Vorlesung. Funktionen/Abbildungen 1

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Funktionen/Abbildungen 1"

Transkript

1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert. Aber was ist eine Zuordnung, was wird zugeordnet und was bedeutet»eindeutig«? Um das zu klären, müssen wir die Definition etwas präzisieren: Definition 1 (Funktion bzw. Abbildung). Eine Funktion f ist ein Tripel f = (X, Y, Γ f ), wobei X und Y zwei nicht-leere Mengen sind und Γ f X Y mit den Eigenschaften: 1. x X y Y : (x, y) Γ f 2. x X y 1, y 2 Y : ( (x, y1 ) Γ f (x, y 2 ) Γ f ) = (y1 = y 2 ). Γ f heißt der Graph der Funktion f. Beispiel: Sei X = Y = {0, 1} und Γ f = {(0, 0), (1, 1)}, also ( ) f = {0, 1}, {0, 1}, {(0, 0), (1, 1)}. Aus Gründen der Anschaulichkeit werden Funktionen meist anders geschrieben. So kann man für die genannte Funktion auch schreiben: oder f : {0, 1} {0, 1} x x f : {0, 1} {0, 1} mit f(x) := x 1 erstellt aus dem Vorlesungsskript von Philipp Bannasch 1

2 Weitere Beispiele zur Demonstration der veschiedenen Schreibweisen: f : R R x x x2 + 1 x 1 falls x < 0 f : R R, f(x) = sign(x) := 0 falls x = 0 1 sonst { f : R R + 0, f(x) = x := x falls x < 0 x sonst Die Abbildung f : R R x x heißt Identität, man schreibt auch id R. Falls N eine nicht-leere Teilmenge von M ist, so heißt f Inklusion (Einbettung) von N in M, wenn f : N M x x 2 Bezeichnungen Sei f : X Y eine Funktion. Dann heißt 1. die Menge X Quelle/Definitionsbereich von f, 2

3 2. die Menge Y Ziel/Zielbereich von f, 3. die Menge f(x) = {y Y x X : f(x) = y} = Im(f) das Bild von f. 4. Für ein beliebiges y Y heißt die Menge f 1 (y) = {x X f(x) = y} das Urbild von y. 5. Falls Y = R, f also eine reellwertige Funktion, dann versteht man unter dem Urbild von Null von f die Menge f 1 (0), also die Menge der Elemente x X mit f(x) = 0. Das Bild von f ist also die Menge der y, die von f»getroffen werden«. Das Urbild zu einem y Y ist die Menge aller x X, welche dieses y als Bild haben (nicht mit der Umkehrfunktion von f zu verwechseln!). 3 Eigenschaften von Funktionen Definition 2 (Injektivität, Surjektivität und Bijektivität). Eine Funktion f : X Y heißt injektiv genau dann, wenn gilt: x 1, x 2 X : f(x 1 ) = f(x 2 ) x 1 = x 2 Eine Funktion f : X Y heißt surjektiv genau dann, wenn gilt: y Y x X : f(x) = y Eine Funktion f : X Y heißt bijektiv genau dann, wenn sie injektiv und surjektiv ist. Beispiele zur Veranschaulichung Die Funktion f : R R, x x 2 ist weder injektiv (da f( 1) = f(1)), noch surjektiv (da f 1 ( 1) = ), also nicht bijektiv. 3

4 Die Funktion f : R + 0 R, x x 2 ist injektiv, aber nicht surjektiv, also nicht bijektiv. Die Funktion f : R R + 0, x x2 ist nicht injektiv, also nicht bijektiv, aber surjektiv. Die Funktion f : R + 0 R + 0, x x2 ist bijektiv. Zur leichteren Überprüfung einer Eigenschaft versucht man in der Mathematik gern möglichst viele äquivalente Aussagen dieser Eigenschaft zu formulieren. Ein Beispiel sei die folgende Bemerkung 1. Eine Funktion f : X Y ist genau dann surjektiv, wenn Imf = Y. Die Bijektivität lässt sich leicht mittels folgenden Satzes überprüfen: Satz 1. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: x X : g(f(x)) = x und y Y : f(g(y)) = y. Ein solches g heißt auch Umkehrfunktion von f in X. 4

5 Beweis. Es müssen zwei Richtungen gezeigt werden. Zuerst die Hinrichtung ( = ): Sei f bijektiv. Dann gilt für alle y Y : f 1 (y), da f surjektiv. Da f außerdem injektiv ist, gilt, dass für jedes y Y genau ein x X existiert mit der Eigenschaft f(x) = y. Setze nun also g : Y X mit g(y) := x mit f 1 (y) = {x} für jedes y Y. g ist ebenfalls bijektiv und erfüllt die geforderten Eigenschaften. Nun die Rückrichtung ( =): Sei also g eine geeignete Abbildung zu f, welche die beiden Eigenschaften erfüllt. Wir müssen zeigen, dass daraus die Bijektivität von f folgt. Zuerst die Injektivität: Angenommen f wäre nicht injektiv. Dann exisitieren x 1 x 2 X mit f(x 1 ) = f(x 2 ). Es folgt x 1 = g(f(x 1 )) = g(f(x 2 )) = x 2. Das ist ein Widerspruch. f ist also injektiv. Bleibt zu zeigen, dass f auch surjektiv ist. Sei y Y beliebig. Dann ist für jedes y Y g(y) ein eindeutig bestimmtes Element aus X, weil g ja eine Funktion, also eine eindeutige Zuordnung ist. Außerdem erfüllt dieses g(y) laut Voraussetzung die Eigenschaft: f(g(y)) = y. Folglich ist f surjektiv. Bemerkung 2. Statt g(f(x)) schreibt man auch häufig auch: (g f)(x). 4 Verknüpfung von Funktionen Wir wollen die Operation noch an weiteren Beispielen üben. Zunächst benötigen wir aber noch zwei weitere Definitionen: Definition 3. Es seien X und Y zwei Mengen. Dann sind definiert Abb(X, Y ) := { f f : X Y ist Abbildung } Bij(X, Y ) := { f Abb(X, Y ) f ist bijektiv } Definition 4 (Komposition von Funktionen). Es seien X, Y, Z drei nicht-leere Mengen, f Abb(X, Y ) und g Abb(Y, Z). Dann wird die Komposition von f und g wie folgt definiert: (g f) : x g(f(x)) Abb(X, Z). 5

6 Bemerkung 3. Mit Hilfe dieser Definition lässt sich der Satz?? auch folgendermaßen formulieren: Satz. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: g f = id X und f g = id Y Für konkrete Mengen Y, können für Funktionen f, g : X Y auch noch andere Verknüpfungen definiert werden. Definition 5 (Addition und Multiplikation von Funktionen). Es seien X, Y = R f, g Abb(X, R) reellwertige Funktionen. Dann definiere: und (f + g) Abb(X, R) mit (f + g)(x) := f(x) + g(x) (f g) Abb(X, R) mit (f g)(x) := f(x) g(x) Beispiele I Komposition definiert: Seien X := Z, Y := N, Z := Q und seien folgende Abbildungen f : Z N mit z z und g : N Q mit n 1 n + 1. Dann ist g f : Z Q mit z 1 z + 1. Seien X, Y, Z drei nicht-leere Mengen. f Abb(X, Y ) und θ f definiert als θ f : Abb(Y, Z) Abb(X, Z) mit g g f 6

7 Beispiele II Addition/Multiplikation definiert als: Sei X = {, } und Y = R. Weiter seien f, g : X R f( ) := 0 f( ) := 1 g( ) := 2 g( ) := 1 Dann sind (f + g)( ) = f( ) + g( ) = 2 (f + g)( ) = f( ) + g( ) = 2 (f g)( ) = f( ) g( ) = 0 (f g)( ) = f( ) g( ) = 1 Bemerkung 4. Ganz analog lassen sich natürlich auch Verknüpfungen für Funktionen definieren, wenn Y = N, Y = Q, Y = Z ist. Allerdings müssen die Verknüpfungen eine Bedeutung in der Zielmenge haben. So ist etwa eine Addition auf der Zielmenge Y = {, } nicht ohne Weiteres sinnvoll, denn was sollte + sein? 5 Einschränkung/Restriktion von Funktionen Es kommt vor, dass man Aussagen über die Funktion nicht auf dem ganzen Definitionsbereich treffen möchte. So haben wir bereits gesehen, dass nicht injektiv ist, die Funktion g : R R, mit x x 2 g : R + 0 R, mit x x 2 jedoch schon. So haben die beiden Funktionen, obwohl sie sich so ähnlich sehen, doch grundlegend verschiedene Eigenschaften. Wir können aber eine Beziehung zwischen ihnen herstellen, indem wir die Funktion g einschränken. Definition 6. Seien X und Y zwei nicht-leere Mengen und f Abb(X, Y ). Ferner sei M X eine nicht-leere Teilmenge von X. Die Funktion h : M Y, mit h(x) := f(x) für alle x M heißt Einschränkung von f auf M, geschrieben: f M. Linksstehendes Diagramm veranschaulicht die Situation. i bezeichne hierbei die Inklusion von M in X. 7

8 6 Reellwertige Funktionen 6.1 Beispiele für Klassen reellwertiger Funktionen Sei f : R R eine reelle Funktion. Man unterscheidet unter Anderem: konstante Funktionen f(x) := c mit c R. lineare Funktionen f(x) := mx mit m R. affine Funktionen f(x) := mx + n. ganzrationale Funktionen (Polynomfunktionen) 2 f(x) := a 0 + a 1 x + a 2 x a n x n mit a i R und n N. rationale Funktionen 3 f(x) := p(x) q(x) wobei p und q ganzrationale Funktionen sind. Exponentialfunktionen f(x) := e x oder f(x) := a x mit a R +. trigonometrische Funktionen f(x) := sin x (oder cos x, tan x, cot x). 6.2 Eigenschaften In vielen Anwendungsgebieten der Mathematik werden Funktionen benötigt, die bestimmte Eigenschaften aufweisen, oder gegebene Funktionen werden auf diese untersucht. Beispielsweise kann die Betrachtung des Monotonieverhaltens bestimmter Funktionen Aufschluss geben, wo Extrema angenommen werden und Ähnliches. Wir wiederholen daher die folgende, aus der Schule bekannte Definition: Definition 7 (Monotonie). Es sei D eine Teilmenge von R. Eine Funktion f : D R heißt genau dann streng monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) < f(x 2 ) f heißt (schwach) monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) f(x 2 ) Analog heißt f [streng] monoton fallend, wenn gilt: f ist [streng] monoton wachsend. 2 Wichtig! Polynomfunktionen sind keine Polynome. Siehe Algebra-Vorlesung. 3 mit f : (R \ q 1 (0)) R 8

9 Unmittelbar aus der Definition der Monotonie erhält man folgende Aussage: Bemerkung 5. Jede streng monotone Funktion f : R R ist injektiv. Oft ist es auch interessant, wie groß beziehungsweise klein Funktionswerte einer gegebenen Funktion überhaupt werden können. Hier hilft der Begriff der Beschränktheit. Definition 8 (Beschränktheit). Eine Funktion f : R R heißt nach oben beschränkt, falls: s R x R : f(x) s und nach unten beschränkt, falls s R x R : f(x) s. Weiterhin heißt f beschränkt, falls f sowohl nach oben als auch nach unten beschränkt ist. Beispiel Die Funktion f : R R mit f(x) := x 2 ist nach unten, nicht jedoch nach oben beschränkt. 9

10 7 Zusatz Bevor wir weitere wichtige Eigenschaften von reellwertigen Funktionen, wie zum Beispiel Stetigkeit oder Differenzierbarkeit betrachten, ist es sinnvoll den Blick kurz auf ein paar bestimmte Funktionen zu richten. 7.1 Folgen Definition 9. Sei M eine nicht-leere Menge. Eine Abbildung a : N M heißt Folge. Notation: Man schreibt statt a häufig auch (a n ) mit n N oder kürzer (a n ) n N. Für die Folgenglieder schreibt man a n mit a n := a(n) für alle n N. Bemerkung 6. Insbesondere spricht man bei reellwertigen Folgen (M R) auch von monton wachsenden (fallenden) Folgen und beschränkten Folgen. Beispiele für Folgen 1. (a n ) n N\{0} mit a n := 1 n 2. die Fibonacci-Folge 1, 1, 2, 3, 5, 8, 13,... (b n ) n N mit b 0 := 1, b 1 := 1 und b n := b n 1 + b n 2 für n 1 3. (c n ) n N mit c n := ( 1) n. Besonders interessant bei der Betrachtung von Folgen ist das Verhalten im Unendlichen. Bei einigen Folgen wie b n werden die Folgewerte sehr groß, bei anderen wie c n springen die Werte hin und her. Manchmal laufen die Folgewerte aber für große n gegen einen bestimmten Wert wie zum Beispiel a n gegen Null. Definition 10 (Grenzwert). Für eine reellwertige Folge (a n ) n N heißt g R genau dann Grenzwert der Folge, wenn gilt Man schreibt auch ε > 0 n ε N n N : n > n ε = g a n < ε. g = lim n a n. Besitzt eine Folge einen Grenzwert, so heißt sie (gegen diesen Grenzwert) konvergent, andernfalls divergent. 10

11 Satz. Die Folge (a n ) aus Beispiel 1 konvergiert gegen den Grenzwert g = 0. Beweis. Sei ε > 0 beliebig gewählt. Setze 4 n ε := 1 ε. Dann folgt für n > nε 1 ε : g a n = 0 a n = a n = 1 n < 1 n ε 1 1/ε = ε 7.2 Stetigkeit Nach diesem kurzen Abstecher in das weite Gebiet der Folgen wollen wir uns nun einer weiteren Eigenschaft zuwenden, die reellwertige Funktion haben können: dem Stetigkeitsbegriff. Man nennt Funktionen f : R R stetig, wenn sie keine Sprünge enthalten, wenn man sie also mit einem Bleistift ohne Absetzen von links nach rechts durchzeichnen könnte. Diese Beschreibung ist sehr schön und anschaulich. Da sich aber Fähigkeiten im Umgang mit dem Bleistift schlecht beweisen lassen und individuell sehr unterschiedlich sind, benötigen wir eine etwas weniger anschauliche, aber formalere Definition. Definition 11 (Stetigkeit). Ein Funktion f : R R heißt genau dann stetig in einem Punkt x 0 R, wenn gilt: ε > 0 δ > 0 x R : Ist f in jedem x 0 R stetig, so heißt f stetig auf R. Anschaulich lässt sich das folgendermaßen darstellen: x x 0 < δ = f(x) f(x 0 ) < ε in allen x stetige Funktion 4 sind die Gaußklamern furs aufrunden. bei x = 3 unstetige Funktion 11

12 Aufgrund der charakteristischen Variablenbezeichunung, wird diese Definition von Stetigkeit auch als ε δ-kriterium bezeichnet. Dies ist jedoch bei weitem nicht die einzige Stetigkeitsdefinition. Eine weitere Möglichkeit die Stetigkeit einer Funktion f an einer Stelle x 0 zu definieren, besteht beispielsweise darin, Grenzwerte von Folgen zu verwenden. Definition 12 (Folgenstetigkeit). Eine Funktion f : R R heißt folgenstetig an der Stelle x0 R, wenn für jede Folge (x n ) n N gilt: lim x n = x 0 = lim f(x n) = f(x 0 ). n n Bemerkung 7. Es lässt sich beweisen, dass diese beiden Definitionen in R äquivalent sind. Jedoch gibt es Räume, in denen das nicht der Fall ist. Ebenso gibt es noch strengere Definitionen von Stetigkeit in dem Sinne, dass nur bestimmte stetige Funktionen diese strengeren Bedingungen erfüllen. Das alles ist aber Teil der Analysis-Grundvorlesungen. 7.3 Differenzierbarkeit Auch wenn dieser Teil wahrscheinlich in der Vorlesungzeit nicht mehr geschafft wird, soll er hier der Vollständigkeit halber und als ein zentraler Begriff der Analysis angeführt werden. Definition 13 (Differenzierbarkeit). Eine Funktion f : R R heißt an der Stelle x 0 differenzierbar, falls für alle Folgen (h n ) n N mit lim n h n = 0 der Grenzwert f(x 0 + h n ) f(x 0 ) lim n h n existiert und dieser für alle solche Folgen (h n ) gleich ist. Man schreibt dann f f(x 0 + h) f(x 0 ) f(x 0 + h n ) f(x 0 ) (x 0 ) := lim := lim h 0 h n h n und nennt f (x 0 ) den Wert der Ableitung von f an der Stelle x 0 oder aber auch den Anstieg von f an der Stelle x 0. Der Wert f (x 0 ) kann geometrisch als der Anstieg einer Tangenten betrachtet werden, die man im Punkt (x 0, f(x 0 )) an den Graphen von f anlegt. Per Konstruktion ist dies dann der Anstieg einer Sekanten, die durch den Punkt (x 0, f(x 0 )) und einen Stützpunkt (x, f(x )) verläuft, wobei x 0 und x unendlich dicht beieinander liegen. Bemerkung 8. Aus der Definition der Differenzierbarkeit der Funktion f kann man ohne Weiteres folgern, dass sie stetig ist. Die Umkehrung gilt aber im Allgemeinen nicht. Die Betragsfunktion f : R R, f(x) := x ist hier ein einfaches Gegenbeispiel. Sie ist in x 0 = 0 stetig, aber nicht differenzierbar. 12

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

4. Abbildung / Funktion

4. Abbildung / Funktion 4. Abbildung / Funktion In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001 ETH Zürich Departement der Mathematik PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson Funktionentheorie II SS 2001 1.Übung AUFGABE 1: Zeigen Sie, daß die Riemannschen Flächen CI und D := {z CI z < 1 } mit

Mehr

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09 Lineare Algebra I HP Butzmann Vorlesung im HWS 09 Inhaltsverzeichnis 1 Mengen und Abbildungen 2 2 Körper 15 3 Vektorräume 40 4 Basis und Dimension 53 5 Lineare Abbildungen 67 6 Matrizen 80 7 Lineare Gleichungssysteme

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr