Vorlesung. Funktionen/Abbildungen 1

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Funktionen/Abbildungen 1"

Transkript

1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert. Aber was ist eine Zuordnung, was wird zugeordnet und was bedeutet»eindeutig«? Um das zu klären, müssen wir die Definition etwas präzisieren: Definition 1 (Funktion bzw. Abbildung). Eine Funktion f ist ein Tripel f = (X, Y, Γ f ), wobei X und Y zwei nicht-leere Mengen sind und Γ f X Y mit den Eigenschaften: 1. x X y Y : (x, y) Γ f 2. x X y 1, y 2 Y : ( (x, y1 ) Γ f (x, y 2 ) Γ f ) = (y1 = y 2 ). Γ f heißt der Graph der Funktion f. Beispiel: Sei X = Y = {0, 1} und Γ f = {(0, 0), (1, 1)}, also ( ) f = {0, 1}, {0, 1}, {(0, 0), (1, 1)}. Aus Gründen der Anschaulichkeit werden Funktionen meist anders geschrieben. So kann man für die genannte Funktion auch schreiben: oder f : {0, 1} {0, 1} x x f : {0, 1} {0, 1} mit f(x) := x 1 erstellt aus dem Vorlesungsskript von Philipp Bannasch 1

2 Weitere Beispiele zur Demonstration der veschiedenen Schreibweisen: f : R R x x x2 + 1 x 1 falls x < 0 f : R R, f(x) = sign(x) := 0 falls x = 0 1 sonst { f : R R + 0, f(x) = x := x falls x < 0 x sonst Die Abbildung f : R R x x heißt Identität, man schreibt auch id R. Falls N eine nicht-leere Teilmenge von M ist, so heißt f Inklusion (Einbettung) von N in M, wenn f : N M x x 2 Bezeichnungen Sei f : X Y eine Funktion. Dann heißt 1. die Menge X Quelle/Definitionsbereich von f, 2

3 2. die Menge Y Ziel/Zielbereich von f, 3. die Menge f(x) = {y Y x X : f(x) = y} = Im(f) das Bild von f. 4. Für ein beliebiges y Y heißt die Menge f 1 (y) = {x X f(x) = y} das Urbild von y. 5. Falls Y = R, f also eine reellwertige Funktion, dann versteht man unter dem Urbild von Null von f die Menge f 1 (0), also die Menge der Elemente x X mit f(x) = 0. Das Bild von f ist also die Menge der y, die von f»getroffen werden«. Das Urbild zu einem y Y ist die Menge aller x X, welche dieses y als Bild haben (nicht mit der Umkehrfunktion von f zu verwechseln!). 3 Eigenschaften von Funktionen Definition 2 (Injektivität, Surjektivität und Bijektivität). Eine Funktion f : X Y heißt injektiv genau dann, wenn gilt: x 1, x 2 X : f(x 1 ) = f(x 2 ) x 1 = x 2 Eine Funktion f : X Y heißt surjektiv genau dann, wenn gilt: y Y x X : f(x) = y Eine Funktion f : X Y heißt bijektiv genau dann, wenn sie injektiv und surjektiv ist. Beispiele zur Veranschaulichung Die Funktion f : R R, x x 2 ist weder injektiv (da f( 1) = f(1)), noch surjektiv (da f 1 ( 1) = ), also nicht bijektiv. 3

4 Die Funktion f : R + 0 R, x x 2 ist injektiv, aber nicht surjektiv, also nicht bijektiv. Die Funktion f : R R + 0, x x2 ist nicht injektiv, also nicht bijektiv, aber surjektiv. Die Funktion f : R + 0 R + 0, x x2 ist bijektiv. Zur leichteren Überprüfung einer Eigenschaft versucht man in der Mathematik gern möglichst viele äquivalente Aussagen dieser Eigenschaft zu formulieren. Ein Beispiel sei die folgende Bemerkung 1. Eine Funktion f : X Y ist genau dann surjektiv, wenn Imf = Y. Die Bijektivität lässt sich leicht mittels folgenden Satzes überprüfen: Satz 1. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: x X : g(f(x)) = x und y Y : f(g(y)) = y. Ein solches g heißt auch Umkehrfunktion von f in X. 4

5 Beweis. Es müssen zwei Richtungen gezeigt werden. Zuerst die Hinrichtung ( = ): Sei f bijektiv. Dann gilt für alle y Y : f 1 (y), da f surjektiv. Da f außerdem injektiv ist, gilt, dass für jedes y Y genau ein x X existiert mit der Eigenschaft f(x) = y. Setze nun also g : Y X mit g(y) := x mit f 1 (y) = {x} für jedes y Y. g ist ebenfalls bijektiv und erfüllt die geforderten Eigenschaften. Nun die Rückrichtung ( =): Sei also g eine geeignete Abbildung zu f, welche die beiden Eigenschaften erfüllt. Wir müssen zeigen, dass daraus die Bijektivität von f folgt. Zuerst die Injektivität: Angenommen f wäre nicht injektiv. Dann exisitieren x 1 x 2 X mit f(x 1 ) = f(x 2 ). Es folgt x 1 = g(f(x 1 )) = g(f(x 2 )) = x 2. Das ist ein Widerspruch. f ist also injektiv. Bleibt zu zeigen, dass f auch surjektiv ist. Sei y Y beliebig. Dann ist für jedes y Y g(y) ein eindeutig bestimmtes Element aus X, weil g ja eine Funktion, also eine eindeutige Zuordnung ist. Außerdem erfüllt dieses g(y) laut Voraussetzung die Eigenschaft: f(g(y)) = y. Folglich ist f surjektiv. Bemerkung 2. Statt g(f(x)) schreibt man auch häufig auch: (g f)(x). 4 Verknüpfung von Funktionen Wir wollen die Operation noch an weiteren Beispielen üben. Zunächst benötigen wir aber noch zwei weitere Definitionen: Definition 3. Es seien X und Y zwei Mengen. Dann sind definiert Abb(X, Y ) := { f f : X Y ist Abbildung } Bij(X, Y ) := { f Abb(X, Y ) f ist bijektiv } Definition 4 (Komposition von Funktionen). Es seien X, Y, Z drei nicht-leere Mengen, f Abb(X, Y ) und g Abb(Y, Z). Dann wird die Komposition von f und g wie folgt definiert: (g f) : x g(f(x)) Abb(X, Z). 5

6 Bemerkung 3. Mit Hilfe dieser Definition lässt sich der Satz?? auch folgendermaßen formulieren: Satz. Eine Funktion f : X Y ist genau dann bijektiv, wenn es eine Funktion g : Y X gibt, so dass gilt: g f = id X und f g = id Y Für konkrete Mengen Y, können für Funktionen f, g : X Y auch noch andere Verknüpfungen definiert werden. Definition 5 (Addition und Multiplikation von Funktionen). Es seien X, Y = R f, g Abb(X, R) reellwertige Funktionen. Dann definiere: und (f + g) Abb(X, R) mit (f + g)(x) := f(x) + g(x) (f g) Abb(X, R) mit (f g)(x) := f(x) g(x) Beispiele I Komposition definiert: Seien X := Z, Y := N, Z := Q und seien folgende Abbildungen f : Z N mit z z und g : N Q mit n 1 n + 1. Dann ist g f : Z Q mit z 1 z + 1. Seien X, Y, Z drei nicht-leere Mengen. f Abb(X, Y ) und θ f definiert als θ f : Abb(Y, Z) Abb(X, Z) mit g g f 6

7 Beispiele II Addition/Multiplikation definiert als: Sei X = {, } und Y = R. Weiter seien f, g : X R f( ) := 0 f( ) := 1 g( ) := 2 g( ) := 1 Dann sind (f + g)( ) = f( ) + g( ) = 2 (f + g)( ) = f( ) + g( ) = 2 (f g)( ) = f( ) g( ) = 0 (f g)( ) = f( ) g( ) = 1 Bemerkung 4. Ganz analog lassen sich natürlich auch Verknüpfungen für Funktionen definieren, wenn Y = N, Y = Q, Y = Z ist. Allerdings müssen die Verknüpfungen eine Bedeutung in der Zielmenge haben. So ist etwa eine Addition auf der Zielmenge Y = {, } nicht ohne Weiteres sinnvoll, denn was sollte + sein? 5 Einschränkung/Restriktion von Funktionen Es kommt vor, dass man Aussagen über die Funktion nicht auf dem ganzen Definitionsbereich treffen möchte. So haben wir bereits gesehen, dass nicht injektiv ist, die Funktion g : R R, mit x x 2 g : R + 0 R, mit x x 2 jedoch schon. So haben die beiden Funktionen, obwohl sie sich so ähnlich sehen, doch grundlegend verschiedene Eigenschaften. Wir können aber eine Beziehung zwischen ihnen herstellen, indem wir die Funktion g einschränken. Definition 6. Seien X und Y zwei nicht-leere Mengen und f Abb(X, Y ). Ferner sei M X eine nicht-leere Teilmenge von X. Die Funktion h : M Y, mit h(x) := f(x) für alle x M heißt Einschränkung von f auf M, geschrieben: f M. Linksstehendes Diagramm veranschaulicht die Situation. i bezeichne hierbei die Inklusion von M in X. 7

8 6 Reellwertige Funktionen 6.1 Beispiele für Klassen reellwertiger Funktionen Sei f : R R eine reelle Funktion. Man unterscheidet unter Anderem: konstante Funktionen f(x) := c mit c R. lineare Funktionen f(x) := mx mit m R. affine Funktionen f(x) := mx + n. ganzrationale Funktionen (Polynomfunktionen) 2 f(x) := a 0 + a 1 x + a 2 x a n x n mit a i R und n N. rationale Funktionen 3 f(x) := p(x) q(x) wobei p und q ganzrationale Funktionen sind. Exponentialfunktionen f(x) := e x oder f(x) := a x mit a R +. trigonometrische Funktionen f(x) := sin x (oder cos x, tan x, cot x). 6.2 Eigenschaften In vielen Anwendungsgebieten der Mathematik werden Funktionen benötigt, die bestimmte Eigenschaften aufweisen, oder gegebene Funktionen werden auf diese untersucht. Beispielsweise kann die Betrachtung des Monotonieverhaltens bestimmter Funktionen Aufschluss geben, wo Extrema angenommen werden und Ähnliches. Wir wiederholen daher die folgende, aus der Schule bekannte Definition: Definition 7 (Monotonie). Es sei D eine Teilmenge von R. Eine Funktion f : D R heißt genau dann streng monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) < f(x 2 ) f heißt (schwach) monoton wachsend auf D, wenn gilt: x 1, x 2 D : x 1 < x 2 = f(x 1 ) f(x 2 ) Analog heißt f [streng] monoton fallend, wenn gilt: f ist [streng] monoton wachsend. 2 Wichtig! Polynomfunktionen sind keine Polynome. Siehe Algebra-Vorlesung. 3 mit f : (R \ q 1 (0)) R 8

9 Unmittelbar aus der Definition der Monotonie erhält man folgende Aussage: Bemerkung 5. Jede streng monotone Funktion f : R R ist injektiv. Oft ist es auch interessant, wie groß beziehungsweise klein Funktionswerte einer gegebenen Funktion überhaupt werden können. Hier hilft der Begriff der Beschränktheit. Definition 8 (Beschränktheit). Eine Funktion f : R R heißt nach oben beschränkt, falls: s R x R : f(x) s und nach unten beschränkt, falls s R x R : f(x) s. Weiterhin heißt f beschränkt, falls f sowohl nach oben als auch nach unten beschränkt ist. Beispiel Die Funktion f : R R mit f(x) := x 2 ist nach unten, nicht jedoch nach oben beschränkt. 9

10 7 Zusatz Bevor wir weitere wichtige Eigenschaften von reellwertigen Funktionen, wie zum Beispiel Stetigkeit oder Differenzierbarkeit betrachten, ist es sinnvoll den Blick kurz auf ein paar bestimmte Funktionen zu richten. 7.1 Folgen Definition 9. Sei M eine nicht-leere Menge. Eine Abbildung a : N M heißt Folge. Notation: Man schreibt statt a häufig auch (a n ) mit n N oder kürzer (a n ) n N. Für die Folgenglieder schreibt man a n mit a n := a(n) für alle n N. Bemerkung 6. Insbesondere spricht man bei reellwertigen Folgen (M R) auch von monton wachsenden (fallenden) Folgen und beschränkten Folgen. Beispiele für Folgen 1. (a n ) n N\{0} mit a n := 1 n 2. die Fibonacci-Folge 1, 1, 2, 3, 5, 8, 13,... (b n ) n N mit b 0 := 1, b 1 := 1 und b n := b n 1 + b n 2 für n 1 3. (c n ) n N mit c n := ( 1) n. Besonders interessant bei der Betrachtung von Folgen ist das Verhalten im Unendlichen. Bei einigen Folgen wie b n werden die Folgewerte sehr groß, bei anderen wie c n springen die Werte hin und her. Manchmal laufen die Folgewerte aber für große n gegen einen bestimmten Wert wie zum Beispiel a n gegen Null. Definition 10 (Grenzwert). Für eine reellwertige Folge (a n ) n N heißt g R genau dann Grenzwert der Folge, wenn gilt Man schreibt auch ε > 0 n ε N n N : n > n ε = g a n < ε. g = lim n a n. Besitzt eine Folge einen Grenzwert, so heißt sie (gegen diesen Grenzwert) konvergent, andernfalls divergent. 10

11 Satz. Die Folge (a n ) aus Beispiel 1 konvergiert gegen den Grenzwert g = 0. Beweis. Sei ε > 0 beliebig gewählt. Setze 4 n ε := 1 ε. Dann folgt für n > nε 1 ε : g a n = 0 a n = a n = 1 n < 1 n ε 1 1/ε = ε 7.2 Stetigkeit Nach diesem kurzen Abstecher in das weite Gebiet der Folgen wollen wir uns nun einer weiteren Eigenschaft zuwenden, die reellwertige Funktion haben können: dem Stetigkeitsbegriff. Man nennt Funktionen f : R R stetig, wenn sie keine Sprünge enthalten, wenn man sie also mit einem Bleistift ohne Absetzen von links nach rechts durchzeichnen könnte. Diese Beschreibung ist sehr schön und anschaulich. Da sich aber Fähigkeiten im Umgang mit dem Bleistift schlecht beweisen lassen und individuell sehr unterschiedlich sind, benötigen wir eine etwas weniger anschauliche, aber formalere Definition. Definition 11 (Stetigkeit). Ein Funktion f : R R heißt genau dann stetig in einem Punkt x 0 R, wenn gilt: ε > 0 δ > 0 x R : Ist f in jedem x 0 R stetig, so heißt f stetig auf R. Anschaulich lässt sich das folgendermaßen darstellen: x x 0 < δ = f(x) f(x 0 ) < ε in allen x stetige Funktion 4 sind die Gaußklamern furs aufrunden. bei x = 3 unstetige Funktion 11

12 Aufgrund der charakteristischen Variablenbezeichunung, wird diese Definition von Stetigkeit auch als ε δ-kriterium bezeichnet. Dies ist jedoch bei weitem nicht die einzige Stetigkeitsdefinition. Eine weitere Möglichkeit die Stetigkeit einer Funktion f an einer Stelle x 0 zu definieren, besteht beispielsweise darin, Grenzwerte von Folgen zu verwenden. Definition 12 (Folgenstetigkeit). Eine Funktion f : R R heißt folgenstetig an der Stelle x0 R, wenn für jede Folge (x n ) n N gilt: lim x n = x 0 = lim f(x n) = f(x 0 ). n n Bemerkung 7. Es lässt sich beweisen, dass diese beiden Definitionen in R äquivalent sind. Jedoch gibt es Räume, in denen das nicht der Fall ist. Ebenso gibt es noch strengere Definitionen von Stetigkeit in dem Sinne, dass nur bestimmte stetige Funktionen diese strengeren Bedingungen erfüllen. Das alles ist aber Teil der Analysis-Grundvorlesungen. 7.3 Differenzierbarkeit Auch wenn dieser Teil wahrscheinlich in der Vorlesungzeit nicht mehr geschafft wird, soll er hier der Vollständigkeit halber und als ein zentraler Begriff der Analysis angeführt werden. Definition 13 (Differenzierbarkeit). Eine Funktion f : R R heißt an der Stelle x 0 differenzierbar, falls für alle Folgen (h n ) n N mit lim n h n = 0 der Grenzwert f(x 0 + h n ) f(x 0 ) lim n h n existiert und dieser für alle solche Folgen (h n ) gleich ist. Man schreibt dann f f(x 0 + h) f(x 0 ) f(x 0 + h n ) f(x 0 ) (x 0 ) := lim := lim h 0 h n h n und nennt f (x 0 ) den Wert der Ableitung von f an der Stelle x 0 oder aber auch den Anstieg von f an der Stelle x 0. Der Wert f (x 0 ) kann geometrisch als der Anstieg einer Tangenten betrachtet werden, die man im Punkt (x 0, f(x 0 )) an den Graphen von f anlegt. Per Konstruktion ist dies dann der Anstieg einer Sekanten, die durch den Punkt (x 0, f(x 0 )) und einen Stützpunkt (x, f(x )) verläuft, wobei x 0 und x unendlich dicht beieinander liegen. Bemerkung 8. Aus der Definition der Differenzierbarkeit der Funktion f kann man ohne Weiteres folgern, dass sie stetig ist. Die Umkehrung gilt aber im Allgemeinen nicht. Die Betragsfunktion f : R R, f(x) := x ist hier ein einfaches Gegenbeispiel. Sie ist in x 0 = 0 stetig, aber nicht differenzierbar. 12

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

4. Abbildung / Funktion

4. Abbildung / Funktion 4. Abbildung / Funktion In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable,

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Institut für Informatik der Bayerischen Julius Maximilians Universität Würzburg Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Studienarbeit von Christian

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung: 1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Mathematik für ChemikerInnen I

Mathematik für ChemikerInnen I Mathematik für ChemikerInnen I Prof. Dr. Ansgar Jüngel Institut für Mathematik Johannes Gutenberg-Universität Mainz Winter 26 unkorrigiertes Vorlesungsskript Inhaltsverzeichnis Motivation 3 2 Grundbegriffe

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung. Roland Schwänzl

Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung. Roland Schwänzl Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung Roland Schwänzl SS 999 Inhaltsverzeichnis Mengenlehre 5 Ungleichungen 7 Graphen 4 Induktion 5 5 Endliche Summen 9 6 Folgen 7 Differenzengleichungen

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Einige Gedanken zur mathematischen Syntax. Andreas Kriegl email:andreas.kriegl@univie.ac.at

Einige Gedanken zur mathematischen Syntax. Andreas Kriegl email:andreas.kriegl@univie.ac.at Einige Gedanken zur mathematischen Syntax Andreas Kriegl email:andreas.kriegl@univie.ac.at Einige Gedanken zur mathematischen Syntax 1 Vorweg möchte ich einige Thesen aufstellen, von denen ich annehme,

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Vorlesung Ang. Mathematik für BWL 2.Woche: Funktionen I

Vorlesung Ang. Mathematik für BWL 2.Woche: Funktionen I Vorlesung Ang. Mathematik für BWL 2.Woche: Funktionen I Der Funktionsbegriff ist seit ca. 350 Jahren (Leibniz, Newton) einer der bedeutendsten mathematischen Begriffe. Bis vor wenigen Jahrzehnten hat man

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 3 Bälle und Topologie

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

3 Konvexe Analysis. 3.1 Grundlagen

3 Konvexe Analysis. 3.1 Grundlagen 25 3 Konvee Analsis 3.1 Grundlagen Die konvee Analsis auch Konveitätstheorie genannt untersucht geometrische Eigenschaften von konveen Mengen, Funktionen und Funktionalen in linearen Räumen. Eine tpische

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu. Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr