Definition 27 Affiner Raum über Vektorraum V

Größe: px
Ab Seite anzeigen:

Download "Definition 27 Affiner Raum über Vektorraum V"

Transkript

1 Definition 27 Affiner Raum über Vektorraum V

2 Definition 27 Affiner Raum über Vektorraum V ist die Menge A =

3 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

4 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt

5 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

6 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

7 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

8 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V.

9 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten.

10 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp.

11 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum.

12 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V.

13 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V.

14 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum:

15 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition,

16 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 )

17 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

18 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

19 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum.

20 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =.

21 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist.

22 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten A B 1 A 1

23 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1

24 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ):

25 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ): A sei ein Punkt,

26 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. A 1 A+v v A

27 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A

28 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u

29 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ):

30 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i

31 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i (A,B). AB ist der Vektor mit Repräsentanten

32 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen.

33 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

34 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

35 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

36 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben,

37 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

38 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

39 Ihre Frage an mich

40 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen?

41 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3

42 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt:

43 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain!

44 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja,

45 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können.

46 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein,

47 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat,

48 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht.

49 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt:

50 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein!

51 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner

52 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen

53 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems),

54 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum.

55 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich,

56 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/=

57 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren,

58 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist.

59 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken

60 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene.

61 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis

62 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen,

63 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/=

64 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

65 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

66 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur:

67 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt;

68 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt; darüber in Januar.

69 Plan für Heute

70 Theorie von affinen Räumen Plan für Heute

71 Theorie von affinen Räumen Affiner Raum Plan für Heute

72 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Plan für Heute

73 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Plan für Heute

74 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Plan für Heute

75 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute

76 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen

77 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2)

78 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4)

79 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7)

80 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7)

81 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

82 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

83 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3.

84 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8.

85 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28

86 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V.

87 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V. Eine Teilmenge U A heißt ein affiner Unterraum,

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

Lineare Abbildungen und Gleichungssysteme

Lineare Abbildungen und Gleichungssysteme Lineare Abbildungen und Gleichungssysteme Klaus-R Loeffler Lineare Abbildungen Definition: Lineare Abbildung Es wird vorausgesetzt, dass V und W Vektorräume sind Eine Abbildung f von V in W heißt dann

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum Kapitel II Lineare Algebra und analytische Geometrie 6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum geometrischen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke xy = {x + t xy 0 t 1} = {(1 t)x + ty 0 t 1} enthält. konvex nicht konvex Lemma

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

2 Durchschnitt und Verbindungsraum

2 Durchschnitt und Verbindungsraum 2 Durchschnitt und Verbindungsraum Seien X und Y nicht leere affine Unterräume des R n (21) Satz: a) Ist X Y, so ist T(X) T(Y ) b) Ist X Y φ so ist X Y ein affiner Raum mit Richtungsvektorraum T(X) T(Y

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von

Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

34 Lineare Abbildungen

34 Lineare Abbildungen 34 Lineare Abbildungen 34 Motivation Wir haben wichtige Eigenschaften von Vektorräumen kennen gelernt Damit ist es sinnvoll zu untersuchen, wie Abbildungen zwischen Vektorräumen aussehen können Die wichtigsten

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K

:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K apitel II Lineare Algebra und analytische Geometrie 4 Punkte, Geraden, Ebenen, affine Unterräume in einem Vektorraum. Wie bisher ist V ein endlichdimensionaler Vektorraum über dem örper, oft ist V = n

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Vertiefung Lineare Algebra 1. Schriftliche Unterlagen zur Vorlesung im Wintersemester 2013/14. Franz Pauer

Vertiefung Lineare Algebra 1. Schriftliche Unterlagen zur Vorlesung im Wintersemester 2013/14. Franz Pauer Vertiefung Lineare Algebra 1 Schriftliche Unterlagen zur Vorlesung im Wintersemester 2013/14 Franz Pauer c 2013 INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK KAPITEL 1 Vertiefung zu Kap 2, 3 In diesem

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 6 Vektorräume Die Addition von zwei Pfeilen a und b, ein typisches Beispiel für Vektoren. Der zentrale

Mehr