Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Größe: px
Ab Seite anzeigen:

Download "Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann"

Transkript

1 Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann

2 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden wir zuerst einmal denieren, was eine ganzrationale Funktion ist, uns dann weiterführend mit dem wichtigsten Handwerkszeug, der Ableitung beschäftigen, um dann das Thema mit einer beispielhaften Funktionsuntersuchung zu schlieÿen. Nun beginnen wir also mit der Denition einer ganzrationalen Funktion. f(x) = a n x n + a n 1 x n a 1 x + a 0 (n N a n 0) Dabei nennt man n, den Grad der Funktion, und a n bis a 0 die Koezienten. Andersherum gesagt bedeutet das also, dass alle Funktionen, die dem oben beschriebenen Aufbau entsprechen und die Bedingungen erfüllen, als ganzrational bezeichnet werden. Wir haben während unserer Schullaufbahn schon verschiedene ganzrationale Funktionen kennen gelernt. Die beiden wichtigsten sind wohl die linearen Funktionen der Form f (x) = mx + b und die quadratischen Funktionen der Form f (x) = ax 2 + bx + c. Beide Funktionstypen entsprechen den obigen Kriterien, sind also ganzrationale Funktionen. 2 Der Ableitungsbegri Das wichtigste Handwerkszeug der Dierentialrechnungen ist die Ableitung. Diesen Begri wollen wir nun mit Wissen füllen, und uns im Folgenden näher damit beschäftigen. 2.1 Was ist das? Um die Ableitung zu denieren eignen sich zwei unterschiedliche Arten der Betrachtung Algebraisch Algebraisch gesehen ist die Ableitung f (x 0 ) an einer Stelle x 0 der Limes (Grenzwert) des Dierenzenquotienten. Es gilt also : Geometrisch f (x) = lim x x 0 f(x) f(x 0 ) x x 0 Geometrisch gesehen gibt die Ableitung die Steigung der Tangente an einer Stelle x 0 an. -1-

3 2.2 Begriichkeiten Mit dem Ableitungsbegri hängen viele andere Begrie zusammen, die diesen von jeweils einer anderen Seite beleuchten. Begri Ableitung (mathematisch: f'(x)) Grenzwert des Dierenzenquotienten Dierenzialquotient momentane Änderungsrate Steigung in einem Punkt der einer Kurve Tangentensteigung Bemerkung Überbegri f (x) = lim x x0 f(x) f(x 0) x x 0 = Grenzwert des Dierenzenquotienten die Veränderung einer Gröÿe, in einem Moment (unendlich kleiner Zeitraum) die Veränderung der Funktionswerte in einer unendlich kleinen Umgebung von x P die Steigung die eine Tangente an einen Punkt einer Kurve hat entspricht der Punktsteigung in diesem Punkt 2.3 Der Sonderfall f'(x) = 0 - Die Betrachtung von Extremund Sattelpunkten Um aus einer Methode einen gröÿeren Nutzen zu ziehen betrachtet der Mathematiker gerne Sonderfälle. Wir wollen uns im Folgenden mit dem Sonderfall f'(x E ) = 0 beschäftigen. Das bedeutet die Ableitung und damit auch die Steigung an einer beliebigen Stelle x E ist gleich null. Das wiederum bedeutet, dass die Tangente an dieser Stelle x E eine waagerechte sein muss. Und dies ist nur in zwei Fällen der Fall. Nämlich gerade dann, wenn der Graph bei x E ein Extremum oder einen Sattelpunkt hat. Nun gilt es also ein Kriterium zu entwickeln, mit dem man Extrem- und Sattelpunkte voneinander unterscheiden kann. Nach einigen Überlegungen, auf die hier nicht näher eingegangen werden soll, kommt man zu dem Schluss, dass es eine notwendige und eine hinreichende Bedingung gibt, um ein Extremum an einer Stelle x E auszumachen: -2-

4 notwendige Bedingung: f (x E ) = 0 hinreichende Bedingung: f (x E ) = 0 f (x E ) 0 Problem: Die hinreichende Bedingung über die 2. Ableitung (f) führt nicht immer zum Erfolg. Es ist falsch aus einer Nichterfüllung der o.g. hinreichenden Bedingung auf einen Sattelpunkt (also kein Extrempunkt) zu schlieÿen. Dies sieht man z.b. an der ganzrationalen Funktion f(x) = x 4. Diese hat ein Minimum bei x E = 0. Die erste Ableitung ist f (0) = = 0. Die notwendige Bedingung für Extrempunkte ist also erfüllt. Für die zweite Ableitung gilt nun aber f (0) = = 0. Trotz eines Extremas bei x E = 0 ist die hinreichende Bedingung für Extrempunkte nicht erfüllt. Wir benötigen also eine weitere Möglichkeit Extrempunkte zu erkennen. Folgendes Schema soll uns dabei auf den richtigen Weg führen. Aus dem Schema entnehmen wir das ein Extremum immer einhergeht mit einem Vorzeichenwechsel(VZW) von f'. Dies führt uns zu dem sogenannten Vorzeichenwechselkriterium, welches dann Anwendung ndet, wenn die o.g. hinreichende Bedingung nicht erfüllt ist, oder wenn es zu kompliziert ist die zweite Ableitung zu bilden. Es gilt: Hat die 1. Ableitung f' an einer Stelle x E einen Vorzeichenwechsel, so ndet sich bei x E ein Extremum. 3 Ableitungsregeln Nun kennen wir einen wesentlichen Anwendungsbereich der Ableitungen. Jedoch sind wir noch nicht darauf eingegangen, wie das Ableiten an sich funktioniert. Es ist im Prinzip sehr einfach, wenn man sich an gewisse Regeln hält, die im Folgenden genannt werden. 3.1 Ÿ1 - Potenzregel 3.2 Ÿ2 - Faktorregel f(x) = x n f (x) = n x n 1 f(x) = c g(x) f (x) = c g (x) -3-

5 3.3 Ÿ3 - Summenregel 3.4 Ÿ4 - Kettenregel f(x) = g(x) + h(x) f (x) = g (x) + h (x) 3.5 Ÿ5 - Produktregel f(x) = u(v(x)) f (x) = u (v(x)) v (x) f(x) = u(x) v(x) f (x) = u (x) v(x) + u(x) v (x) 4 Funktionsuntersuchung von ganzrationalen Funktionen In diesem Kapitel wollen wir uns nun mit der Untersuchung der oben beschriebenen ganzrationalen Funktionen beschäftigen. Dies nennt man auch Kurvendiskussion. Dabei wird die Funktion nach einem bestimmten Kriterienkatalog untersucht, mit dem Ziel möglichst viel über ihre Eigenschaften zu erfahren. Anzumerken ist noch, dass im Abitur vorraussichtlich keine komplette Funktionsuntersuchung verlangt wird, sondern vielmehr die Anwendung einzelner Teilpunkte. Das Ablaufschema, auf welches dann im Folgenden näher eingegangen werden soll lautet folgendermaÿen: 0.) Ableitungen 3.) Achsenschnittpunkte 6.) Graph 1.) Symmetrie des Graphen 4.) Extrempunkte 2.) Verhalten für x ± 5.) Wendepunkte Ableitungen Von der zu untersuchenden Funktion werden die ersten drei Ableitungen (f'(x) bis f'(x) gebildet Symmetrie des Graphen Der Graph wird auf Achsensymmetrie zur y-ache bzw. Punktsymmetrie zum Ursprung untersucht. Dies sind zwei einfache Symmetrien, die mit wenig Aufwand erkennbar sind. Dabei gibt es zur Überprüfung der Symmetrie bei ganzrationalen Funktionen zwei Möglichkeiten. -4-

6 4.2.1 Über die Exponenten Wichtig: Diese Methode lässt sich ausschlieÿlich bei ganzrationalen Funktionen anwenden. Bei dieser Methode der Symmetriebestimmung macht man eine Aussage über Symmetrien anhand der Exponenten der Funktion. Dabei unterscheidet man drei Fälle: 1. die Funktion hat nur gerade Exponenten: Die Funktion ist achsensymmetrisch zur y-achse 2. die Funktion hat nur ungerade Exponenten: Die Funktion ist punktsymmetrisch zum Ursprung 3. die Funktion hat gerade und ungerade Exponenten: Es ist keine einfache Symmetrie erkennbar Über f(-x) Eine Methode die bei jedem Funktionstyp funktioniert, ist das Einsetzen von (-x). Hierbei bildet man f(-x), indem man in der vorliegende Funktion x = (-x) setzt, und das Ergebnis analysiert. Auch hier gibt es wieder drei Fälle. 1. f(-x) = f(x): Die Funktion ist achsensymmetrisch zur y-achse 2. f(-x) = -f(x): Die Funktion ist punktsymmetrisch zum Ursprung 3. f( x) f(x) f( x) f(x): Es ist keine einfache Symmetrie erkennbar Verhalten für x ± Um eine Aussage über dieses sogenannte Randverhalten machen zu können emp- ehlt sich ein dreischrittiges Vorgehen: 1. Ausklammern von x n mit dem höchsten Exponenten 2. Untersuchung, wie sich die einzelnen Teile des Terms für x ± verhalten 3. mit Hilfe von 2. eine Aussage für lim x ± f(x) machen Achsenschnittpunkte Es gibt zwei verschiedene Arten von Achsenschnittpunkten. Einmal die Schnittpunkte mit der y-achse und zum zweiten die Schnittpunkte mit der x-achse Schnittpunkte mit der y-achse Wichtig ist es an dieser Stelle anzumerken, dass eine Funktion nur einen einzigen Schnittpunkt mit der y-achse haben kann. Dieser hat die Koordinaten (0 f(0)). -5-

7 4.4.2 Schnittpunkte mit der x-achse Die x-koordinaten der x-achsen Schnittpunkte nennt man auch Nullstellen 1. Diese Nullstellen lassen sich mit Hilfe der Gleichung f(x) = 0 berechnen. Es gilt, das eine Funktion von Grad n, 0 bis n Nullstellen haben kann Extrempunkte Bei Extrempunkten unterscheiden wir zwischen Tief- und Hochpunkten. Damit jedoch über ein Extremum an einer Stelle x E vorhanden sein kann, muss folgende notwendige Bedingung für Extrempunkte gelten: f (x E ) = 0. D.h. um alle möglichen Extremstellen zu nden, muss zuerst die Gleichung f (x) = 0 gelöst werden. Alle Lösungen dieser Gleichung sind mögliche Extremstellen. Nun gilt es also noch zu verizieren, welche davon tatsächliche Extremstellen sind. Der erste Zugri auf diese Frage geschieht über die hinreichende Bedingung für Extrempunkte. Diese lautet f (x E ) = 0 f (x E ) 0. Wobei gilt: f (x E ) = 0 f (x E ) < 0 Maximalstelle f (x E ) = 0 f (x E ) > 0 Minimalstelle Falls f (x E ) = 0 sein sollte, heiÿt das nicht automatisch, dass es keine Extremstelle bei x E gibt. An dieser Stelle muss das oben beschriebene Vorzeichenwechselkriterium zu Rate gezogen werden. Erst wenn auch dieses nicht erfüllt ist, steht eindeutig fest, dass es sich um einen Sattelpunkt handeln muss. Ist nun festgestellt worden, dass x E eine Extremstelle ist, so muss noch der dazugehörige y-wert berechnet werden. Erst so wird aus einer Extremstelle ein Extrempunkt. Als letztes bleibt noch die Prüfung auf Globalität. Ein Hochpunkt ist dann global, wenn es auf dem kompletten Denitionsbereich der Funktion keinen höheren Punkt mehr gibt. Das selbe gilt selbstverständlich auch für globale Minima. Um dies zu erreichen vergleichen wir einfach die y-werte aller Minima, und aller Maxima miteinander und ermitteln so das höchste, bzw. niedriegste. Nun gilt es aber noch eine wichtige Sache zu beachten, nämlich das Randverhalten. Wenn die Funktion gegen plus oder minus Unendlich geht, kann es kein globales Minimum bzw. Maxium geben, da selbstverständlich nix gröÿer sein kann als unendlich Wendepunkte Ein Wendepunkt ist ein Extremum der Steigung. Das bedeutet folgendes: notwendige Bedingung für Wendepunkte: f (x W ) = 0 hinreichende Bedingung für Wendepunkte:f (x W ) = 0 f (x W ) 0 Wenn f (x W ) = 0 ist, muss das Vorzeichenwechselkriterium für f (x W ) angewand werden. 1 Zur Erinnerung: Punkt: P(x y) Stelle: x Funktionswert: y -6-

8 Graph Der letzte Punkt einer Funktionsuntersuchung ist das Zeichnen des Graphens der zu untersuchenden Funktion. Um diesen zu zeichnen benutzt man alle bisher berechneten Punkte, falls vorhanden die Symmetrie, das Randverhalten und wenn das alles zu wenig ist noch eine Wertepaartabelle. -7-

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 10)

Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 10) Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 0) I. Bereich: Differentialrechnung. Mittlere Änderungsrate Differenzenquotient einer Funktion, Sekantensteigung Um die Steilheit eines Funktionsgraphen

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Extrempunkte eine Einführung

Extrempunkte eine Einführung Extrempunkte eine Einführung Kurzer Überblick Grundsätzlich ist ein Extrempunkt der entweder ein Hochpunkt oder ein Tiefpunkt sein kann ein Punkt am Graphen einer Funktion, dessen Wert (y- Koordinate)

Mehr

2 Wiederholung der Ableitungsregeln und höhere Ableitungen

2 Wiederholung der Ableitungsregeln und höhere Ableitungen 2 Wiederholung der Ableitungsregeln und höhere Ableitungen In der Abbildung sehen Sie die Graphen der Funktionen f und g mit f (x) = x 2 und g (x) = _ 1 x 2 4 sowie die Graphen der Ableitungsfunktionen

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Abiturprüfung 2008. Mathematik, Grundkurs

Abiturprüfung 2008. Mathematik, Grundkurs M GK HT 3 Seite 1 von Name: Abiturprüfung 008 Mathematik, Grundkurs Aufgabenstellung: Gegeben ist die Funktion f mit x f( x) = ( x+ 1) e, x IR. Der Graph von f ist in der nebenstehenden Abbildung dargestellt.

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4 1 Aufgaben Untersuche die folgende Funktionen auf Nullstellen, Schnittpunkte mit den Koordinatenachsen, Extremwerte, y-achsensymmetrie und Punktsymmetrie zum Ursprung (0 0) und zeichnen den Graph der Funktion.

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

4. Klassenarbeit Mathematik

4. Klassenarbeit Mathematik Name: 30. Mai 2007 Klasse 11A 4. Klassenarbeit Mathematik Thema: Differentialrechnung Allgemeine Bearbeitungshinweise: Die Bearbeitung muss von einer geeigneten Dokumentation begleitet werden. Hierzu gehören:

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

durch folgende Einschränkungen bestimmt:

durch folgende Einschränkungen bestimmt: 1 von 11 27.04.2008 16:00 Kurvendiskussion aus Wikipedia, der freien Enzyklopädie Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften,

Mehr

Abi Know-How Mathematik

Abi Know-How Mathematik Mathe bis zum Abitur Abi Know-How Mathematik Olaf Schneider Liebe Schüler, Das Abi Know-How Mathematik ist als Lernhilfe für meine Nachhilfeschüler entstanden. Es ist geeignet für die Oberstufe bis zum

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Hamburg Mathematik Analysis Übungsaufgabe 5 Erhöhtes Niveau

Hamburg Mathematik Analysis Übungsaufgabe 5 Erhöhtes Niveau Hamburg Mathematik Analysis Übungsaufgabe 5 Erhöhtes Niveau Zitronenpresse Eine Zitronenpresse besteht aus der eigentlichen Presse als Deckel und einem Auffanggefäß. Beides ist in der nebenstehenden Abbildung

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Formelsammlung Analysis

Formelsammlung Analysis Formelsammlung Analysis http://www.fersch.de Klemens Fersch. August 0 Inhaltsverzeichnis Analysis. Grenzwert - Stetigkeit.............................................. Grenzwert von f(x) für x gegen x0...................................

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra Selbständiges Arbeiten Oberstufe - KSOe (SprachProfil) GeoGebra Klasse 6bw Okt. 2011 / R. Balestra Inhaltsverzeichnis 1 Ziel 2 2 freeware GeoGebra - Der Download 3 3 Die Eingabe von Funktionen 4 3.1 Bearbeitungsmöglichkeiten......................

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 26 (von 09.03 bis 13.03) Hausaufgaben 1 Bis Mittwoch 11.03: Auf dem Planungsblatt stehen einige Aufgaben als Übung für die SA. Bereite diese Aufgaben vor! Vor

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Differenzialrechnung. Zusammenfassung. 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten

Differenzialrechnung. Zusammenfassung. 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten Differenzialrechnung Zusammenfassung 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten 2.1 Funktionen Funktion: jeder reellen Zahl x aus einer Definitionsmenge D wird eine ganz bestimmte Größe,

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Zentralabitur 2006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Gesamtschule

Zentralabitur 2006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Gesamtschule Zentralabitur 006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Hinweise zur Auswahl der Aufgaben für Lehrkräfte am Gymnasium und an der Die Prüflinge erhalten zwei Aufgaben zur Analysis

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr