 [X] R 3 [X], s (X 3 + X)s + (X 2 )s + (X + 2)s a) Bestimme die Transformationsmatrix M QP (id) von der Basis P in die Basis Q. b) Berechne die Q-Koordinaten des Polynoms w = 3p + p 2 p 3 und schreibe w als Linearkombination der Polynome q, q 2, q 3. c) Bestimme die Abbildungsmatrix M BA (F ) von F bezüglich der Standardbasen A = (, X, X 2 ) und B = (, X, X 2, X 3 ) von R 2 [X] bzw. R 3 [X]. d) Bestimme die Abbildungsmatrix M BP (F ) von F bezüglich der Basis P im Startraum und der Basis B im Zielraum. e) Bestimme das Polynom F (w) R 3 [X]. Lösung. a) Wir sehen sofort dass 2 M AP (id) = und M AQ (id) =, Hom(V, W ) bezeichnet den Vektorraum aller linearen Abbildungen von V nach W.

5 4 BEISPIELE 5 wobei A = (, X, X 2 ) die Standardbasis von R 2 [X] bezeichnet. Wir wollen die Transformationsmatrix M QP (id) = M QA (id)m AP (id) = [M AQ (id)] M AP (id) bestimmen. Dazu berechnen wir das Inverse von M AQ (id) 2 M AQ (id). 2 =[M AQ (id)] Wir bekommen 2 3 M QP (id) = [M AQ (id)] M AP (id) = = b) Die P-Koordinaten von w sind K P (w) = (3 ) T. Mit dem Ergebnis aus (a) erhalten wir die Q-Koordinaten von w K Q (w) = M QP (id)k P (w) = = Es gilt also w = 2q + 3q 2 + q 3. c) Es gilt F () = (X 3 + X) + (X 2 ) + (X + 2) = 2 + X, F (X) = (X 3 + X) + (X 2 ) + (X + 2)X = + 2X + 2X 2, F (X 2 ) = (X 3 + X)2 + (X 2 )2X + (X + 2)X 2 = 2X 2 + 5X 3. Damit bekommen wir die Abbildungsmatrix M BA (F ) von F bezüglich der Basis A = (, X, X 2 ) in R 2 [X] und der B = (, X, X 2, X 3 ) in R 3 [X] 2 M BA (F ) = ( K B (F ()) K B (F (X)) K B (F (X 2 )) ) = d) Die Abbildungsmatrix M BP (F ) von F bezüglich der Basis P im Startraum und der Basis B im Zielraum erhalten wir unter Benutzung von (c) 2 M BP (F ) = M BA (F ) M AP (id) = = e) Das Polynom F (w) R 3 [X] könnten wir natürlich auch direkt berechnen, aber mithilfe von (d) geht es schneller Die B-Koordinaten von F (w) sind 3 K B (F (w)) = M BP (F )K P (v) = = 6 4, 5 5 also gilt F (w) = 3 + 6X + 4X 2 5X 3.

6 4 BEISPIELE 6 Aufgabe 4.2. Betrachte die Basis C = (c, c 2, c 3, c 4, c 5 ) von R 5 gegeben durch c = () T, c 2 = ( ) T, c 3 = ( ) T, c 4 = ( ) T, c 5 = () T, sowie die durch 2 3 A = R5 5 induzierte lineare Abbildung F = L A R 5 R 5. Berechne die Abbildungsmatrix M CC (F ) von F bezüglich der Basis C (in Start- und Zielraum). Lösung. Wir haben sofort M EC (id) =, wobei E = (e,..., e 5 ) die kanonische Basis von R 5 bezeichnet, und berechnen das Inverse dieser Matrix M EC (id) =[M EC (id)] Wir bekommen M CC (F ) = M CE (id) M EE (F ) M EC (id) = [M EC (id)] M EE (L A ) =A M EC (id) 2 3 = = 2. 2 = 2 2 2

7 5 DUALRAUM UND KOORDINATEN 7 5 Dualraum und Koordinaten Gegeben sei ein beliebiger K-Vektorraum V. Der Vektorraum V = Hom(V, K) aller linearen Abbildungen V K heisst der Dualraum von V. Wenn A = (a i ) i I eine Basis von V ist, so sei für jedes i I a i V die eindeutig bestimmte lineare Abbildung welche a i (a k ) = δ ik (k I) (2) erfüllt. Wenn V endlich-dimensional ist und A = (a,..., a n ), so ist A = (a,..., a n) eine Basis von V und heisst die zu A duale Basis. Es gilt dim V = dim V. (Erinnerungswürdig ist dass man eine Basis von V wählen muss um einen Isomorphismus V V angeben zu können; Φ A V V, a i a i ( i n) ist ein solcher Isomorphismus. Allerdings sind V und V = (V ) kanonisch isomorph; Ψ V V, v (f f(v)), ist der kanonische Isomorphismus.) In Koordinaten bzgl. einer Basis B von V bedeutet (2) (unter Benutzung von (4)) genau dass M B (a i ) K B (a k ) = δ ik ( i, k n). (3) Mit ist die kanonische Basis () von K gemeint. Beachte dass M B (f) für f V ein Zeilenvektor ist. (3) ist äquivalent zu M B (a ) ( K B (a ) K B (a n ) ) = I n, M B (a n) bzw. nach (2) zu M B (a ) M B (a n) = [M BA (id V )]. (4) Im Fall V = K n ist oft der Fall B = E = (e,, e n ) von Interesse. Allgemein nützlich ist noch der Zusammenhang zwischen der Abbildungsmatrix M A (f) von f V und den A -Koordinaten von f. Es gilt M A (f) T = K A (f) (f V ). (5) (Falls diese Formel unbekannt ist, ist der Beweis eine gute Übung!) Gegeben eine lineare Abbildung F V W und Basen A von V bzw. B von W, so gilt für die Abbildungsmatrix der dualen Abbildung F W V, g F (g) = g F, (beachte die Reihenfolge von W nach V, nicht umgekehrt) die Identität Trivial aber nützlich ist noch die Beobachtung dass (id V ) = id V. M A B (F ) = M BA (F ) T. (6) Beweis von (6). Es sei A = (a,..., a n ) und B = (b,..., b m ). M A B (F ) (α ij ) ist gegeben durch ( ) F (b j ) = n i= α ija i ( j m) und M BA (F ) (ν ij ) durch ( ) F (a k ) = m l= ν lkb l ( k n). Die linken Seiten von ( ) und ( ) lassen sich mithilfe der Definition von F verknüpfen (F (b j ))(a k) = b j (F (a k)) ( j m, k n). Damit folgt mithilfe von (2) α kj = α ij a i (a k ) = (F (b j))(a k ) = b j(f (a k )) = b j( ν lk b l ) = i= für j m und k n, wodurch die Behauptung gezeigt ist. l= ν lk b j(b l ) = ν jk, l=

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a x LINEARE ABBILDUNGEN Denition: Seien V; V Vektorraume Eine Abbildung f heit linear, falls (i) (ii) f(x + y) f(x) + f(y) (x; y V ) f(x) f(x) ( R; x V ) Bemerkungen: I (i) und (ii) oben sind aquivalent

Mehr

Kapitel 7 Lineare Abbildungen und Matrizen II

Kapitel 7 Lineare Abbildungen und Matrizen II Kapitel 7 Lineare Abbildungen und Matrizen II 7.1 Weitere Rechenregeln für Matrizen Aus den bisher gelernten Regeln entnehmen wir den als Übung zu beweisenden Satz 7.1. Es gelten die folgenden Regeln.

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 2/3) Bernhard Hanke Universität Augsburg 20..202 Bernhard Hanke / 3 Matrizen und Lineare Abbildungen Es seien lineare Abbildungen, d.h. Matrizen gegeben. B = (b jk ) : R r R n, A

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me x 3 VEKTOR AUME In Kapitel 2 betrachteten wir wichtige Raume, die durch unsere Raumvorstellung motiviert waren { die zwei- und dreidimensionalen Raume R 2 und R 3. Jetzt untersuchen wir hoher dimensionale

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Koordinaten und darstellende Matrizen

Koordinaten und darstellende Matrizen Koordinaten und darstellende Matrizen Olivier Sète 4 Juli 2008 Inhaltsverzeichnis Koordinatenabbildung 2 Definition und Eigenschaften 2 2 Beispiel 3 2 Matrixdarstellung eines Vektorraumhomomorphismus 3

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

Technische Universität München. Mathematik für Physiker 1

Technische Universität München. Mathematik für Physiker 1 Tutorübung - Lösungen T: Basiswechsel Technische Universität München Zentrum Mathematik Mathematik für Physiker Wintersemester /2 Michael Kaplan Jan Wehrheim Christian Mendl Übungsblatt 9 Wir betrachten

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana.

Lineare Algebra. 6. Übungsstunde. Steven Battilana. Lineare Algebra 6. Übungsstunde Steven attilana stevenb@student.ethz.ch November, 6 Lineare Abbildungen Eine Abbildung f : X Y heisst injektiv, falls x, x X : x x fx fx. In Worten: erschiedene Elemente

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 10 Lineare Abbildungen Zwischen zwei Vektorräumen interessieren insbesondere die Abbildungen, die mit den

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1 Matrix Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = (a i,j ) =.... a m,1 a m,2 a m,n Matrix 1-1 Matrix Unter einer (m n)-matrix

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr