Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)"

Transkript

1 Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64 6x 2y=6 8y=80 : 8 y=0 2x3y=20 5x y=33 3 2x3y=20 5x 3y=99 7x=9 : 7 x=7 d) 2x5 3=23 2x5=23 5 2x=8 : 2 x= =23 23= = = L={4 ;3} 0,7 x2,5 y=3,9 0,35 x=4,8 y 4, 0,7 x2,5 y=3,9 0,35 x =4,8 y 4, 4,8 y 0,7 x2,5 y=3,9 0,35 x 4,8 y= 4, 2 0,7 x2,5 y=3,9 0,7 x9,6 y=8,2 2, y=2, :2, y= 0,7 x2,5 =3,9 0,7 x2,5=3,9 2,5 0,7 x=,4 :0,7 x=2 0,7 22,5 =3,9 3,9=3,9 0,35 2=4,8 4, 0,7=0,7 L={2; } e) 6x 2 0=6 6x 20=6 20 6x=36 : =64 64= =6 6=6 L={6 ;0} 4y=3x 4 4y=5x 20 4y=4y 3x 4=5x x6=5x 3x 6=2x : 2 x=8 4y= y=20 : 4 y=5 4 5= =20 4 5= =20 L={8;5} f) 5 7 y=33 35 y=33 35 y= 2 y= =20 20= =33 33=33 L={7; 2} 4x2y=46 5x4y=74 4x2y=46 2 5x4y=74 8x 4y= 92 5x4y=74 3x= 8 : y=46 242y= y=22 : 2 y= 4 62 =46 46= =74 74=74 L={6; }

2 g) j) 9x7y=27 3x 6y=9 9x7y=27 3x 6y=9 3 9x7y=27 9x8y= 27 25y=0 : 25 y=0 3x 6 0=9 3x=9 :3 x= =27 27= =9 9=9 L={3;0} 5x7y=2 3x 2y=90 5x7y=2 3 3x 2y=90 45x2y=6 3x 2y=90 48x=96 : 48 x=2 5 27y=2 307y=2 30 7y= 28 : 7 y= =2 2= =90 90=90 L={2 ; 4} h) k) x 4 y= 4x5y=76 x y= x5y=76 20x 5y=20 4x5y=76 6x=96 : y=76 245y= y=00 : 5 y= = = =76 76=76 L={6; 20} 3y x=50 y 0,5 x =2,5 3y x=50 y 0,5 x=2,5 2 3y x=50 2yx= 25 y= x=50 75 x =50 75 x= 25 x= =50 50= ,5 25=2,5 2,5=2,5 L={25 ; 25} i) l) 4x2y=22 3x y =4 4x2y=22 3x y=4 2 4x2y=22 6x 2y=8 0x=30 : 0 x=3 4 32y=22 22y=22 2 2y=0 : 2 y= =22 22= =4 4=4 L={3; 5} 0,8 xy,2=0 x0,4 y0,2=0 x0,4 y0,2=0 0,4 y 0,2 x= 0,4 y 0,2 0,8 0,4 y 0,2 y,2=0 Kl 0,32 y 0,6y,2=0 Zsf 0,68 y,36=0,36 0,68 y =,36 :0,68 y=2 x = 0,4 2 0,2 x= 0,8 0,2 x= L={ ;2} 0,8 2,2=0 0=0 0,4 20,2=0 0=0

3 m) p) 3x 5=2y 2y=4x 2y=4x 2y=4x 2 2y 3x 5=4x 2 3x 5=4x 2 3x 5=4x 3x 5=x x= 4 2y= y= 6 2 2y= 8 : 2 y= =2 9 7= 7 2 9=4 4 7= 7 L={ 4 ; 9} 2 3 x 5y=0 x= y 3 x= y x=2y2 2y2 5y=0 Kl 2 3 x 2y2 5y=0 Zsf 3y3=0 3y 3=3y :3 y= 3 x= x=2 3 3 n) q) 26x 75y=29 25y=77 3x 26x 75y=29 25y=77 3x 3x 26x 75y=29 3x25y= x 75y=29 26x 50y= 54 25y= 25 : 25 y= 26x 75 =29 26x 75= x=04 : 26 x=4 L={4 ;} y=2x 2 6x2y= y =29 29=29 25 = =25 6x22x 2= Kl. 6x4x 4= Zsf 0x 4= 4 0x=5 :5 x=,5 y=2,5 2=3 2= y= = L={,5;} =2,5 2 = 6,52 = o) r) 6x0y=64 6x 2y=6 6x0y=64 6x 2y=6 8y=80 :8 y=0 6x 2 0=6 6x 20=6 20 6x=36 : =64 64= =6 6=6 L={6; 0} 2x3=4y 2x=5y 2x 5y 3=4y Kl. 5y 3=4y Zsf 5y2=4y 2 4y y= 2 2x=5 2 = 0 = 2x= : 2 x= 5,5 2 5,53=4 2 8= 8 2 5,5=5 2 = L={ 5,5; 2} L={6 ;} =0 4 5=0 0=0 3 6= 2=2

4 s) 5y x=38 x= y2 x 5y y2=38 Kl. 5y y 2=38 Zsf. 4y 2=38 2 4y=40 : 4 y=0 x=02=2 x=2 t) 2 4 x4 5 y=60 y= x x2 y= x3 y= x84y= x 84y= x= 3560 : 445 x=8 u) 2x 4y=4 2x=4y 8 2x 4y 8 4y=4 Kl. 4y 8 4y=4 Zsf. 8=4 f.a. Es existiert keine Lösung L= 5 0 2=38 38=38 2=02 2=2 L={2 ;0} y= y= y=840 : 84 y= =60 842=60 60= =34 L={8;0} =34 286=34 34=34

5 v) 2. a) 3 y= 2 x 4 y= y= x y= 2 x 4 5 y= 3 2 x 3 y= 8 5 x4 0= 3 2 x 8 5 x 0=,5 x,6 x 0= 0, x 0, x 0, x= 0 x=0 y= =5 3=2 y=2 L={0; 2} 3 2 = 2 0 4=4 4 2 = =3 43x4y 7 x2y=6 34xy 23x2y=26 5x2y=6 6x y=26 x=4 y= 2 w) x6y= 6 y=2x x6y= 6 6y x= 6y 6 y=2 6y 6 Kl. x y= 2y 32 2y y= 32 y= 33 : y= 3 x= 6 3 6=2 x=2 26 3= 6 6= 6 3=2 2 2=2 L={2 ; 3} b) x) 32x7y44x 5y 2=6 6x y 5 53x2y 8=5 22x y 5=6 9x 4y0=5 x= y= 2x3y=,25,2 x,6 y=,8 2x3y=,25 6,2 x,6 y=,8 0 2x8y=7,5 2x6y=8 34y=25,5 : 34 y=0,75 2x3 0,75=,25 2x2,25=,25 2,25 2x= : 2 x= 0,5 2 0,53 0,75=,25,25=,25,2 0,5,6 3=,8,8=,8 L={ 0,5;0,75} 3. Ein Rechteck hat den Umfang 40cm. Verdoppelt man die beiden längeren Seiten, so entsteht ein neues Rechteck mit dem Umfang 64cm. Berechne die Seitenlängen des alten Rechtecks. Es sollen die Kantenlängen des alten Rechtecks berechnet werden, also werden für diese Kantanlängen zwei Variablen a und b gewählt. Nun kann man sich den Sachverhalt mit einer Skizze verdeutlichen. Die Vorgaben für die Kantenlängen und den Umfang werden in die Skizze übertragen. Es ist dadurch möglich, für jedes Rechteck eine entsprechende Umfangformel aufzustellen, die die Kantenlängen a und b enthalten. Diese beiden Umfangformeln bilden ein Gleichungssystem, das gelöst werden kann. a lange Rechteckseite b kurze Rechteckseite 2a2b=40 Umfang des alten Rechtecks 2 2a2b=64 Umfang des neuen Rechtecks 2a2b=40 4a2b=64 a=2 b=8

6 4. Ein Rechteck hat den Umfang 75cm. Eine Seite ist 3cm länger als die benachbarte Seite. Berechne die Seitenlängen. Auch hier kann eine Skizze hilfreich sein. Es sollen wieder die Seitenlängen des Rechtecks bestimmt werden, also werden die Variablen a und b für die beiden Seitenlängen reserviert. Die Kantenlänge a soll die um 3cm längere Kante sein. Wenn die kurze Kante also b ist und a um 3cm länger sein soll, dann ergibt sich, dass b+3cm=a sein muss. Diese Gleichung beschreibt also den Zusammenhang zwischen den Kantenlängen des Rechtecks und liefert damit die erste Gleichung des Gleichungssystems. Die zweite Gleichung kann über die Aussage zum Umfang des Rechtecks aufgestellt werden. a lange Rechteckseite b kurze Rechteckseite 2a2b=75 Umfang des Rechtecks a=b3 Dielange Seite aist 3cm länger als b 2a2b=75 a=b3 a=25,25 b=2,25 5. Lena und Lisa sind zusammen 34 Jahre alt. Lisa ist 6 Jahre jünger als Lena. Wie alt ist Lena, wie alt ist Lisa? Es soll das Alter von Lena und Lisa berechnet werden, also legen wir zuerst zwei Variablen für die beiden gesuchten Größen fest. Das Alter von Lena soll x Jahre sein und das Alter von Lisa y Jahre. Im Text sind nun zwei Aussagen über das Alter der beiden enthalten. Die erste Aussage lautet: Lena und Lisa sind zusammen 34 Jahre alt. Beide zusammen sollen 34Jahre alt sein, also lautet die erste Gleichung x+y=34, denn die beiden Alter x und y sollen ja zusammen diesen Wert ergeben. Die zweite Aussage lautet: Lisa ist 6 Jahre jünger als Lena. Um das Alter y von Lisa zu erhalten, müssen wir also von Lenas Alter x die 6 Jahre abziehen, also y=x-6. Genauso gut könnten wir auch sagen, zu Lisas Alter y müssen wir 6Jahre dazuzählen, um Lenas Alter x zu erhalten. Die Gleichung würde dann x=y+6 lauten. Beide Gleichungen sind äquivalent zueinander und welche man letztendlich im Gleichungssystem verwendet, ist egal. x Alter von Lena y Alter von Lisa xy=34 zusammen34jahre alt y=x 6 Lisaist 6 Jahre jünger als Lena x y=34 y=x 6 x=20 y=4 6. Eine alte chinesische Aufgabe: In einem Käfig befinden sich insgesamt 35 Hühner und Kaninchen. Zusammen haben sie 94 Beine. Wie viele Kaninchen, wie viele Hühner sind im Käfig? Es wird nach der Anzahl der Hühner und der Anzahl der Kaninchen gefragt. Wir legen also wieder zwei Variablen fest, die diesen gesuchten Größen entsprechen sollen. Die Anzahl der Hühner soll h sein und k die Anzahl der Kaninchen. Es werden wieder zwei Aussagen getroffen. Die erste Aussage lautet: In einem Käfig befinden sich insgesamt 35 Hühner und Kaninchen. Die Gesamtzahl an Hühnern und Kaninchen soll 35 sein, also muss die Summe der noch unbakannten Anzahlen der Hühner h und Kaninchen k zusammen 35 ergeben. Die erste Gleichung lautet also h+k=35. Die zweite Aussage lautet: Zusammen haben sie 94 Beine. Wenn die Hühner und Kaninchen nicht behindert oder invalid sind, kann man davon ausgehen, das jedes Huhn 2 Beine und jedes Kaninchen 4 Beine hat. Alle Hühner zusammen müssen also 2*h Beine besitzen, denn wenn man die Anzahl der Hühner mit zwei multipliziert, ergibt sich die Anzahl der Beine aller Hühner. Für die Kaninchen gilt das ähnlich, sie müssen zusammen 4*k Beine haben. Diese Anzahlen zusammen sollen 94 ergeben, also lautet die zweite Gleichung 2h+4k=94. h Anzahl der Hühner k Anzahl der Kaninchen hk=35 Gesamtanzahl der Tiere 2h4k=94 Gesamtzahl der Beine 2h4k=94 hk=34 h=23 k =2

7 7. Die Kosten für eine Taxifahrt setzen sich aus einer Grundgebühr und den Kosten für die gefahrenen Kilometer zusammen. Ein Fahrgast zahlt für eine 7km lange Taxifahrt 8,40. Die Rückfahrt ist wegen eines Umweges 0km lang und kostet,25. Berechne die Kosten pro km und die Grundgebühr. Die gesuchten Größen werden wieder mit Variablen beschrieben. G soll die Grundgebühr in Euro sein und K der Preis pro gefahrenen Kilometer. Im Text werden nun zwei Fahren beschrieben, die wieder durch Gleichungen dargestellt werden. Die erste Aussage lautet: Ein Fahrgast zahlt für eine 7km lange Taxifahrt 8,40. Der Fahrgast hat also den Grundpreis G bezahlt und für jeden gefahrenen Kilometer den Preis K. Für die gefahrenen 7 Kilometer ergibt sich damit ein Preis von 7*K und dazu noch der Grundpreis G, also 7*K+G und das waren insgesamt Die erste Gleichung lautet also 7*K+G=8,40. Die zweite aussage lautet: Die Rückfahrt ist wegen eines Umweges 0km lang und kostet,25. Diese Fahrt war also teurer, da eine längere Strecke gefahren wurde. der Preis ergibt sich also aus dem Preis für 0 gefahrene kilometer, also 0*K plus die Grundgebühr G. Die zweite Gleichung lautet also 0*K+G=,25. G Grundgebühr K Kosten pro Kilometer G7 K =8,4 Preis der ersten Fahrt G0 K =,25 Preis der zweiten Fahrt G0K=,25 G7K=8,4 G=,75 K=0,95 8. Fuhrunternehmer Renner hat zur Finanzierung seiner Fahrzeuge zwei Darlehen aufgenommen. Sie betragen zusammen Das erste Darlehen ist mit 8%, das zweite mit 9% zu verzinsen. Die Zinsen belaufen sich in einem Jahr auf Wie hoch ist jedes Darlehen? Berechnet werden soll die Höhe der beiden Darlehen, also legen wir wieder zwei Variablen fest. K soll die Höhe des Darlehens mit dem kleineren Zinssatz von 8% und H die Höhe des Darlehens mit dem höheren Zinssatz von 9% sein. Die beiden Aussagen im Text beziehen sich nun auf die Gesamtsumme und die insgesamt zu zahlenden Zinsen in einem Jahr. Die erste Aussage lautet: Sie betragen zusammen Die beiden Darlehen in Höhe von K Euro und H Euro betragen also zusammen Die erste Gleichung lautet damit K+H= Die zweite Aussage lautet: Die Zinsen belaufen sich in einem Jahr auf Die Zinsen für beide Darlehen zusammen betragen also Wir kennen aber die Zinsen noch nicht, da die Kreditbeträge K und H noch unbekannt sind, wir müssen sie also durch Terme ausdrücken. Schauen wir uns das für den ersten kredit K mit einem Zinssatz von 8% an. Wenn die Bank nach einem Jahr die Zinsen Z K für diesen Kredit berechnet, dann entspricht die Kreditsumme K 00%, von denen 8% berechnet werden müssen, also K 00 % Z K 8% K = 00 % Z K 8% Z K= 8% K 00 % = 8 stel der Kreditsumme. Ähnliches gilt für den anderen Kredit, die Zinsen betragen hier 00 K=0,08 K. Die Zinsen für den Kredit sind also 9 00 stel der Kreditsumme H, also i 9 H =0,09 H. Diese Zinsen zusammen müssen 2500 ergeben, also 0,08K+0,09H= K Darlehenssumme mit dem kleinen Zinssatz 8 % H Darlehenssumme mit dem hohen Zinssatz 9 % K H =50000 gesamte Darlehenssumme 8 00 K 9 00 H =2500 Summe der Zinsen K H = ,08 K 0,09 H =2500 K =00000 H =

8 9. Aus Schokoladenkeksen und Butterkeksen soll eine Keksmischung hergestellt werden. kg Schokoladenkekse kostet 0, kg Butterkekse 7. Beim Mischen sollen die Mengen so gewählt werden, dass kg der Keksmischung 9 kostet. Wie viel kg jeder Kekssorte braucht man zur Herstellung von 2kg Keksmischung? Gesucht sind die benötigten Mengen an Schokokeksen S und Butterkeksen K in Kilogramm. Es sollen insgesamt 2kg von der Mischung hergestellt werden, allso müssen die Mengen S der Schokokekse und B der Butterkekse zusammen 2kg ergeben. Die erste Gleichung lautet also S+B=2. Die Mischung soll einen Preis von 9 pro Kilogramm besitzen. Die 2kg Mischung muss also einen Gesamtpreis von 9 *2=08 haben. Da die Mischung S Kilogramm Schokokekse enthält und jedes Kilogramm Schokokekse 0 kostst, beträgt der Preis für die Schokokekse in der Mischung 0 *S. Für die Butterkekse gilt das ähnlich. die Mischung enthält B Kilogramm und jedes Kilo kostet 7, also kosten die Butterkekse in der Mischung 7 *B. Die Preise für die Schoko- und Butterlkekse in der Mischung müssen nun zusammen den geforderten Gesamtpreis der Mischung von 9 *2=08 ergeben. Die zweite Gleichung lautet also 0*S+7*B=9*2. S Menge der Schokokekse inkg B Menge der Butterkekse in kg SB=2 SB=2 Gesamtmenge an Keksmischung 0S7B=08 S=8 B=4 0S7B=2 9 Gesamtpreis der Keksmischung 0. In einem Labor sollen 000ml einer 30%igen Natronlauge durch Mischen einer 0%igen und einer 60%igen hergestellt werden. Wie viel ml der 0%igen, wie viel ml der 60%igen Natronlauge werden benötigt? Gesucht sind die Menge an 0%iger Lauge Z in Milliliter und die Menge an 60%iger Lauge S in Milliliter. Beide Mengen zusammen sollen 000ml ergeben, also lautet die erste Gleichung Z+S=000. Die neue Lauge soll 30%ig sein, das bedeutet, von den 000ml sind 30% Natriumhydoxid und der Rest ist Wasser. Die Lauge enthält also 300ml Natriumhydroxid und diese Menge muss aus den beiden Ausgangslaugen stammen. Da die erste Lauge 0%ig ist, sind 0% der Laugenmenge Z Natriumhydroxid, also 0 Z =0, Z. 00 In der anderen Lauge beträgt der Anteil 60%, also von der Laugenmenge S sind S=0,6 S natriumhydroxid. Beide Mengen zusammen müssen 300ml Natriumhydroxid ergeben, also 0,*Z+0,6*S=300. Z Menge der 0 %igen Lauge S Menge der 60 %igen Lauge Z S=000 Gesamtmenge an30 %iger Lauge 0 00 Z S= Mengen an NaOH inden Laugen Z S=000 0,Z0,6 S=300 Z =600 S=400

9

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6)

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6) Blatt Nr 05.05 Mathematik Online - Übungen Blatt 5 Textaufgabe lineare Gleichungssysteme Nummer: 36 0 009010017 Kl: 8X Grad: 10 Zeit: 0 Quelle: SP 8 W Aufgabe 5.1.1: Ein Rechteck hat einen Umfang von 38

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Veranschauliche alle Lösungen der Gleichung 3x + 5y = 0 in einem Koordinatensystem. Bestimme zwei Lösungspaare der Gleichung. Aufgabe : Bestimme rechnerisch

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

31 = 8 g) 4 3x 7 = 13 2x x 1 x = 6x3 4x x. x x 5. + = x + 3 = 9 5

31 = 8 g) 4 3x 7 = 13 2x x 1 x = 6x3 4x x. x x 5. + = x + 3 = 9 5 Lineare Gleichungen und Ungleichungen mit einer Variablen 1. Bestimmen Sie die Lösungsmenge! a) (3x+5)(3x 5) (3x 1) 2 = 10 b) (5y+2) 2 = (3y+1) 2 +(4y 1) 2 c) (x 1) 3 (x 2) 3 = 3x 2 11 d) (x 1)(x 2)(x

Mehr

Lineare Gleichungen zu Sachaufgaben. Was sind Sachaufgaben?

Lineare Gleichungen zu Sachaufgaben. Was sind Sachaufgaben? R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2010 Lineare Gleichungen zu Sachaufgaben Was sind Sachaufgaben? Viele Problemstellungen aus dem täglichen Leben sowie aus den unterschiedlichsten Wissenschaftsdisziplinen

Mehr

Repetitionsaufgaben: Gleichungssysteme

Repetitionsaufgaben: Gleichungssysteme Repetitionsaufgaben: Gleichungssysteme Zusammengestellt von Roman Oberholzer und Lukas Fischer, KSA Inhaltsverzeichnis A) Vorbemerkungen.... B) Lernziele.... C) Repetition...... 3. Einführung.... 3. Lösungsverfahren

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN Beispiel: Wenn zwei Röhren gleichzeitig geöffnet sind, kann ein Wasserbecken in 40 Minuten gefüllt werden. Fließt das Wasser

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Gleichungssysteme mit zwei Variablen

Gleichungssysteme mit zwei Variablen Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie

Mehr

Lineare Gleichungssysteme. Rätsel

Lineare Gleichungssysteme. Rätsel Kantonsschule Solothurn RYS SS13 Rätsel Tiere sind es, grosse, kleine, Dreissig Köpfe, siebzig Beine. Teils sind s Kröten, teils auch Enten, wenn wir doch die Anzahl kennten! Wieder Tiere, grosse, kleine,

Mehr

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21.

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Gleichungen mit einer Variablen

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2001/2002 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Anwendungen in Sachzusammenhängen

Anwendungen in Sachzusammenhängen Anwendungen in Sachzusammenhängen 1. Vor drei Jahren war Hans viermal so alt als Eva vor drei Jahren alt war. In fünf Jahren ist Hans doppelt so alt als Eva in fünf Jahren alt sein wird. Wie alt sind die

Mehr

Proportionale Zuordnungen

Proportionale Zuordnungen Proportionale Zuordnungen http://www.br.de/grips/faecher/gripsmathe/31-proportionale-zuordnungen112.html Handytarife?! Tarife mit einer Prepaid-Karte 2-fache Zeit -> 2-facher Preis 3-fache Zeit -> 3-facher

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Aufnahmeprüfung 2013 Für Kandidatinnen und Kandidaten mit herkömmlichem Lehrmittel Mathematik Name:... Nummer:... Dauer der Prüfung:

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Lineare Gleichungssysteme mit zwei Variablen Lösungen

Lineare Gleichungssysteme mit zwei Variablen Lösungen Lineare Gleichungssysteme mit zwei Variablen Lösungen. Bestimme rechnerisch und grafisch die Lösungsmenge L der folgenden Gleichungssysteme. a) b) c) I. x y I. 5y (x ) 5 II. x y II. x y I. 5y (x ) 5 II.

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme Eine Aufgabe aus einem alten chinesischen Rechenbuch (600 v. Chr.) In einem Käfig sind Hasen und Hühner eingesperrt. Die Tiere haben zusammen 5 Köpfe und 94 Füße. Wie viele

Mehr

Es handelt sich um die Ausgabe eines Textes. Dies erfolgt mit dem Befehl print. Der Text steht in Anführungszeichen. Kommentar

Es handelt sich um die Ausgabe eines Textes. Dies erfolgt mit dem Befehl print. Der Text steht in Anführungszeichen. Kommentar Aufgaben ================================================================== I. Lineare Programme 1. Die Botschaft "Mein erstes Python-Programm" soll ausgegeben werden. Es handelt sich um die Ausgabe eines

Mehr

Mathematik Serie 1 (60 Min.)

Mathematik Serie 1 (60 Min.) Aufnahmeprüfung 2013 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -

Mehr

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer Seite 1 Beim gibt es zwei Aufgabengruppen. Die erste umfasst Aufgaben, die mit Hilfe der wirksamen Substanz ( = 100 % ) innerhalb einer Lösung oder mit der Mischungsformel errechnet werden können. Bei

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Aufnahmeprüfung 2014 Mathematik

Aufnahmeprüfung 2014 Mathematik Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7 Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Linearen Gleichungssystemen Gleichsetz-,

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN) Aufgabe 1: Das verflixte x Ermittle die Lösungen der Gleichungen: a) x + 5 = 17 b) 17x = 187 c) 36x = -504 d) 45/44 = 9x/11 Aufgabe 2: Flaschenpfand Eine

Mehr

Übungen: Lineare Funktionen

Übungen: Lineare Funktionen Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

2 Terme 2.1 Einführung

2 Terme 2.1 Einführung 2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Zinsrechnung 2 mittel 1

Zinsrechnung 2 mittel 1 Zinsrechnung 2 mittel 1 Berechne jeweils das Kapital! a) Zinsen: 42 Zinssatz: 1,5 % Zeitraum: 8 Monate b) Zinsen: 687,50 Zinssatz: 2,5 % Zeitraum: 11 Monate H2 Zinsrechnung 2 mittel 2 Berechne jeweils

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

Mathematik-Übungssammlung für die Studienrichtung Facility Management

Mathematik-Übungssammlung für die Studienrichtung Facility Management Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird

Mehr

Wirtschaftsmathematik-Klausur vom 04.02.2015 und Finanzmathematik-Klausur vom 27.01.2015

Wirtschaftsmathematik-Klausur vom 04.02.2015 und Finanzmathematik-Klausur vom 27.01.2015 Wirtschaftsmathematik-Klausur vom 04.0.015 und Finanzmathematik-Klausur vom 7.01.015 Bearbeitungszeit: W-Mathe 60 Minuten und F-Mathe 45 Min Aufgabe 1 a) Für die Absatzmenge x in ME) und den Verkaufspreis

Mehr

Aufgabe 1 (Fundamentum)

Aufgabe 1 (Fundamentum) Aufgabe 1 (Fundamentum) a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast. 80.000.000 8.000.000 800.000 80.000 8.000 b) Bei einer Durchschnittsgeschwindigkeit von 80 km / h benötigt

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum:

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum: Name: Klasse: Datum: 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Mathematik-Klausur vom 28.01.2008

Mathematik-Klausur vom 28.01.2008 Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben

Mehr

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen)

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) Abschlussprüfung Realschule Pflichtaufgaben P1 (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) 5(0,2x 0,8) = 8x (1 + 2x) P1.2 Löse die Formel nach h auf: V = 2 π r 3 h P1.3

Mehr

9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik)

9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik) 9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik) Test: Dezimalbrüche Name, Vorname: Datum: ohne Taschenrechner Niv. Nr. Aufgaben Resultate Korrektur A/B/ 1. Ordnen Sie die Zahlen

Mehr

Angewandte Aufgaben für lineare Gleichungen

Angewandte Aufgaben für lineare Gleichungen Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/5 Angewandte Aufgaben für lineare Gleichungen Gleichungen sind ein Hilfsmittel, mit dem schwierige Probleme systematisch in lösbare Teilprobleme

Mehr

Textaufgaben. . Wie heißt die Zahl? A25. Die Sume von Zähler und Nenner eines Bruches ist 84. Seine gekürzte Form ist aber 2 5

Textaufgaben. . Wie heißt die Zahl? A25. Die Sume von Zähler und Nenner eines Bruches ist 84. Seine gekürzte Form ist aber 2 5 Zahlenrätsel Textaufgaben A1. Die Summe zweier aufeinander folgender gerader Zahlen ist 66. Um welche Zahlen handelt es sich? A2. Die Summe zweier aufeinander folgender ungerader Zahlen ist 32. Um welche

Mehr

Qualifizierender Hauptschulabschluss Schuljahr 2007/2008. Mathematik

Qualifizierender Hauptschulabschluss Schuljahr 2007/2008. Mathematik Prüfungstag: Donnerstag, 5. Juni 2008 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2007/2008 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2007 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du darfst in

Mehr

Kaufmännische Berufsmatura 2013

Kaufmännische Berufsmatura 2013 Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Mathe Aufgaben zum Lernen und zum Üben. Mathetest A ab 9.Klasse üben: 20 Fragen in 60 Minuten

Mathe Aufgaben zum Lernen und zum Üben. Mathetest A ab 9.Klasse üben: 20 Fragen in 60 Minuten Mathetest A ab 9.Klasse üben: 20 Fragen in 60 Minuten Frage 1 von 20 Eine zweitägige Busreise zum Fussballspiel kostet für eine Gruppe von 30 Auszubildenden 60 pro Person. Es musste Vorkasse bezahlt werden.

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr