Beispiel vor dem Beweis:

Größe: px
Ab Seite anzeigen:

Download "Beispiel vor dem Beweis:"

Transkript

1 Beispiel vor dem Beweis:

2 Beispiel vor dem Beweis: A = ¼ ½

3 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = 3 6

4 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = ½

5 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = ½ 6

6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = ½ 6

7 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = ½ 6

8 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A ½ 6 1

9 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A Also, die inverse ist ½ 6 1

10 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A ½ 6 1 Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12

11 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = E 12 A = E31 1 E 12A = 3 6 E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A ½ 6 1 Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

12 2½ 2½ ¼3 6 A = Id 311 E 12 A = E31 1 E 12A = 3 6 Beispiel vor dem Beweis: E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A ½ 6 1 =¼1 1 Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

13 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 Beispiel vor dem Beweis: E 2 32 E1 31 E 12A = E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A ½ 6 1 =¼1 =¼ Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

14 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 E 3 11 E 2 32 E1 31 E 12A = 3 6 Beispiel vor dem Beweis: E E1 31 E 12A = E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A 13½ =¼1 =¼ 12 =¼ 31 1 E Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

15 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 E 3 11 E 2 32 E1 31 E 12A = 3 6 E 3 E E1 31 E 12A = 3 Beispiel vor dem Beweis: E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A 6 13½ 3 1 =¼1 =¼ 12 =¼ 31 1 E E1 31 E 12 =¼ Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

16 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 E 3 11 E 2 32 E1 31 E 12A = 3 6 E 3 E E1 31 E 12A = 3 Beispiel vor dem Beweis: E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A 13½ =¼1 =¼ 12 =¼ 31 1 E E E1 31 E 12 =¼ E1 31 E 12 = Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

17 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 E 3 11 E 2 32 E1 31 E 12A = 3 6 E 3 E E1 31 E 12A = 3 Beispiel vor dem Beweis: E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A =¼1 =¼ 12 =¼ 31 1 E E1 31 E 12 =¼ E1 31 E 12 = E 32 E 2 32 E1 31 E 12 = 3 ¼ ½ E Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

18 2½ 2½ ¼3 6 A = Id 311 E 12 A = 3 6 E 3 11 E31 1 E 12A = 3 6 E 3 11 E 2 32 E1 31 E 12A = 3 6 E 3 E E1 31 E 12A = 3 Beispiel vor dem Beweis: E 1 32 E1 33 E 12A = E 1/2 =¼1 11 E1/3 22 E 1 32 E1 31 E 12A =¼1 =¼ 12 =¼ 31 1 E E1 31 E 12 =¼ E1 31 E 12 = E 32 E 2 32 E1 31 E 12 = 3 ¼ /2 11 E1/3 22 E E 2 32 E1 31 E 12 = 1 ¼9/2 2 5/2 13/ ½ E E Also, die inverse ist E 1/2 11 E1/3 22 E 1 32 E1 31 E 12Id

19

20 Sei A eine (n n).

21 Sei A eine (n n). Die Idee:

22 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen

23 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren,

24 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben.

25 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn...

26 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n Mit Hilfe von elementaren Zeilenumformungen a n1... a nn...

27 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen.

28 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden.

29 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1.

30 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. Bsp:

31 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. Bsp: Invertiere die ( ).

32 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. Bsp: Invertiere die ( ) ( ).

33 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. ). ( 1 2 Bsp: Invertiere die ( ) Zeile II:= Zeile II- 2(Zeile I) 2 5 1

34 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. ). ( 1 2 Bsp: Invertiere die ( ) Zeile II:= Zeile II- 2(Zeile I) ) (

35 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. ( ) 1 2 Bsp: Invertiere die. ( ) Zeile II:= Zeile II- 2(Zeile I) ( ) Zeile I:= Zeile I -2 (Zeile II) 1 2 1

36 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. ). ( 1 2 Bsp: Invertiere die ( ) Zeile II:= Zeile II- 2(Zeile I) ( ) Zeile I:= Zeile I -2 (Zeile II) ) (

37 Sei A eine (n n). Die Idee: wir werden die Zerlegung von A in das Produkt von Elementarmatrizen mit dem Gauß-Algorithmus konstruieren, wie wir im Beweis von Satz 12 gemacht haben. Schreibe die Id neben A.¼ a a 1n a n1... a nn... Mit Hilfe von elementaren Zeilenumformungen lass uns die A in Id überführen. Jede elementare Zeilenumformung auch auf der rechten Seite anwenden. Wenn von links Id stehet, steht von rechts A 1. ( ) 1 2 Bsp: Invertiere die. ( ) Zeile II:= Zeile II- 2(Zeile I) ( ) Zeile I:= Zeile I -2 (Zeile II) ( ) Rechts steht die inverse zu A

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Mengenlehre: Schnittmenge

Mengenlehre: Schnittmenge Mengenlehre: Schnittmenge Mengenlehre: Schnittmenge A, B seien Mengen. Der Durchschnitt von A und B (Bezeichnung: A B) ( ist die Menge aller Elemente, die sowohl in A als auch in B enthalten sind.) Mengenlehre:

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

MuPAD in Vorlesung und Übungen (12. Woche)

MuPAD in Vorlesung und Übungen (12. Woche) MuPAD in Vorlesung und Übungen (12. Woche Zur Behandlung der laufenden Übungsaufgaben (Blatt 12, 13 ff. sind zur Lösung gewisse Buchführungsaufgaben wahrzunehmen, die wir sinnvoll dem MuPAD-System übertragen.

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Abschnitt: Determinanten

Abschnitt: Determinanten Abschnitt: Determinanten Bezeichnung Die i-te Zeile werden wir mit [a i ] bezeichnen Die Null-Zeile werden wir mit 0 bezeichnen A = a 11 a 1n a n1 a nn = [a 1 ] [a n] Def Eine Abbildung det : Mat(n, n)

Mehr

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg SKRIPTUM { LINEARE ALGEBRA I JB COOPER Inhaltsverzeichnis: x Lineare Gleichungssysteme x Geometrie der Ebene und des Raumes x Vektorraume x Lineare Abbildungen Typeset by AMS-T E X x LINEARE GLEICHUNGSSYSTEME

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Computerorientiertes Problemlösen

Computerorientiertes Problemlösen 1 / 13 Computerorientiertes Problemlösen 22. 26. September 2014 Steffen Basting WS 2014-2015 2 / 13 Organisatorisches 22.09. 26.09. Zeit Mo Di Mi Do Fr 11:00 bis 13:00 13:00 bis 15:30 15:30 bis 18:00 Vorlesung:

Mehr

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren SKRIPTUM { LINEARE ALGEBRA II JB COOPER Inhaltsverzeichnis: x Determinanten x Eigenwerte x Euklidische Raume x8 Dualitat, Tensorprodukte, Alternierende Formen Anhang: ) Mengen, Abbildungen ) Gruppen )

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

3. Ähnlichkeitsabbildungen

3. Ähnlichkeitsabbildungen 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.

Mehr

Mathematische Grundlagen Kurseinheit 1: Grundlagen

Mathematische Grundlagen Kurseinheit 1: Grundlagen Mathematische Grundlagen Kurseinheit 1: Grundlagen Autorin: Luise Unger In L A TEX gesetzt von Luise Unger c 2007 Fernuniversität in Hagen Fachbereich Mathematik (10/05) Alle Rechte vorbehalten 01141-4-01-S

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt roger.burkhardt@fhnw.ch

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Luise Unger In LATEX gesetzt von Luise Unger Mathematische Grundlagen Kurseinheit 1: Grundlagen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 777 7 77 7777777 77777 7 77 7 7 7 7 7 7 77777777777

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Argumentationstechniken PLUS Mathematik Direkter Beweis einer Implikation

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen KAPITEL III Lineare Algebra 12 Matrizen und der Gauß-Algorithmus I Matrizen Definition 121 Matrizen und der R n Es seien m,n 1 zwei positive ganze Zahlen a Eine m n-matrix über R ist ein rechteckiges Schema

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Aufgabe 1: Der Weidezaun

Aufgabe 1: Der Weidezaun Aufgabe 1: Der Weidezaun Eine quadratische Viehweide mit der Fläche 870 m² soll eingezäunt werden. Dabei sollen 3 m für ein Tor freigelassen werden. Wie viel Meter Zaun werden benötigt? Informative Figur:

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

1. Modulare Arithmetik

1. Modulare Arithmetik 1. Modulare Arithmetik Dreizehn Jahre lang hatten die Briten und Franzosen geglaubt, die Enigma- Verschlüsselung sei nicht zu knacken, doch nun schöpften sie Hoffnung. Die polnischen Erfolge hatten bewiesen,

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel)

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) nwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) Frage,r, sind gegeben. Kann man I,r () mit Zirkel und Lineal konstruieren? ntwort Man kann I,r () sogar nur mit Zirkel konstruieren.

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

Elementare Zahlentheorie. Diskrete Strukturen. Winter Semester 2012 #

Elementare Zahlentheorie. Diskrete Strukturen. Winter Semester 2012 # Erster Teil 1 Elementare Diskrete Strukturen Winter Semester 2012 # 342 207 Prof. Armin Biere Institut für Formale Modelle und Verifikation Johannes Kepler Universität, Linz http://fmv.jku.at/ds Literatur

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/13 16:06:37 hk Exp hk $ Es wird etwas dauern bis wir in der Lage sind zu sagen was

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/13 16:06:37 hk Exp hk $ Es wird etwas dauern bis wir in der Lage sind zu sagen was $Id: intro.tex,v 1.3 2010/04/13 16:06:37 hk Exp hk $ 1 Einleitung Es wird etwas dauern bis wir in der Lage sind zu sagen was Lie Gruppen eigentlich sind. Dagegen ist es sehr wohl möglich bereits einige

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr