Definition 27 Affiner Raum über Vektorraum V

Größe: px
Ab Seite anzeigen:

Download "Definition 27 Affiner Raum über Vektorraum V"

Transkript

1 Definition 27 Affiner Raum über Vektorraum V

2 Definition 27 Affiner Raum über Vektorraum V ist die Menge A =

3 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

4 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt

5 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

6 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

7 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

8 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V.

9 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten.

10 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp.

11 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum.

12 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V.

13 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V.

14 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum:

15 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition,

16 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 )

17 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

18 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

19 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum.

20 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =.

21 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist.

22 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten A B 1 A 1

23 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1

24 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ):

25 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ): A sei ein Punkt,

26 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. A 1 A+v v A

27 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A

28 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u

29 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ):

30 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i

31 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i (A,B). AB ist der Vektor mit Repräsentanten

32 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen.

33 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

34 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

35 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

36 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben,

37 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

38 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

39 Ihre Frage an mich

40 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen?

41 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3

42 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt:

43 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain!

44 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja,

45 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können.

46 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein,

47 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat,

48 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht.

49 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt:

50 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein!

51 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner

52 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen

53 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems),

54 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum.

55 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich,

56 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/=

57 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren,

58 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist.

59 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken

60 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene.

61 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis

62 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen,

63 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/=

64 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

65 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

66 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur:

67 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt;

68 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt; darüber in Januar.

69 Plan für Heute

70 Theorie von affinen Räumen Plan für Heute

71 Theorie von affinen Räumen Affiner Raum Plan für Heute

72 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Plan für Heute

73 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Plan für Heute

74 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Plan für Heute

75 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute

76 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen

77 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2)

78 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4)

79 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7)

80 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7)

81 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

82 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

83 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3.

84 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8.

85 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28

86 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V.

87 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V. Eine Teilmenge U A heißt ein affiner Unterraum,

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

34 Lineare Abbildungen

34 Lineare Abbildungen 34 Lineare Abbildungen 34 Motivation Wir haben wichtige Eigenschaften von Vektorräumen kennen gelernt Damit ist es sinnvoll zu untersuchen, wie Abbildungen zwischen Vektorräumen aussehen können Die wichtigsten

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

2 Durchschnitt und Verbindungsraum

2 Durchschnitt und Verbindungsraum 2 Durchschnitt und Verbindungsraum Seien X und Y nicht leere affine Unterräume des R n (21) Satz: a) Ist X Y, so ist T(X) T(Y ) b) Ist X Y φ so ist X Y ein affiner Raum mit Richtungsvektorraum T(X) T(Y

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Kapitel IV. Lineare Abbildungen Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Wir wollen nun die Abbildungen F : V W zwischen Vektorräumen V und W untersuchen,

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung

Mehr

Was sind Vektoren? Wozu braucht man sie?

Was sind Vektoren? Wozu braucht man sie? Was sind Vektoren? Wozu braucht man sie? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 30. März 2005 1 Einleitung Dieser

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001 ETH Zürich Departement der Mathematik PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson Funktionentheorie II SS 2001 1.Übung AUFGABE 1: Zeigen Sie, daß die Riemannschen Flächen CI und D := {z CI z < 1 } mit

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Skript zur Vorlesung Ringe und Moduln gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Inhaltsverzeichnis 1 Ringe und Moduln 1 1.1 Ringe und Schiefkörper.............................

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

1 Motiviation 2 1.1 Die Thompson Untergruppe... 2

1 Motiviation 2 1.1 Die Thompson Untergruppe... 2 Inhaltsverzeichnis 1 Motiviation 2 1.1 Die Thompson Untergruppe................... 2 2 Lineare Algebra 6 2.1 Der duale Vektorraum V.................... 7 2.2 Erweiterungen des Grundkörpers................

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lösungen zum 2. Aufgabenblatt

Lösungen zum 2. Aufgabenblatt SS 2012, Lineare Algebra 1 Onlineversion, es werden keine Namen angezeigt. Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar. Insgesamt 3255 Wörter

Mehr

Jugend Forscht 1999 (Mathematik) W. Behrenhoff F. Krahmer A. Sorge

Jugend Forscht 1999 (Mathematik) W. Behrenhoff F. Krahmer A. Sorge Inhaltsverzeichnis 1 Einleitung... 1 1.1 Das Spiel Set!... 1 1. Ausgangspunkt unserer Überlegungen... 1 1.3 Fragestellungen... 1 Definitionen und Verallgemeinerungen....1 Eigenschaft.... Variante....3

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 1 Einleitung Schlussrechnungen

Mehr

Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010

Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010 Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010 Harald Hinterleitner (0755828) und Christof Schöffl (0686939) 28. März 2010 Inhaltsverzeichnis 1 Ein-Perioden-Wertpapiermärkte

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr