n S n , , , , 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09."

Transkript

1 Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler lockt mit dem Angebot einer Zinsbelastung von 0,49% pro Monat. a) Welches der beiden Angebote ist finanziell günstiger? Bei einem monatlichen Zinssatz von 0,49% beträgt der jährliche Zinssatz (1,0049) 12-1 = 1, = 0, = 6,04.. %.Das Angebot der A-Bank ist günstiger. Alternative Nennt man den monatlichen Zinssatz der A-Bank x%, dann ist (1+x/100) 12 = 1,06, also 1 + x/100 = 1,06 1/12 und somit x = 100(1,06 1/12-1) = 0, Also ist das Angebot der A-Bank ein wenig günstiger. b) Wie hoch ist die Schuldenlast nach einem Jahr, wenn man das Angebot der A-Bank oder das Angebot des privaten Kreditanbieters für einen Kredit in Höhe von 1250 nutzt und monatlich 12 zurückzahlt? Lösung A: (für Kredit der A-Bank). Die Schuldenlast vermehrt sich am Ende eines jeden Monats um ca. 0,4868% der bestehenden Schuld und verringert sich um 12. Bezeichnet man den Schuldenstand (in Euro) nach n Monaten mit S n, dann ist S 0 = 1250 und S n+1 errechnet sich aus S n durch die Rekursionsgleichung S n+1 = 1, S n Die Werte für n = 0 bis n= 12 sind in der folgenden Tabelle angegeben: n S n , , , , , , , , , , , , 088 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Lösung B: (bei Kredit der privaten Anbieters). Die Schuldenlast vermehrt sich am Ende jedes Monats um 0,49% der bestehenden Schuld und verringert sich um 12. Bezeichnet man wieder den Schuldenstand (in Euro) nach n Monaten mit S n, dann ist S 0 = 1250 und S n+1 errechnet sich aus S n durch die Rekursionsgleichung S n+1 = 1,0049 S n Die Werte für n = 0 bis n = 12 sind in der folgenden Tabelle angegeben: n S n , , , , , , , , , , , , 569 Nach einem Jahr beträgt der Schuldenstand ca. 1177,57. Alternativer Lösungsweg: Man berechnet, welcher Kapitalwert K bei monatlicher Ein lage von 12 und monatlicher Verzinsung mit 0.49% entsteht, und zieht das Ergebnis von dem nach zwölf Kreditmonaten aufgelaufenen Schuldenstand ab K = , ( 12 1, , , , ) = , (1, , , , ) = , (1, )/(1,0049-1) = 1177, Der Schuldenstand nach einem Jahr beträgt also ca. 1177,57.

2 Aufgabe 2: Die angegebene Wertetabelle gehört zu einem quadratischen Wachstum n f(n) a) Übertrage die Tabelle ins Heft und setze sie mithilfe der Differenzenfolgen bis zum Wert n = 10 fort. n f(n) b) Ermittle durch Ansetzen und Lösen geeigneter Gleichungen einen Funktionsterm für f(n) und berechne damit f(1000). Wegen f(0) = 0 hat f(n) die allgemeine Form f(n) = an + bn 2. Einsetzen der Werte für n = 1 und n = 2 ergibt (I) a + b = 1 (II) 2a + 4b = 10. Addition des (-2)fachen der Gleichung (I) zur Gleichung (II) liefert 2b = 8, also b = 4. Durch Einsetzen von b = 4 in (I) ergibt sich a = -3. Die Lösung des Gleichungssystems ist somit (a; b) = ( -3; 4). Die Gleichung für f lautet also f(n) = 4n 2-3n. f(1000) = = Der gesuchte Wert f(1000) beträgt c) Bei einer entsprechenden Aufgabe mit anderen Zahlen ergab sich als Funktionsterm für das gesuchte quadratische Wachstum g(n) = n + 3n 2. Kommt in der zugehörigen Folge g(0), g(1), g(2),... an irgendeiner Stelle der Wert vor, und wenn ja, an welcher Stelle n? Die quadratische Gleichung n + 3n 2 = geht durch Division durch 3 über in n + n 2 = Zusammenfassen zur Normalform ergibt n 2-22n = 0. Die Diskriminante ist D = = = Die Lösung der quadratischen Gleichung ist also n = = 111. (Da n nicht negativ sein kann, ist n = keine Lösung). Der Wert wird kommt also in der Folge g(n) vor, und zwar für n = 111.

3 Aufgabe 3: Die graphische Darstellung rechts zeigt den Verlauf der wachsenden Schulden bei einem Kredit mit dem Anfangswert 1000, bei dem zwölf Jahre lang weder Zinszahlungen noch Tilgungen erfolgt sind. a) Lies aus der Zeichnung näherungsweise den Schuldenstand nach drei, nach neun und nach zehn Jahren ab. Der Schuldenstand hat die folgenden Circa-Beträge: Nach drei Jahren: 1500 nach neun Jahren: 3500 nach zehn Jahren: 4050 b) Bestimme die Höhe des gleichbleibenden Zinssatzes. Der gesuchte Zinssatz pro Jahr wird mit x% bezeichnet Jahr: 1000 (1+x/100) 3 = 1500, also x = 100 (1,5 1/3-1) = 14, Jahr: 1000 (1+x/100) 9 = 3500, also x = 100 (3,5 1/9-1) = 14, Jahr: 1000 (1+x/100) 10 = 4050, also x = 100 (4,05 1/10-1) = 15,01... Der Zinssatz beträgt ca. 15 Prozent pro Jahr. c*) Wenn nach fünf Jahren eine monatliche Teilrückzahlung erfolgt: Wie hoch müsste diese Zahlung pro Monat sein, damit vom Zeitpunkt des Rückzahlungsbeginns an kein weiteres Anwachsen der Schulden erfolgt? Nach Ablauf von fünf Jahren beträgt der Schuldenstand gemäß der graphischen Darstellung ca Bezeichnet x% die Höhe des Zinssatzes pro Monat, so ist (1+x/100) 12 = 115/100, also 1 + x/100 = 0,15 1/12 und somit x = 100 (1,15 /12-1) 1,1715. Die nach einem Kreditmonat zu 2000 hinzukommenden Zinsen betragen also 1,1715% von ,1715/ = 23, ,43. Die monatliche Rückzahlung müsste 23,43 betragen.

4 Aufgabe 4: Aus einer Kreisscheibe (aus Spezialmaterial, 8g pro dm 2 ) mit dem Radius 18cm wird ein Ausschnitt mit dem Mittelpunktswinkel 60º entfernt (siehe Skizze). a) Wie schwer ist der entfernte Auschnitt? Der Flächeninhalt des Ausschnitts beträgt (1,8 dm) 2 π /6 = 0,54 π dm 2 ( 1,6965 cm 2 ). Sein Gewicht ist daher 0,54 π 8 g = 13,57... g. Die Masse des Ausschnitt beträgt ca. 13,6 g. b) Aus dem Rest der Kreisscheibe wird durch Aneinanderheften der Schnittkanten ein kegelförmiger Lampenschirm hergestellt. Welche Höhe und welches Volumen hat der Kegel? Der Radius der Kegelgrundfläche beträgt 18 cm 5/6 = 15 cm, da bei Kreisen Umfang und Radius proportional sind. Bezeichnet h die Höhe des Kegels und V sein Volumgen, dann ist nach Pythagoras h 2 = (18 cm) 2 - (15 cm) 2 = 99 cm 2, also h = 99 cm, also ca. 9,95 cm. V = (15 cm) 2 π h = 225 π 99 cm 3 / 3 = 225 π 11 cm , cm 3. Der Kegel hat eine Höhe von ca. 10cm und ein Volumen von ca. 2344,4 cm 2.

5 Aufgabe 5: Einem Quadrat der Seitenlänge s 1 = 1 dm ist ein Kreis einbeschrieben, diesem wieder ein Quadrat (Seitenlänge: s 2 ), diesem wieder ein Kreis usw. Bestimme die Seitenlängen s 2 und s 3 ; gib eine Formel für die Seitenlänge s n des n-ten Quadrats an. Das erste einbeschriebene Quadrat hat offensichtlich die Hälfte vom Flächeninhalt des ersten Quadrats. Da sich bei ähnlichen Figuren die Flächeninhalte zueinander verhalten wie die Quadrate entsprechender Seiten, ist der Ähnlichkeitsfaktor 0,5. Wegen s 1 = 1 dm ist daher s 2 = 0,5 dm. s 3 = 0,5 s 2 = 0,5 0,5 dm = 0,5 dm. Ergebnisse s 2 = 0,5 dm (= 50 cm), s 3 = 0,5 dm ; s n = ( 0,5) n-1 dm. Aufgabe Z: Diese Zusatzaufgabe knüpft inhaltlich an Aufgabe 5 an: Mit jedem weiteren einbeschriebenen Quadrat und Dreieck verlängert sich die Gesamtlänge aller in der Figur vorkommenden Linien. Zeige, dass diese Gesamtlänge nie mehr als 25 dm beträgt, egal wie lange man das Einbeschreiben von Quadraten und Kreisen fortsetzt. Der erste einbeschriebene Kreis hat den Durchmesser 1 dm, also den Umfang π dm. Da die Kreise mit dem gleichen Ähnlichkeitsfaktor wie die Quadrate verkleinert werden, ergibt sich als Umfangssumme (in der Einheit dm) der ersten n Kreise k n = π + ( 0,5) π + ( 0,5) 2 π + ( 0,5) 3 π... + ( 0,5) n-1 π. Entsprechend erhält man, da das äußere Quadrat den Umfang 4 dm hat, als Umfangssumme q n der ersten n Quadrate, wieder in der Einheit dm: q n = 4 + ( 0,5) 4 + ( 0,5) ( 0,5) ( 0,5) n-1 4. Somit ist beträgt die Gesamtlänge der ersten n Quadrate und Kreise q n + k n = (4+π) (1 + ( 0,5) + ( 0,5) 2 + ( 0,5) ( 0,5) n-1 ). Nach einer im Unterricht hergeleiteten Formel für die Summe der ersten n Potenzen einer Zahl lässt sich die rechte Seite zusammenfassen zu q n + k n = (4+π) (1 - ( 0,5) n )/(1 - ( 0,5)) < (4+π)/(1 - ( 0,5)) 24,38 < 25. Auch für eine noch so große Anzahl von Quadraten und Kreisen ist die Gesamtlänge der Linien kleiner als 25 dm.

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Zentrale Klassenarbeit 2003

Zentrale Klassenarbeit 2003 Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Grundlagen IV der Kathetensatz

Grundlagen IV der Kathetensatz Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Textaufgaben zu Kreisteilen

Textaufgaben zu Kreisteilen 1. Miss den Durchmesser eines Eurostücks. Textaufgaben zu Kreisteilen a) Berechne den Flächeninhalt einer Seite und den Umfang. b) Das Eurostück fällt herunter und rollt 6,5 m weit. Gib an, wie oft es

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 29. Juni 2017 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt)

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt) Thema Musterlösung 1 Körper und Figuren mit (hier wegen 3,14159654... Taschenrechner erlaubt) Ein 15 cm hohes, kegelförmiges Sektglas soll einen Rauminhalt von 150 cm 3 haben. Bestimme den Durchmesser

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Hauptschule G-Kurs. Testform B

Hauptschule G-Kurs. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010) M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier

Mehr

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll?

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll? RYS SS11/1 - Übungen 1. Nach welcher Vorschrift wird der Funktionswert y aus berechnet? Welcher Definitionsbereich ID ist sinnvoll? a) : Seitenlänge eines Quadrates (in cm) y: Flächeninhalt des Quadrates

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g )

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g ) Serie W1 Klasse 9 RS 1. 1 1 + 2. -14(-3 + 5) 3 5 3. 5% von 600 4. 4,5 h = min 5. 4³ 6. Runde auf Tausender. 56508 7. Vergleiche (). 1 und 5 1 4 8. Stelle die Formel nach der Größe in der Klammer

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Grundwissensaufgaben Klasse 10

Grundwissensaufgaben Klasse 10 Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Einzelwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden Taschenrechner sind nicht zugelassen Teamnummer Die folgende Tabelle

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Kompetenzen am Ende der Einheit GRUNDWISSEN

Kompetenzen am Ende der Einheit GRUNDWISSEN Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur Repetition für JZK Aufgabe 1 a) Zeichne die Figur F 4! F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n 1 2 3 4 5 6 7 Term q n = Anz. Quadrate der Figur F n u n = äusserer

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

1. Schularbeit 3.E/RG Gruppe A Name:

1. Schularbeit 3.E/RG Gruppe A Name: Beachte: Wenn das Beispiel nicht händisch berechnet wird müssen alle Formeln und wesentlichen Teile im Heft angeschrieben werden. Die Rechnung mit dem TI-92 (Eingabezeile) muss mit einer Farbe im Heft

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m.

Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m. Übung 11 Aufgabe 01: C D 170 m 85 m Aufgabe 02: E 160 m B SEE =? A Fachwerkträger 5 m 3 m 3 m 4,4 m Aufgabe 03: 10 40 36 z 15 25 Aufgabe 04: 4 13 18 10 Aufgabe 05: 7 3 Aufgabe 06: 4 m 1 m Aufgabe 07: Ein

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis an 6 Stunden wählt einen anderen

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis an 6 Stunden wählt einen anderen

Mehr

Aufnahmeprüfung: Mathematik

Aufnahmeprüfung: Mathematik Aufnahmeprüfung: Mathematik Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Beispiele für mögliche Fragestellungen (mit Lösungen) Zahlen und Maße Vorrangregeln Bruchrechnen

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Lösung Aufgabe P1: Berechnung der Seitenkante : Pythagoras im rechtwinkligen gelben Schnittdreieck. Berechnung der Kegeloberfläche : einsetzen

Lösung Aufgabe P1: Berechnung der Seitenkante : Pythagoras im rechtwinkligen gelben Schnittdreieck. Berechnung der Kegeloberfläche : einsetzen Lösung Aufgabe P1: Berechnung der Seitenkante : Pythagoras im rechtwinkligen gelben Schnittdreieck Berechnung der Kegeloberfläche : einsetzen Klammer berechnen Berechnung des Radius der Halbkugel: einsetzen

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

Aufgaben. Prüfungsteil 1: Aufgabe 1

Aufgaben. Prüfungsteil 1: Aufgabe 1 Aufgaben Prüfungsteil 1: Aufgabe 1 a) In einer Klasse sind doppelt so viele Mädchen wie Jungen. Gib den Anteil der Jungen und Mädchen als Bruchzahl an. b) Der abgebildete Kegel hat die Maße r = 20 cm und

Mehr

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b)

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung kannst du dir als eine Balkenwaage

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Rechnen mit Variablen

Rechnen mit Variablen E Rechnen mit Variablen 5. Gleichungen 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen Seite 1 M 1.11 Das Gleichheitszeichen wird in der nicht nur benutzt, um ein Ergebnis auszudrücken. Mathematische Ausdrücke mit einem Gleichheitszeichen nennt man auch Gleichung. Eine Gleichung besteht

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen. Berechnung der Grundseite a: Seiten tauschen

Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen. Berechnung der Grundseite a: Seiten tauschen Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen Berechnung der Grundseite a: Seiten tauschen Berechnung der Pyramidenhöhe h: Satz des Pythagoras 1 von 39 Berechnung des Pyramidenvolumens

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

7 Ein Fernseher kostet 250 zuzüglich 19 % Mehrwertsteuer.

7 Ein Fernseher kostet 250 zuzüglich 19 % Mehrwertsteuer. Training Eignungstests Unternehmen versuchen mithilfe von Eignungstests herauszufinden, ob du über die notwendigen Voraussetzungen für die angebotene Ausbildungstelle verfügst. Obwohl die Ergebnisse des

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr