7 Die Determinante einer Matrix

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "7 Die Determinante einer Matrix"

Transkript

1 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) = 1. Damit schreibt sich det A in der Form det A = sign(id) a 1,id(1) a 2,id(2) + sign(τ)a 1,τ(1)a 2,τ(2) Allgemein definiert man für A = (a ij )ij = 1,..., n(n 2) det A := π S n sign(π)a 1,π(1) a 2,π(2)... a n,π(n) Für n = 1 setzt man det(a 11 ) = a 11 Im Fall n = 3 gilt die Regel von Sarrus: a 11 a 12 a 13 a 11 a 12 a 21 a 22 a 23 a 21 a 22 a 31 a 32 a 33 a 31 a det A = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33 Für n 4 ist die Definition für die konkrete Berechnung von det A nicht besonders geeignet. Wir suchen daher Eigenschaften der Determinante, welche ihre Berechnung erleichtern. Dazu fassen wir det A auf als Funktion ihrer Zeilen 1

2 v 1 = (a 11, a 12,..., a 1n ) v 2 = (a 21, a 22,..., a 2n ). v n = (a n1, a n2,..., a nn ) und setzen det(v 1,..., v n ) := det A. Die Determinante ist somit eine Funktion in n variablen 1 n Matrizen v 1,..., v n V = M(1 n, K): det : V n K, (v 1,..., v n ) det(v 1,..., v n ) (7.1) Satz: (Charakteristische Eigenschaften der Determinante) a) Die Funktion det hat folgende Eigenschaften: (D1) ( Linearität in den Zeilen). Für jedes i {1,..., n} gilt det(v 1,..., v i 1, v i + v i, v i+1,..., v n ) = = det(v 1,..., v i,..., v n ) + det(v 1,..., v i 1, v i, v i+1,..., v n ) = = det(v 1,..., v i 1, λv i, v i+1,..., v n ) = λ det(v 1,..., v n ) (D2) Ist v i = v j für ein Paar i j, so ist det (v1,...,v n ) = 0 (D3) det E n = 1 b) det ist die einzige Funktion V n K, welche die Eigenschaften (D1), (D2), (D3) besitzt. Beweis: a) (D1) für i = 1: Sei v 1 = (a 11,..., a 1n), also v 1 + v 1 = (a 11 + a 11, a 12 + a 12,..., a 1n + a 1n), λv 1 = (λa 11, λa 12,..., λa 1n ) det(v 1 + v 1, v 2,..., v n ) = π S n sign(π)(a 1,π(1) + a 1,π(1))a 2,π(2)... a n,π(n) = 2

3 = π S n sign(π)a 1,π(1) a 2,π(2)... a n,π(n) + π S n sign(π)a 1,π(1)a 2,π(2)... a n,π(n) = = det(v 1, v 2,..., v n ) + det(v 1, v 2,..., v n ) det(λv 1, v 2,..., v n ) = π S n sign(π)(λa 1π(1) )... a n,π(n) = = λ π S n sign(π)a 1,π(1)... a n,π(n) = λ det(v 1,..., v n ) (D2) für i = 1, j = 2 : v 1 = v 2, d.h. a 1j = a 2j für j = 1,..., n. Sei τ = (12). Dann ist S n = A n A n τ und ( ) sign(πτ) = sign(π)sign(τ) = 1 ( 1) = 1 für alle π A n det(v 1,..., v n ) = = V or sign(π)a 1π(1) a 2π(2)... a nπ(n) = π S n = π S n sign(π)a 2π(1) a 2π(2)... a nπ(n) = ( ) = a 2π(1) a 2π(2) a 3π(3)... a nπ(n) a 2π(τ(1)) a 2π(τ(2)) a 3π(3)... a nπ(n) = π A n π A n = a 2π(1) a 2π(2) a 3π(3)... a nπ(n) a 2π(2) a 2π(1) a 3π(3)... a nπ(n) = 0 π A n π A n { 1 falls i = j (D3) E n = (δ ij ), wobei δ ij = ; also ist 0 falls i j { 1 falls π = id δ 1π(1)... δ nπ(n) = ; ferner ist sign(id) = 1. 0 falls π id Es folgt det E n = sign(π)δ 11 δ δ nn = 1. (7.2) Lemma: Sei d : V n K eine Funktion mit den Eigenschaften (D1), (D2), (D3). Setze d(a) := d(v 1,..., v n ), wenn v 1,..., v n die Zeilen von A sind. Dann gilt: a) d(a) = 0, falls Rang A < n 3

4 b) Geht B aus A durch elementare Zeilenumformungen vom Typ I hervor, so ist d(a) = d(b). c) Entsteht B aus A durch Vertauschung von 2 Zeilen, so ist d) Für eine obere Dreiecksmatrix gilt d(a) = d(b) b d = b b nn (Produkt der Diagonalelemente) b nn Beweis von 7.1 b) mit Hilfe des Lemmas: Sei d eine Funktion mit den Eigenschaften (D1), (D2) und (D3). Die Aussagen von (7.2) gelten nun für d und für det. 1. Fall: Ist Rang A < n, so ist nach 7.2 a) det A = 0 = d(a). 2. Fall: Sei Rang A = n. Nach I.3.4 geht A durch elementare Zeilenumformungen vom Typ I und II über in eine obere Dreiecksmatrix b 11 B =... mit b b nn 0 0 b nn Sind darunter genau k Zeilenvertauschungen, so folgt aus 7.2 c), d) d(a) = ( 1) k d(b) = ( 1) k b b nn ; ebenso det A = ( 1) k det B = ( 1) k b b nn. Der Beweis von 7.1 b) zeigt auch, wie man det A berechnen kann. (7.3) Verfahren zur Berechnung der Determinante einer Matrix 4

5 (i) Forme A elementar um auf obere Dreiecksgestalt, und zwar allein durch Zeilenumformungen vom Typ I und II. Erhalte b 11 B =... 0 b nn Sei k die Zahl der dabei vorgenommenen Vertauschungen. (ii) det A = ( 1) k b b nn Beispiel: A = II I I = B; k = Also ist det A = det B = 1 1 ( 1) = 1. Berechnung von det A m.h. der Regel von Sarrus: Beweis des Lemmas: det A = ( 8) 0 2 = 1 a) Sei etwa v 1 = λ 2 v λ n v n. Es folgt d(v 1, v 2,..., v n ) (D1) = λ 2 d(v 2, v 2,..., v n ) + λ 3 d(v 3, v 2, v 3,..., v n ) λ n d(v n, v 2,..., v n ) (D2) = 0 b) Sei etwa B = (v 1 + λv 2, v 2,..., v n ) : d(b) (D1) = d(v 1,..., v n ) + λd(v 2, v 2,..., v n ) (D2) = d(v 1,..., v n ) = d(a) c) Sei etwa B = (v 2, v 1, v 3,..., v n ) : 0 (D2) = d(v 1 + v 2, v 1 + v 2, v 3,..., v n ) (D1) = d(v 1, v 1 + v 2, v 3,..., v n ) + +d(v 2, v 1 +v 2, v 3,..., v n ) (D1) = d(v 1, v 1, v 3,..., v n )+ d(v 1, v 2, v 3,..., v n )+ + d(v 2, v 1, v 3,..., v n ) + d(v 2, v 2, v 3,..., v n ) (D2) = d(v 1, v 2, v 3,..., v n ) + + d(v 2, v 1, v 3,..., v n ) = d(a) + d(b) und d(a) = d(b) 5

6 b 11 d) Ist b kk = 0 für ein k, so sind die ersten k Spalten von B =... 0 b nn linear abhängig, also Rang B < n und d(b) = 0 = b b nn. Im Fall b 11 0,..., b nn 0 geht B durch elementare Umformungen b 11 0 b 11 e t 1 vom Typ I über in D =... =. und es folgt 0 b nn b nn e t n d(b) = b) d(d) = d(b 11 e t 1,..., b nn e t n) (D1) = b b nn d(e n ) (D3) = b b nn (7.4) Satz: det AB = det A det B Beweis: Ist Rang B < n, so ist auch Rang AB (5.3) Rang B n und daher det AB = 0 = det A det B nach 7.2 a). Ist Rang B = n, so ist det B 0 nach (7.2) und (5.4) f). Setze δ = det B und betrachte die Funktion d(v 1,..., v n ) := 1 det AB, wenn δ A die Matrix mit den Zeilen v 1,..., v n ist. Behauptung: d hat die Eigenschaften (D1), (D2), (D3). Ist dies gezeigt, so folgt aus 7.1 b: det A = d(v 1,..., v n ) = det AB det B. Beweis der Zwischenbehauptung: Nach 4 sind v 1 B,..., v n B die Zeilen von AB, also d(v 1,..., v n ) = 1 δ det(v 1B,..., v n B). (D1) : d(v 1 + v 1, v 2,..., v n ) = 1 δ det(v 1B + v 1B, v 2 B,..., v n B) (D1) = = 1 δ det(v 1B, v 2 B,..., v n B) + 1 δ det(v 1B, v 2 B,..., v n B) = = d(v 1,..., v n ) + d(v 1, v 2,..., v n ) d(λv 1, v 2,..., v n ) = 1 δ det((λv 1)B, v 2 B,..., v n B) (D1) = = 1 δ λ det(v 1B, v 2 B,..., v n B) = λ d(v 1,..., v n ) (D2) d(v 2, v 2, v 3,..., v n ) = 1 det(v δ 2B, v 2 B, v 3 B,..., v n B) (D2) = 0 (D3) d(e n ) = 1 det B det(e nb) = 1 6

7 (7.5) Satz: det A = det A t Beweis: A t = B = (b ij ) i,j=1,...,n mit b ij = a ji für i, j = 1,..., n. Zeige zunächst gewisse Aussagen über Permutationen π S n (1) Die Mengen M = {a π 1 (1),1,..., a π 1 (n),n} und N = {a 1,π(1),..., a nπ(n) } sind gleich. (2) sign(π) = sign(π 1 ) (3) Die Abbildung ϕ : S n S n, π π 1 = σ ist bijektiv. Beweis: (3) Wegen (π 1 ) 1 = π ist ϕ ϕ = id. (2) 1 = sign(id) = sign(ππ 1 ) = sign(π) sign(π 1 ) und beide Zahlen sind ±1. (1) Zeige M N: Sei a π 1 (j),j M. Setze k := π 1 (j) π(k) = π(π 1 (j)) = j; also ist a π 1 (j),j = a k,π(k) N. Analog zeigt man, dass N M. Also ist M = N. Aus (1), (2) und (3) folgt nun det A = (1) sign(π)a 1π(1)... a nπ(n) = sign(π)a π 1 (1),1... a n 1 (n),n π S n π S n (2) = sign(π 1 )a π 1 (1),1... a π 1 (n),n = sign(σ)a σ(1),1... a σ(n),n = π S n σ S n = σ S n sign(σ)b 1σ(1)... b nσ(n) = det B Analog zu elementaren Zeilenumformungen sind elementare Spaltenumformungen vom Typ I und Typ II erklärt. Wegen det A = det A t und da die Spalten von A die Zeilen von A t sind, gelten für Spalten entsprechende Aussagen wie für Zeilen. Wir fassen die wichtigsten Regeln für das Rechnen mit Determinanten zusammen: (7.6) Regel: 7

8 a) det E n = 1 (D3) b) det(λa) = λ n det A (D1) c) det AB = det A det B (7.4) d) Bei elementaren Zeilen- bzw. Spaltenumformungen vom Typ I ändert sich die Determinante nicht. e) Bei Vertauschung von zwei Zeilen bzw. Spalten ändert sich nur das Vorzeichen der Determinante. f) Genau dann ist A invertierbar, wenn det A 0 (7.2 und 5.4). In diesem Fall ist det(a 1 ) = (det A) 1 (a) und c)) g) det A = det A t a 11 h) det... = a a nn 0 a nn (7.7) Satz: Seien B M(r r, K), C M((n r) (n r), K) und D M(r (n r), K). Dann gilt für die Matrix ( ) B D A = : det A = det B det C 0 C Beweis: B geht durch Zeilenumformungen vom Typ I und II über in eine Matrix b 11 B =... ; sind dabei k 1 Zeilenvertauschungen 0 b rr vorgenommen worden, so ist det B = ( 1) k 1 b b 1r. Entsprechend kann C in eine Matrix C = c übergeführt 0 c n r,n r werden, bei k 2 Zeilenvertauschungen, und es ist det C = ( 1) k 2 c c n r,n r. 8

9 Führe an den ersten r Zeilen von A die gleichen Umformungen durch wie bei B und erhalte bei k 1 Zeilenvertauschungen ( ) B A D = mit det A = ( 1) k 1 det A. 0 C Führe an den letzten n r Zeilen von A die gleichen Umformungen durch wie bei C und erhalte b 11. ( ).. B A D b = 0 C = rr c mit det A = ( 1) k 2 det A = c n r,n r = ( 1) k 2 b b rrc c n r,n r. Es folgt det A = ( 1) k 1 det A = ( 1) k 1 ( 1) k 2 b b rrc c n r,n r = det B det C Wir wollen noch eine weitere Methode zur Berechnung von Determinanten kennen lernen. Sei A = (a ij ) M(n n, K). Wir bezeichnen mit A ij die (n 1) (n 1) Matrix, welche aus A entsteht, indem man die i te Zeile und die j te Spalte streicht. a 11...a 1j... a 1n... A ij = a i1...a ij... a in... a n1...a nj... a nn (7.8) Regel: a) Entwicklung nach der 1. Zeile: det A = a 11 det A 11 a 12 det A ( 1) n+1 a 1n det A 1n b) Entwicklung nach der 1. Spalte: det A = a 11 det A 11 a 21 det A ( 1) n+1 a n1 det A n1 9

10 c) Allgemeiner gilt für i, j {1,..., n}: det A = det A = n ( 1) i+j a ij det A ij (Enwicklung nach i ter Zeile) j=1 n ( 1) i+j a ij det A ij (Enwicklung nach j ter Spalte) i=1 Beweis von a) (b) und c) analog): a det A (D1) a 21 = det. A 11 +det 7.6e) a n1 0 a a 22. a n det a 1n a 2n A 1n. a a a 1n a 21 = det. A 11 det a 22. A a 2n.+( 1)n+1 det. A 1n 7.7 = 7.5 a n1 a n2 a 11 det A 11 a 12 det A ( 1) n+1 a 1n det A 1n Beispiel A = Enwickle nach der 1. Zeile det A = 0 det ( ) det 1 2 ( ) ( 4) det 1 2 = (2 + 1) + ( 4) (1 2) = = 1 a nn ( ) a nn (7.9) Die Cramersche Regel: Sei A GL n (K) und b K n. A j sei die Matrix, die aus A durch Streichen der j ten Spalte entsteht. Dann ist x 1 = ( 1) n 1 det(a 1 b) det A, x 2 = ( 1) n 2 det(a 2 b) det A,..., x n = det(a n b) det A die eindeutige Lösung des linearen Gleichungssystems Ax = b. 10

11 Beweis: Es ist zu zeigen, dass ( ) a i1 + a i2 x a in x n b i = 0 für alle i = 1,..., n Betrachte dazu die (n + 1) (n + 1) Matrix ( ) ai1 a à = i2... a in b i A b Da à zwei gleiche Zeilen hat ist det à = 0. Entwicklung von det à nach der 1. Zeile ergibt a i1 det(a 1 b) a i2 det(a 2 b)+...+( 1) n 1 a in det(a n b)+( 1) n b i det A = 0 Multiplikation mit ( 1)n 1 det A ergibt ( ). 11

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Die Determinante einer Matrix

Die Determinante einer Matrix Chr.Nelius, Lineare Algebra II (SS 2005) 6 Die Determinante einer Matrix Wir betrachten im folgenden Determinantenformen auf dem Vektorraum V = K n. Eine solche Form ist eine Abbildung von n Spaltenvektoren

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt: 7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij )

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij ) 7 Determinanten Im folgenden betrachten wir quadratische Matrizen. Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt Kapitel 5 Determinanten 51 Definition und Existenz Definition 511 Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1 Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt [D1] D ist linear

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Die Determinante. Lineare Algebra I. Kapitel Mai 2013

Die Determinante. Lineare Algebra I. Kapitel Mai 2013 Die Determinante Lineare Algebra I Kapitel 7 21. Mai 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent:

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

$Id: det.tex,v /01/08 13:59:24 hk Exp $ A = 1 3

$Id: det.tex,v /01/08 13:59:24 hk Exp $ A = 1 3 $Id: det.tex,v 1.28 2018/01/08 13:59:24 hk Exp $ 8 Determinanten Wir kommen jetzt zum Begriff der Determinante. Determinanten sind merkwürdigerweise über hundert Jahre älter als Matrizen, und sie wurden

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Übersicht 2.1 Erste einfache Erklärungen ElementareUmformungen... 26

Übersicht 2.1 Erste einfache Erklärungen ElementareUmformungen... 26 2 Determinanten Übersicht 2.1 Erste einfache Erklärungen... 23 2.2 ElementareUmformungen... 26 In diesem Kapitel stellen wir einen Begriff vor, der uns gar nicht oft begegnen wird, der aber trotzdem seine

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante.

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante. 118 36 Determinanten Wir verallgemeinern jetzt den Begriff bilinear zu multilinear Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante 361 Definition (alternierend, symmetrisch,

Mehr

9 Determinanten. ax = b, so ist dies genau dann lösbar, wenn a 6= 0gilt. Daher definiert man als Determinante

9 Determinanten. ax = b, so ist dies genau dann lösbar, wenn a 6= 0gilt. Daher definiert man als Determinante 9 Determinanten Historisch von großer edeutung war die Fragestellung, ob ein gegebenes lineares Gleichungssystem eine Lösung besitzt Zu einer gegebenen Matrix ist man daran interessiert diese Lösbarkeit

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

$Id: det.tex,v /12/19 13:21:08 hk Exp $ A = 1 3

$Id: det.tex,v /12/19 13:21:08 hk Exp $ A = 1 3 $Id: det.tex,v 1.24 2016/12/19 13:21:08 hk Exp $ 8 Determinanten Wir kommen jetzt zum Begriff der Determinante. Determinanten sind merkwürdigerweise über hundert Jahre älter als Matrizen, und sie wurden

Mehr

Lineare Algebra und Analytische Geometrie II

Lineare Algebra und Analytische Geometrie II Rudolf Fritsch Sommersemester 2000 Lineare Algebra und Analytische Geometrie II 2 Mai 2000 1 Determinanten Takakazu Seki Kowa * Fujioka, Kozuke (Japan) März 1642, Edo (heute: Tokio) 24 10 1708, führt in

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Mathematik für Naturwissenschaftler

Mathematik für Naturwissenschaftler Mathematik für Naturwissenschaftler Was Sie im Bachelor wirklich brauchen und in der Schule nicht lernen Bearbeitet von Norbert Herrmann 1. Auflage 2011. Taschenbuch. Paperback ISBN 978 3 8274 2866 0 Format

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

Rang und Inverses einer Matrix

Rang und Inverses einer Matrix Rang und Inverses einer Matrix wgnedin@math.uni-koeln.de 29. April 2014 In dieser Notiz werden Methoden und Beispiele zur Berechnung des Rangs einer Matrix sowie der Inversen einer invertierbaren Matrix

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr