Vorlesung. Funktionen/Abbildungen 1

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Funktionen/Abbildungen 1"

Transkript

1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert. Aber was ist eine Zuordnung, was wird zugeordnet und was bedeutet»eindeutig«? Um das zu klären, müssen wir die Definition etwas präzisieren: Definition 1 (Funktion bzw. Abbildung). Eine Funktion f ist ein Tripel f = (X, Y, Γ f ), wobei X und Y zwei nicht-leere Mengen sind und Γ f X Y mit den Eigenschaften: 1. x X y Y : (x, y) Γ f 2. x X y 1, y 2 Y : ( (x, y1 ) Γ f (x, y 2 ) Γ f ) = (y1 = y 2 ). Γ f heißt der Graph der Funktion f. Beispiel: Sei X = Y = {0, 1} und Γ f = {(0, 0), (1, 1)}, also ( ) f = {0, 1}, {0, 1}, {(0, 0), (1, 1)}. Aus Gründen der Anschaulichkeit werden Funktionen meist anders geschrieben. So kann man für die genannte Funktion auch schreiben: oder f : {0, 1} {0, 1} x x f : {0, 1} {0, 1} mit f(x) := x 1 erstellt aus dem Vorlesungsskript von Philipp Bannasch 1

2 Weitere Beispiele zur Demonstration der veschiedenen Schreibweisen: f : R R x x x2 + 1 x 1 falls x < 0 f : R R, f(x) = sign(x) := 0 falls x = 0 1 sonst { f : R R + 0, f(x) = x := x falls x < 0 x sonst Die Abbildung f : R R x x heißt Identität, man schreibt auch id R. Falls N eine nicht-leere Teilmenge von M ist, so heißt f Inklusion (Einbettung) von N in M, wenn f : N M x x 2 Bezeichnungen Sei f : X Y eine Funktion. Dann heißt 1. die Menge X Quelle/Definitionsbereich von f, 2

3 2. die Menge Y Ziel/Zielbereich von f, 3. die Menge f(x) = {y Y x X : f(x) = y} = Im(f) das Bild von f. 4. Für ein beliebiges y Y heißt die Menge f 1 (y) = {x X f(x) = y} das Urbild von y. 5. Falls Y = R, f also eine reellwertige Funktion, dann versteht man unter dem Urbild von Null von f die Menge f 1 (0), also die Menge der Elemente x X mit f(x) = 0. Das Bild von f ist also die Menge der y, die von f»getroffen werden«. Das Urbild zu einem y Y ist die Menge aller x X, welche dieses y als Bild haben (nicht mit der Umkehrfunktion von f zu verwechseln!). 3 Eigenschaften von Funktionen Definition 2 (Injektivität, Surjektivität und Bijektivität). Eine Funktion f : X Y heißt injektiv genau dann, wenn gilt: x 1, x 2 X : f(x 1 ) = f(x 2 ) x 1 = x 2 Eine Funktion f : X Y heißt surjektiv genau dann, wenn gilt: y Y x X : f(x) = y Eine Funktion f : X Y heißt bijektiv genau dann, wenn sie injektiv und surjektiv ist. Beispiele zur Veranschaulichung Die Funktion f : R R, x x 2 ist weder injektiv (da f( 1) = f(1)), noch surjektiv (da f 1 ( 1) = ), also nicht bijektiv. 3

4 Die Funktion f : R + 0 R, x x 2 ist injektiv, aber nicht surjektiv, also nicht bijektiv. Die Funktion f : R R + 0, x x2 ist nicht injektiv, also nicht bijektiv, aber surjektiv. Die Funktion f : R + 0 R + 0, x x2 ist bijektiv. Zur leichteren Überprüfung einer Eigenschaft versucht man in der Mathematik gern möglichst viele äquivalente Aussagen dieser Eigenschaft zu formulieren. Ein Beispiel sei die folgende Bemerkung 1. Eine Funktion f : X Y ist genau dann surjektiv, wenn Imf = Y. Die Bijektivität lässt sich leicht mittels folgenden Satzes überprüfen: Satz 1. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: x X : g(f(x)) = x und y Y : f(g(y)) = y. Ein solches g heißt auch Umkehrfunktion von f in X. 4

5 Beweis. Es müssen zwei Richtungen gezeigt werden. Zuerst die Hinrichtung ( = ): Sei f bijektiv. Dann gilt für alle y Y : f 1 (y), da f surjektiv. Da f außerdem injektiv ist, gilt, dass für jedes y Y genau ein x X existiert mit der Eigenschaft f(x) = y. Setze nun also g : Y X mit g(y) := x mit f 1 (y) = {x} für jedes y Y. g ist ebenfalls bijektiv und erfüllt die geforderten Eigenschaften. Nun die Rückrichtung ( =): Sei also g eine geeignete Abbildung zu f, welche die beiden Eigenschaften erfüllt. Wir müssen zeigen, dass daraus die Bijektivität von f folgt. Zuerst die Injektivität: Angenommen f wäre nicht injektiv. Dann exisitieren x 1 x 2 X mit f(x 1 ) = f(x 2 ). Es folgt x 1 = g(f(x 1 )) = g(f(x 2 )) = x 2. Das ist ein Widerspruch. f ist also injektiv. Bleibt zu zeigen, dass f auch surjektiv ist. Sei y Y beliebig. Dann ist für jedes y Y g(y) ein eindeutig bestimmtes Element aus X, weil g ja eine Funktion, also eine eindeutige Zuordnung ist. Außerdem erfüllt dieses g(y) laut Voraussetzung die Eigenschaft: f(g(y)) = y. Folglich ist f surjektiv. Bemerkung 2. Statt g(f(x)) schreibt man auch häufig auch: (g f)(x). 4 Verknüpfung von Funktionen Wir wollen die Operation noch an weiteren Beispielen üben. Zunächst benötigen wir aber noch zwei weitere Definitionen: Definition 3. Es seien X und Y zwei Mengen. Dann sind definiert Abb(X, Y ) := { f f : X Y ist Abbildung } Bij(X, Y ) := { f Abb(X, Y ) f ist bijektiv } Definition 4 (Komposition von Funktionen). Es seien X, Y, Z drei nicht-leere Mengen, f Abb(X, Y ) und g Abb(Y, Z). Dann wird die Komposition von f und g wie folgt definiert: (g f) : x g(f(x)) Abb(X, Z). 5

6 Bemerkung 3. Mit Hilfe dieser Definition lässt sich der Satz?? auch folgendermaßen formulieren: Satz. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: g f = id X und f g = id Y Für konkrete Mengen Y, können für Funktionen f, g : X Y auch noch andere Verknüpfungen definiert werden. Definition 5 (Addition und Multiplikation von Funktionen). Es seien X, Y = R f, g Abb(X, R) reellwertige Funktionen. Dann definiere: und (f + g) Abb(X, R) mit (f + g)(x) := f(x) + g(x) (f g) Abb(X, R) mit (f g)(x) := f(x) g(x) Beispiele I Komposition definiert: Seien X := Z, Y := N, Z := Q und seien folgende Abbildungen f : Z N mit z z und g : N Q mit n 1 n + 1. Dann ist g f : Z Q mit z 1 z + 1. Seien X, Y, Z drei nicht-leere Mengen. f Abb(X, Y ) und θ f definiert als θ f : Abb(Y, Z) Abb(X, Z) mit g g f 6

7 Beispiele II Addition/Multiplikation definiert als: Sei X = {, } und Y = R. Weiter seien f, g : X R f( ) := 0 f( ) := 1 g( ) := 2 g( ) := 1 Dann sind (f + g)( ) = f( ) + g( ) = 2 (f + g)( ) = f( ) + g( ) = 2 (f g)( ) = f( ) g( ) = 0 (f g)( ) = f( ) g( ) = 1 Bemerkung 4. Ganz analog lassen sich natürlich auch Verknüpfungen für Funktionen definieren, wenn Y = N, Y = Q, Y = Z ist. Allerdings müssen die Verknüpfungen eine Bedeutung in der Zielmenge haben. So ist etwa eine Addition auf der Zielmenge Y = {, } nicht ohne Weiteres sinnvoll, denn was sollte + sein? 5 Einschränkung/Restriktion von Funktionen Es kommt vor, dass man Aussagen über die Funktion nicht auf dem ganzen Definitionsbereich treffen möchte. So haben wir bereits gesehen, dass nicht injektiv ist, die Funktion g : R R, mit x x 2 g : R + 0 R, mit x x 2 jedoch schon. So haben die beiden Funktionen, obwohl sie sich so ähnlich sehen, doch grundlegend verschiedene Eigenschaften. Wir können aber eine Beziehung zwischen ihnen herstellen, indem wir die Funktion g einschränken. Definition 6. Seien X und Y zwei nicht-leere Mengen und f Abb(X, Y ). Ferner sei M X eine nicht-leere Teilmenge von X. Die Funktion h : M Y, mit h(x) := f(x) für alle x M heißt Einschränkung von f auf M, geschrieben: f M. Linksstehendes Diagramm veranschaulicht die Situation. i bezeichne hierbei die Inklusion von M in X. 7

8 6 Reellwertige Funktionen 6.1 Beispiele für Klassen reellwertiger Funktionen Sei f : R R eine reelle Funktion. Man unterscheidet unter Anderem: konstante Funktionen f(x) := c mit c R. lineare Funktionen f(x) := mx mit m R. affine Funktionen f(x) := mx + n. ganzrationale Funktionen (Polynomfunktionen) 2 f(x) := a 0 + a 1 x + a 2 x a n x n mit a i R und n N. rationale Funktionen 3 f(x) := p(x) q(x) wobei p und q ganzrationale Funktionen sind. Exponentialfunktionen f(x) := e x oder f(x) := a x mit a R +. trigonometrische Funktionen f(x) := sin x (oder cos x, tan x, cot x). 6.2 Eigenschaften In vielen Anwendungsgebieten der Mathematik werden Funktionen benötigt, die bestimmte Eigenschaften aufweisen, oder gegebene Funktionen werden auf diese untersucht. Beispielsweise kann die Betrachtung des Monotonieverhaltens bestimmter Funktionen Aufschluss geben, wo Extrema angenommen werden und Ähnliches. Wir wiederholen daher die folgende, aus der Schule bekannte Definition: Definition 7 (Monotonie). Es sei D eine Teilmenge von R. Eine Funktion f : D R heißt genau dann streng monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) < f(x 2 ) f heißt (schwach) monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) f(x 2 ) Analog heißt f [streng] monoton fallend, wenn gilt: f ist [streng] monoton wachsend. 2 Wichtig! Polynomfunktionen sind keine Polynome. Siehe Algebra-Vorlesung. 3 mit f : (R \ q 1 (0)) R 8

9 Unmittelbar aus der Definition der Monotonie erhält man folgende Aussage: Bemerkung 5. Jede streng monotone Funktion f : R R ist injektiv. Oft ist es auch interessant, wie groß beziehungsweise klein Funktionswerte einer gegebenen Funktion überhaupt werden können. Hier hilft der Begriff der Beschränktheit. Definition 8 (Beschränktheit). Eine Funktion f : R R heißt nach oben beschränkt, falls: s R x R : f(x) s und nach unten beschränkt, falls s R x R : f(x) s. Weiterhin heißt f beschränkt, falls f sowohl nach oben als auch nach unten beschränkt ist. Beispiel Die Funktion f : R R mit f(x) := x 2 ist nach unten, nicht jedoch nach oben beschränkt. 9

10 7 Zusatz Bevor wir weitere wichtige Eigenschaften von reellwertigen Funktionen, wie zum Beispiel Stetigkeit oder Differenzierbarkeit betrachten, ist es sinnvoll den Blick kurz auf ein paar bestimmte Funktionen zu richten. 7.1 Folgen Definition 9. Sei M eine nicht-leere Menge. Eine Abbildung a : N M heißt Folge. Notation: Man schreibt statt a häufig auch (a n ) mit n N oder kürzer (a n ) n N. Für die Folgenglieder schreibt man a n mit a n := a(n) für alle n N. Bemerkung 6. Insbesondere spricht man bei reellwertigen Folgen (M R) auch von monton wachsenden (fallenden) Folgen und beschränkten Folgen. Beispiele für Folgen 1. (a n ) n N\{0} mit a n := 1 n 2. die Fibonacci-Folge 1, 1, 2, 3, 5, 8, 13,... (b n ) n N mit b 0 := 1, b 1 := 1 und b n := b n 1 + b n 2 für n 1 3. (c n ) n N mit c n := ( 1) n. Besonders interessant bei der Betrachtung von Folgen ist das Verhalten im Unendlichen. Bei einigen Folgen wie b n werden die Folgewerte sehr groß, bei anderen wie c n springen die Werte hin und her. Manchmal laufen die Folgewerte aber für große n gegen einen bestimmten Wert wie zum Beispiel a n gegen Null. Definition 10 (Grenzwert). Für eine reellwertige Folge (a n ) n N heißt g R genau dann Grenzwert der Folge, wenn gilt Man schreibt auch ε > 0 n ε N n N : n > n ε = g a n < ε. g = lim n a n. Besitzt eine Folge einen Grenzwert, so heißt sie (gegen diesen Grenzwert) konvergent, andernfalls divergent. 10

11 Satz. Die Folge (a n ) aus Beispiel 1 konvergiert gegen den Grenzwert g = 0. Beweis. Sei ε > 0 beliebig gewählt. Setze 4 n ε := 1 ε. Dann folgt für n > nε 1 ε : g a n = 0 a n = a n = 1 n < 1 n ε 1 1/ε = ε 7.2 Stetigkeit Nach diesem kurzen Abstecher in das weite Gebiet der Folgen wollen wir uns nun einer weiteren Eigenschaft zuwenden, die reellwertige Funktion haben können: dem Stetigkeitsbegriff. Man nennt Funktionen f : R R stetig, wenn sie keine Sprünge enthalten, wenn man sie also mit einem Bleistift ohne Absetzen von links nach rechts durchzeichnen könnte. Diese Beschreibung ist sehr schön und anschaulich. Da sich aber Fähigkeiten im Umgang mit dem Bleistift schlecht beweisen lassen und individuell sehr unterschiedlich sind, benötigen wir eine etwas weniger anschauliche, aber formalere Definition. Definition 11 (Stetigkeit). Ein Funktion f : R R heißt genau dann stetig in einem Punkt x 0 R, wenn gilt: ε > 0 δ > 0 x R : Ist f in jedem x 0 R stetig, so heißt f stetig auf R. Anschaulich lässt sich das folgendermaßen darstellen: x x 0 < δ = f(x) f(x 0 ) < ε in allen x stetige Funktion 4 sind die Gaußklamern furs aufrunden. bei x = 3 unstetige Funktion 11

12 Aufgrund der charakteristischen Variablenbezeichunung, wird diese Definition von Stetigkeit auch als ε δ-kriterium bezeichnet. Dies ist jedoch bei weitem nicht die einzige Stetigkeitsdefinition. Eine weitere Möglichkeit die Stetigkeit einer Funktion f an einer Stelle x 0 zu definieren, besteht beispielsweise darin, Grenzwerte von Folgen zu verwenden. Definition 12 (Folgenstetigkeit). Eine Funktion f : R R heißt folgenstetig an der Stelle x0 R, wenn für jede Folge (x n ) n N gilt: lim x n = x 0 = lim f(x n) = f(x 0 ). n n Bemerkung 7. Es lässt sich beweisen, dass diese beiden Definitionen in R äquivalent sind. Jedoch gibt es Räume, in denen das nicht der Fall ist. Ebenso gibt es noch strengere Definitionen von Stetigkeit in dem Sinne, dass nur bestimmte stetige Funktionen diese strengeren Bedingungen erfüllen. Das alles ist aber Teil der Analysis-Grundvorlesungen. 7.3 Differenzierbarkeit Auch wenn dieser Teil wahrscheinlich in der Vorlesungzeit nicht mehr geschafft wird, soll er hier der Vollständigkeit halber und als ein zentraler Begriff der Analysis angeführt werden. Definition 13 (Differenzierbarkeit). Eine Funktion f : R R heißt an der Stelle x 0 differenzierbar, falls für alle Folgen (h n ) n N mit lim n h n = 0 der Grenzwert f(x 0 + h n ) f(x 0 ) lim n h n existiert und dieser für alle solche Folgen (h n ) gleich ist. Man schreibt dann f f(x 0 + h) f(x 0 ) f(x 0 + h n ) f(x 0 ) (x 0 ) := lim := lim h 0 h n h n und nennt f (x 0 ) den Wert der Ableitung von f an der Stelle x 0 oder aber auch den Anstieg von f an der Stelle x 0. Der Wert f (x 0 ) kann geometrisch als der Anstieg einer Tangenten betrachtet werden, die man im Punkt (x 0, f(x 0 )) an den Graphen von f anlegt. Per Konstruktion ist dies dann der Anstieg einer Sekanten, die durch den Punkt (x 0, f(x 0 )) und einen Stützpunkt (x, f(x )) verläuft, wobei x 0 und x unendlich dicht beieinander liegen. Bemerkung 8. Aus der Definition der Differenzierbarkeit der Funktion f kann man ohne Weiteres folgern, dass sie stetig ist. Die Umkehrung gilt aber im Allgemeinen nicht. Die Betragsfunktion f : R R, f(x) := x ist hier ein einfaches Gegenbeispiel. Sie ist in x 0 = 0 stetig, aber nicht differenzierbar. 12

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

4 FUNKTIONEN 71. Sind a < b und c < d zwei reelle Zahlen, so nennt man [a, b] [c, d] ein abgeschlossenes Rechteck.

4 FUNKTIONEN 71. Sind a < b und c < d zwei reelle Zahlen, so nennt man [a, b] [c, d] ein abgeschlossenes Rechteck. 4 FUNKTIONEN 7 4 Funktionen Die Paarmengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr