Definition 27 Affiner Raum über Vektorraum V

Größe: px
Ab Seite anzeigen:

Download "Definition 27 Affiner Raum über Vektorraum V"

Transkript

1 Definition 27 Affiner Raum über Vektorraum V

2 Definition 27 Affiner Raum über Vektorraum V ist die Menge A =

3 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

4 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt

5 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

6 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

7 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

8 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V.

9 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten.

10 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp.

11 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum.

12 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V.

13 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V.

14 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum:

15 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition,

16 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 )

17 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

18 Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A, für die gilt (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Die Dimension des affinen Raums ist die Dimension des V. Die Elemente von A heißen Punkten. StandardBsp. Sei V ein Vektorraum. Wir setzen A = V. + sei die übliche Addition in V. Das ist ein affiner Raum: (A 1 ) entspricht Assoziativität der Addition, (A 2 ) entspricht der Existenz der eindeutigen Inversen (Lemma 5).

19 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum.

20 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =.

21 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist.

22 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten A B 1 A 1

23 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1

24 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ):

25 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 A 1 Eigenschaft (A 1 ): A sei ein Punkt,

26 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. A 1 A+v v A

27 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A

28 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u

29 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ):

30 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i

31 MotivationsBsp: A = E i über V = E i E i /= + ist die Addition von Vektoren und Punkten auf der Ebene/im Raum. i sei 2 oder 3. Sei A E i, v sei ein Vektor in E i, i.e. ein Element von E i E i / =. Die Summe A + v ist ein Punkt B E i so dass die geordnete Strecke (A,B) ein Element von v ist. Addition von Vektoren und Punkten B A B 1 Eigenschaft (A 1 ): A sei ein Punkt, v, u seien Vektoren. Es gilt: (A + v) + u = A + ( u + v). A 1 A+v u v A+v+u A v+u Eigenschaft (A 2 ): Für A, B E i (A,B). AB ist der Vektor mit Repräsentanten

32 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen.

33 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w)

34 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v

35 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet.

36 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben,

37 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

38 Lass uns noch einmal Eigenschaften (A1), (A2) ansehen. (A 1 ) für alle a A, v,w V gilt (a + v) + w = a + (v + w) (A 2 ) für alle a 1,a 2 A existiert genau ein v A s.d. a 2 = a 1 + v (Der Vektor v wird a 1 a 2 ) bezeichnet. Falls wir einen festen Punkt a A gewählt haben, ist A fast ein Vektorraum: jedem a 1 ist eindeutiges aa 1 zugeordnet.

39 Ihre Frage an mich

40 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen?

41 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3

42 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt:

43 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain!

44 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja,

45 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können.

46 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein,

47 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat,

48 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht.

49 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt:

50 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein!

51 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner

52 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen

53 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems),

54 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum.

55 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich,

56 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/=

57 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren,

58 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist.

59 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken

60 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene.

61 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis

62 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen,

63 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/=

64 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

65 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2.

66 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur:

67 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt;

68 Ihre Frage an mich Soll ich mich die Ebene als R 2 vorstellen? Der Raum als R 3 Mein Antwort bis jetzt: Jain! Ja, weil wir die Punkten der Ebene bzw. Raum mit 2 bzw. 3 Koordinaten parametrisieren können. Nein, weil ein Vektorraum ein besonderes Element 0 hat, und die Ebene bzw. der Raum nicht. Mein Antwort jetzt: Nein! Sie sollen die Ebene bzw den Raum als 2 bzw. 3 dimensionaler affiner Raum vorstellen Falls sie einen Punkt wählen (Anfangspunkt des Koordinatensystems), ist die Ebene fast ein 2-dimensionaler Vektorraum. Tatsächlich, jeden Vektor aus E 2 E 2/= kann man mit einer geordneten Strecke repräsentieren, deren Anfangspunkt der gewälte Punkt ist. Die Endpunkte aller solchen geordneten Strecken sind alle Punkte der Ebene. Falls wir zusäzlich eine Basis in E 2 E 2/= wählen, dann sind die Vektoren aus E 2 E 2/= fast Vektoren aus R 2. Ebene und Raum haben noch eine zusätzliche Struktur: das Skalarprodukt; darüber in Januar.

69 Plan für Heute

70 Theorie von affinen Räumen Plan für Heute

71 Theorie von affinen Räumen Affiner Raum Plan für Heute

72 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Plan für Heute

73 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Plan für Heute

74 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Plan für Heute

75 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute

76 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen

77 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2)

78 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4)

79 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7)

80 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7)

81 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

82 Theorie von affinen Räumen Affiner Raum Affiner Unterraum Affine Abbildungen Affine Koordinaten Hauptsatz der affiner Geometrie Plan für Heute Theorie von Vektorräumen Vektorraum (Vorl.2) Untervektorraum (Vorl. 3-4) Koordinaten (Vorl 5-7) Lineare Abbildungen (Vorl. 7) Hauptsatz der linearen Algebra (Vorl. 8)

83 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3.

84 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8.

85 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28

86 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V.

87 Lemma 21 Für alle a,a 1,a 2,a 3 A gilt: a + 0 = a, aa = 0, a 1 a 2 = a 2 a 1, a 1 a 2 + a 2 a 3 = a 1 a 3. Beweis: Hausaufgabe 1 Blatt 8. Definition 28 Sei A ein affiner Raum über Vektorraum V. Eine Teilmenge U A heißt ein affiner Unterraum,

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Algebra I Wintersemester 2006/07

Algebra I Wintersemester 2006/07 Algebra I Wintersemester 2006/07 Prof. Dr. Annette Huber-Klawitter Fassung vom 31. Januar 2007 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math. Institut 0341-97

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

4. Abbildung / Funktion

4. Abbildung / Funktion 4. Abbildung / Funktion In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable,

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] hx a,vi

Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] hx a,vi 8 Möbiusgeometrie Quelle/Referenz für dieses Kapitel: Springborn [2, Lectures 28/29] 17.+21. Juni 2013 8.1 Spiegelung an einer Sphäre Jede Hyperebene H R n kann in der Form H = {x 2 R n : hx werden, wobei

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

3 Konvexe Analysis. 3.1 Grundlagen

3 Konvexe Analysis. 3.1 Grundlagen 25 3 Konvee Analsis 3.1 Grundlagen Die konvee Analsis auch Konveitätstheorie genannt untersucht geometrische Eigenschaften von konveen Mengen, Funktionen und Funktionalen in linearen Räumen. Eine tpische

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Algebra und Zahlentheorie Wintersemester 2013/14

Algebra und Zahlentheorie Wintersemester 2013/14 Algebra und Zahlentheorie Wintersemester 2013/14 Prof. Dr. Annette Huber-Klawitter Fassung vom 8. Februar 2014 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math.

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Institut für Informatik der Bayerischen Julius Maximilians Universität Würzburg Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Studienarbeit von Christian

Mehr

Lineare Codes. 17.1 Linearcodes

Lineare Codes. 17.1 Linearcodes Teil IV Codes 17 Lineare Codes Lineare Codes werden in Kommunikationssystemen zur sicheren Übertragung von Nachrichten eingesetzt, etwa in der Telekommunikation und bei der Speicherung von Daten auf Compact

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Stark modulare Gitter mit langem Schatten

Stark modulare Gitter mit langem Schatten Stark modulare Gitter mit langem Schatten von Kristina Schindelar Diplomarbeit in Mathematik vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Beispielaufgaben. für einen hilfsmittelfreien Prüfungsteil in der. schriftlichen Abiturprüfung Mathematik. grundlegendes Niveau

Beispielaufgaben. für einen hilfsmittelfreien Prüfungsteil in der. schriftlichen Abiturprüfung Mathematik. grundlegendes Niveau Beispielaufgaben für einen hilfsmittelfreien Prüfungsteil in der schriftlichen Abiturprüfung Mathematik grundlegendes Niveau Freie und Hansestadt Hamburg Behörde für Schule und Berufsbildung Impressum

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Der Advanced Encryption Standard (AES)

Der Advanced Encryption Standard (AES) Der Advanced Encryption Standard (AES) Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Geschichte des AES Die Struktur des AES Angriffe auf den AES Aktuelle Ergebnisse DerAdvanced Encryption Standard

Mehr

Klausur Datenbanken Wintersemester 2013/2014 Prof. Dr. Wolfgang May 29. Januar 2014, 14-16 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2013/2014 Prof. Dr. Wolfgang May 29. Januar 2014, 14-16 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2013/2014 Prof. Dr. Wolfgang May 29. Januar 2014, 14-16 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Studiengang: Bei der Klausur sind keine Hilfsmittel

Mehr

Modern Methods in Nonlinear Optimization

Modern Methods in Nonlinear Optimization Modern Methods in Nonlinear Optimization Regularisierung Inverser Probleme Prof. Dr. Bastian von Harrach Technische Universität München, Fakultät für Mathematik - M1 Wintersemester 2010/2011 http://www-m1.ma.tum.de/bin/view/lehrstuhl/harrach_ws1011_modernmethods

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr