Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher"

Transkript

1 Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher

2

3 11 - Portefeuilleanalyse Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse ist eine Planungsmethode zur Zusammenstellung eines Wertpapierbündels ( Portefeuille ). Eine Theorie über die optimale Mischung von Wertpapieren wurde erstmals von Markowitz entwickelt. Statt der Investition des gesamten Betrags in ein Risikopapier erreicht man durch Diversifikation, d. h. Anlage in mehrere Titel eine Risikominderung. Voraussetzung ist, dass die Renditen der einzelnen Wertpapiere nicht vollkommen positiv korreliert sind. Kriterien für die Zusammenstellung sind meist der Erwartungswert sowie die Varianz bzw. Standardabweichung des Portefeuilles. Gegeben seien n Wertpapiere A 1,..., A n. Dann verstehen wir unter einem Portefeuille eine gewichtete Zusammenstellung dieser Wertpapiere. In der Regel werden die Gewichte w i so gewählt, dass sie sich zu 1 (bzw. 100%) addieren: Portefeuille = i w i A i mit i w i = 1 Haben die Wertpapiere je eine Rendite von r i (1 i n) so ist die gemischte Rendite des Portefeuilles P (11.1) r P = i w i r i. Das Risiko jeder Wertpapiers A i sei durch die Standardabweichung i bzw. durch die Varianz i gegeben. Die Abhängigkeiten der Renditen zweier Anleihen A i und A j werden durch die Kovarianzen ij oder durch die Korrelationen ij ( ij [0, 1]) gemessen. Die Varianz des Portefeuilles ist dann (11.) P = ij w i w j ij mit ij = ji. Im nächsten Beispiel wird bei zwei Wertpapieren gezeigt, wie sich die Varianz (= Risiko) sowie die erwartete Rendite eines Portefeuilles in Abhängigkeit der Gewichtung der beiden Wertpapiere verhält. Beispiel 11.1: Gegeben sei Anleihe A 1 mit einer erwarteten Rendite von 1% und einer Standardabweichung von 0% sowie Anleihe A mit einer erwarteten Rendite von % und einer Standardabweichung von 37%. In Tab wurden für verschiedene Gewichte der Wertpapiere A 1 und A sowie für 5 verschiedene Korrelationen 1 (= 1) die Rendite sowie die Standardabweichung des resultierenden Portefeuilles berechnet. Für 1 i, j und mit ii = i sowie ij = ij i j erhält man für Anleihen aus Formel (11.): (11.3) P = w 1 w w 1 w 1 + w w w w = w w + w 1 w 1 1

4 Das Markowitz Modell In Tab wurde Formel (11.3) realisiert. In Abb werden für die möglichen Portefeuilles die erwarteten Renditen sowie die Varianzen für verschiedene Korrelationen der Anleihen A 1 und A graphisch dargestellt. C D E F G H I J 43 Anleihe A 1 Anleihe A 44 Rendite 1% % 45 Standardabweich. 0% 37% Korrelationen ,5 0 0, w 1 w Rendite r P Standardabweichung des Portefeuilles P 51 0,00 1,00,0% 37,0% 37,0% 37,0% 37,0% 37,0% 5 0,05 0,95 1,5% 34,% 34,7% 35,% 35,7% 36,% 53 0,10 0,90 1,0% 31,3% 3,3% 33,4% 34,3% 35,3% 54 0,15 0,85 0,5% 8,5% 30,1% 31,6% 33,1% 34,5% 55 0,0 0,80 0,0% 5,6% 7,8% 9,9% 31,8% 33,6% 56 0,5 0,75 19,5%,8% 5,6% 8,% 30,6% 3,8% 57 0,30 0,70 19,0% 19,9% 3,5% 6,6% 9,4% 31,9% 58 0,35 0,65 18,5% 17,1% 1,4% 5,0% 8,% 31,1% 59 0,40 0,60 18,0% 14,% 19,5% 3,6% 7,1% 30,% 60 0,45 0,55 17,5% 11,4% 17,7%,3% 6,0% 9,4% 61 0,50 0,50 17,0% 8,5% 16,0% 1,0% 5,0% 8,5% 6 0,55 0,45 16,5% 5,7% 14,7% 0,0% 4,1% 7,7% 63 0,60 0,40 16,0%,8% 13,6% 19,1% 3,3% 6,8% 64 0,65 0,35 15,5% 0,1% 13,0% 18,3%,5% 6,0% 65 0,70 0,30 15,0%,9% 1,8% 17,9% 1,8% 5,1% 66 0,75 0,5 14,5% 5,8% 13,1% 17,6% 1,% 4,3% 67 0,80 0,0 14,0% 8,6% 13,9% 17,6% 0,7% 3,4% 68 0,85 0,15 13,5% 11,5% 15,0% 17,9% 0,4%,6% 69 0,90 0,10 13,0% 14,3% 16,5% 18,4% 0,1% 1,7% 70 0,95 0,05 1,5% 17,% 18,1% 19,1% 0,0% 0,9% 71 1,00 0,00 1,0% 0,0% 0,0% 0,0% 0,0% 0,0% Tab. 11.1: Wertpapierportefeuille von Anleihen bei verschiedenen Korrelationen Zellen Formel $C$51 0 $C$5 =C51+0,05 $D$51 =1-C51 $E$51 =SUMMENPRODUKT($E$44:$F$44;C51:D51) $F$51 =WURZEL($C51^*$E$45^+$D51^*$F$45^+ *$C51*$D51*$E$45*$F$45*F$48) Kopiere zu $C$53:$C$71 $D$5:$D$71 $E$5:$E$71 $F$51:$J$71

5 Rendite 11 - Portefeuilleanalyse 63 4% % 0% 18% 16% 14% 1% 10% 0% 5% 10% 15% 0% 5% 30% 35% 40% Standardabw eichung Korrelationen: -1-0,5 0 0,5 1 Abb. 11.1: Varianz und Rendite eines Wertpapierportefeuilles von Anleihen bei verschiedenen Korrelationen 11. Ermittlung eines effizienten Portefeuilles Ein Ansatz der Portefeuilleanalyse beruht darauf, effiziente Portefeuilles zu finden. Ein Portefeuille heißt effizient, wenn es kein anderes gibt, das bei gleicher Rendite ein geringeres Risiko oder bei gleichem Risiko eine höhere Rendite aufweist. Das Problem, ein Portefeuille mit einer Mindestrendite r min und minimaler Varianz zu finden, lautet wie folgt: Minimiere ij=1..n w i w j ij so dass i=1..n w i r i r min i=1..n w i = 1 w i 0 1 i n Dabei bedeuten i=1..n w i r i die erwartete Rendite des Portefeuilles und ij=1..n w i w j ij die Varianz des Portefeuilles. Beispiel 11.: Aus 3 Wertpapieren A 1, A und A 3 soll ein Portefeuille mit minimaler Varianz zusammengestellt werden. In Tab. 11. sind die Kovarianzen (Zellen $D$4:$F$6) sowie die erwarteten Renditen (Zellen $G$4:$G$6) dieser Wertpapiere dargestellt. In Abhängigkeit der Gewichte in den Zellen $I$4:$I$6 wird die erwartete Rendite sowie die Varianz des Portefeuilles berechnet.

6 Ermittlung eines effizienten Portefeuilles C D E F G H I 3 ij A 1 A A 3 r i w i 4 A ,0% 0,649 5 A -1 0,5,0% 0,351 6 A 3 0 0,5 3 35,0% 0, i w i = 100,00% Gesamtanteile 9 r P = i=1..n w i r i = 15,51% Erwartete Rendite 30 P = w t V w = 1,1% Varianz des Portefeuilles 31 r min = 0% Mindestrendite Tab. 11.: Berechnung eines effizienten Wertpapierportefeuilles Zellen Formel $E$8 =SUMME(I4:I6) $E$9 =SUMMENPRODUKT(G4:G6;I4:I6) $E$30 {=MMULT(MTRANS(I4:I6);MMULT(D4:F6;I4:I6))} Um ein Portefeuille minimaler Varianz mit einer vorgegebenen erwarteten Mindestrendite r min (Zelle $E$31 in Tab. 11.) zu ermitteln, wird folgendes nichtlineare Optimierungsmodell gelöst: Minimiere Variable Restriktionen $E$30 $I$4:$I$6 $E$8=1 $E$9>=$E$31 $I$4:$I$6>=0 nicht linear Dieses Optimierungsproblem wurde für die Mindestrenditen r min = 17%, 18%,..., 30% gelöst. In Tab sind die Ergebnisse dargestellt. Die Anteile der Anleihen jedes effizienten Portefeuilles befinden sich in den Spalten D, E und F, die erwartete Rendite und die Varianz in den Spalten G und H. Die Visualisierung der ermittelten Kombinationen von erwarteter Rendite und Varianz findet sich in Abb. 11..

7 Erw artete Rendite 11 - Portefeuilleanalyse 65 C D E F G H 55 r min w 1 w w 3 r P P 56 17% 0,57 0,14 0,9 17,1% 0, % 0,5 0,16 0,3 18,0% 0, % 0,46 0,18 0,36 19,0% 0, % 0,40 0,0 0,40 0,0% 0, % 0,34 0, 0,44 1,0% 0, % 0,8 0,4 0,48,0% 0, % 0, 0,6 0,5 3,0% 0, % 0,16 0,8 0,56 4,0% 0, % 0,10 0,30 0,60 5,0% 1, % 0,04 0,3 0,64 6,0% 1, % 0,00 0,30 0,70 7,0% 1, % 0,00 0,0 0,80 8,0%, % 0,00 0,10 0,90 9,0%, % 0,00 0,00 1,00 30,0% 3,000 Tab. 11.3: Rendite und Varianzen effizienter Wertpapierportefeuilles 3% 30% 8% 6% 4% % 0% 18% 16% Varianz Abb. 11.: Menge der effizienten Portefeuilles Die Ermittlung möglicher, auch nicht effizienter Portefeuilles und die Berechnung der Rendite und Varianz wurde in Tab vorgenommen. In den Spalten C, D und E wurden die Kombinationen der Gewichte ermittelt (siehe auch Formeln zur Tabelle), in den Spalten F und G die Rendite und die Varianz berechnet. Eine graphische Übersicht dieser Portefeuilles bietet Abb Jedes dieser Portefeuilles ist durch einen Punkt, der die Rendite sowie die Varianz dargestellt, repräsentiert. Die effizienten Portefeuilles befinden sich am oberen, linken Rand der Punktwolke.

8 Erw artete Rendite Ermittlung eines effizienten Portefeuilles C D E F G 145 w 1 w w 3 P r P 146 0,0 0,0 1,0 3,00 0, ,0 0,1 0,9,54 0, ,0 0, 0,8,16 0, ,0 0,3 0,7 1,86 0, ,0 0,4 0,6 1,64 0, ,8 0,0 0, 0,76 0, ,8 0,1 0,1 0,54 0, ,8 0, 0,0 0,40 0, ,9 0,0 0,1 0,84 0, ,9 0,1 0,0 0,65 0, ,0 0,0 0,0 1,00 0,1 Tab. 11.4: Rendite und Varianzen verschiedener Wertpapierportefeuilles Zellen Formel Kopiere zu $E$146 =1-C146-D146 $E$147:$E$11 $C$147 =WENN(C146+D146<1;C146;C146+0,1) $C$148:$C$11 $D$147 =WENN(C146+D146<1;D146+0,1;0) $D$148:$D$11 $F$146 {=MMULT(C146:E146;MMULT($D$4:$F$6;MTRANS(C146:E146)))} $F$147:$F$11 $G$146 =MMULT(C146:E146;$G$4:$G$6) $G$147:$G$11 40% 35% 30% 5% 0% 15% 10% 0,0 0,5 1,0 1,5,0,5 3,0 3,5 Varianz Abb. 11.3: Menge aller effizienten und nicht effizienten Portefeuilles

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen?

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Portfolioselection Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Investieren in Aktien ist riskant Risiko einer Aktie kann in 2 Teile zerlegt werden: o Unsystematisches Risiko

Mehr

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung

Mehr

Portfoliotheorie. Von Sebastian Harder

Portfoliotheorie. Von Sebastian Harder Portfoliotheorie Von Sebastian Harder Inhalt - Begriffserläuterung - Allgemeines zur Portfoliotheorie - Volatilität - Diversifikation - Kovarianz - Betafaktor - Korrelationskoeffizient - Betafaktor und

Mehr

Portfoliotheorie. Von Meihua Peng

Portfoliotheorie. Von Meihua Peng Portfoliotheorie Von Meihua Peng Inhalt Allgemeines Annahmen Rendite, Volatilität Diversifikation Kovarianz Minimum-Varianz-Modell Kritisch Würdigung der Portfoliotheorie Literatur Finanzwirtscaft Ⅵ. Portfoliotheorie

Mehr

AUFGABEN. Klausur: Modul 31811 Planen mit mathematischen Modellen. Termin: 16.09.2013

AUFGABEN. Klausur: Modul 31811 Planen mit mathematischen Modellen. Termin: 16.09.2013 Lehrstuhl für Betriebswirtschaftslehre, insb Quantitative Methoden und Wirtschaftsmathematik Univ-Prof Dr Andreas Kleine AUFGABEN Klausur: Modul 31811 Termin: 16092013 Prüfer: Univ-Prof Dr Andreas Kleine

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Portfolio Management

Portfolio Management Kapitel 3 Portfolio Management Josef Leydold c 2006 Mathematische Methoden III Portfolio Management 1 / 45 Lernziele Konzept der modernen Portfolio-Theorie Capital Asset Pricing Model Optimieren eines

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Peter Malec Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin Econ Boot Camp, SFB 649, Berlin, 4. Januar 2013 1. Einführung 2 29 Motivation

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org>

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org> Datenanalyse mit Python Dr. Wolfram Schroers Problem Beobachtungen Modell (Annahmen, Vereinfachungen) Vorhersagen Vergleich Python: Stärken und Schwächen Anwendung:

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Moderne Portfoliotheorie

Moderne Portfoliotheorie ortfoliooptimierung nach Markowitz Moderne ortfoliotheorie Carlos Nasher Universität Hamburg Hamburg, 12. Mai 2009 ortfoliooptimierung nach Markowitz Moderne ortfoliotheorie 1. Theoretische Grundlagen

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Portfoliorisiko und Minimum Varianz Hedge

Portfoliorisiko und Minimum Varianz Hedge ortfoliorisiko und Minimum Varianz Hedge Vertiefungsstudium Finanzwirtschaft rof. Dr. Mark Wahrenburg Überblick Messung von Risiko ortfoliodiversifikation Minimum Varianz ortfolios ortfolioanalyse und

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Valuation Übung 4 Moderne Portfoliotheorie Gruppe

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Kapitalmarktlinie. von Kirstin Muldhoff

Kapitalmarktlinie. von Kirstin Muldhoff Capital Asset Pricing Model Kapitalmarktlinie von Kirstin Muldhoff Gliederung 1. Wiederholung Portfoliotheorie 2. Capital Asset Pricing Model (CAPM) (Kapitalmarktmodell) 2.1 Voraussetzungen des CAPM 2.2

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Historische Renditen, Experteninterviews, Analyse von Marktpreisen

Historische Renditen, Experteninterviews, Analyse von Marktpreisen 1 Portfoliotheorie 1.1 Grundlagen der Portfoliotheorie 1.1.1 Welche vier grundsätzlichen Anlageziele werden von Investoren verfolgt? Minimales Risiko Liquidation wenn nötig Hohe Rendite Gewinnmaximierung

Mehr

1.2 Das Lösen von linearen Problemen mit Hilfe eines Computerprogramms.

1.2 Das Lösen von linearen Problemen mit Hilfe eines Computerprogramms. 1.2 Das Lösen von linearen Problemen mit Hilfe eines Computerprogramms. An Hand eines Beispiels werden wir ein lineares Problem mit Hilfe eines Computerprogramms lösen. Das hier angewandte Programm ist

Mehr

Die drei Kernpunkte der modernen Portfoliotheorie

Die drei Kernpunkte der modernen Portfoliotheorie Die drei Kernpunkte der modernen Portfoliotheorie 1. Der Zusammenhang zwischen Risiko und Rendite Das Risiko einer Anlage ist die als Varianz oder Standardabweichung gemessene Schwankungsbreite der Erträge

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra

Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra LUCIA DEL CHICCA, MARKUS HOHENWARTER, LINZ In diesem Beitrag beschäftigen wir uns mit einem Optimierungsproblem aus der Finanzwelt: gegeben

Mehr

Excel 2010 Zwischenergebnisse automatisch berechnen

Excel 2010 Zwischenergebnisse automatisch berechnen EX.031, Version 1.0 14.10.2013 Kurzanleitung Excel 2010 Zwischenergebnisse automatisch berechnen Wenn man in Excel mit umfangreichen Listen oder Tabellen arbeitet, interessiert vielfach nicht nur das Gesamtergebnis,

Mehr

CAPM Die Wertpapierlinie

CAPM Die Wertpapierlinie CAPM Die Wertpapierlinie Systematisches und unsystematisches Risiko Von Dong Ning Finanzwirtschaft 6. Sem. Inhalt Wertpapierlinie (CAPM) Erwartungswert für f r die Rendit Risiken messen 1.Standardabweichung-

Mehr

Wahl des optimalen Portefeuilles I - Präferenzunabhängige Vorauswahl

Wahl des optimalen Portefeuilles I - Präferenzunabhängige Vorauswahl der Universität Hamburg (Investition Wahl des optimalen Portefeuilles I - Präferenzunabhängige Vorauswahl Ein PF ist dann effizient, wenn sich aus den gegebenen Wertpapieren kein anderes PF zusammenstellen

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Prof. Dr. Nikolaus Hautsch Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin CASE, CFS, QPL Econ Boot Camp, SFB 649, Berlin, 8. Januar

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Dossier: Rechnungen und Lieferscheine in Word

Dossier: Rechnungen und Lieferscheine in Word www.sekretaerinnen-service.de Dossier: Rechnungen und Lieferscheine in Word Es muss nicht immer Excel sein Wenn Sie eine Vorlage für eine Rechnung oder einen Lieferschein erstellen möchten, brauchen Sie

Mehr

Bland-Altman-Plot in Excel 2010 erstellen

Bland-Altman-Plot in Excel 2010 erstellen Bland-Altman-Plot in Excel 2010 erstellen 1. Sie berechnen für jedes Messwertpaar den Mittelwert der beiden Methoden nach der Formel: (messwert_verfahren1 + messwert_verfahren2)/2, im Beispiel =(A5+B5)/2:

Mehr

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2 Mathematik für Biologen, Biotechnologen und Biochemiker Lineare Regression Gegeben seien Datenpaare (, ), (, ),, ( n, n ) Wir stellen die Frage, ob sich die Zahlen i als Werte einer linearen Funktion i

Mehr

Excel-Kurs (Stephan Treffler, HS Erding)

Excel-Kurs (Stephan Treffler, HS Erding) Excel-Kurs (Stephan Treffler, HS Erding) Der Excel-Kurs geht davon aus, dass Schüler der 9.Jahrgangsstufe grundsätzlich mit Excel umgehen können und über das Menü und die verschiedenen Funktionen Bescheid

Mehr

Der Korrelationskoezient nach Pearson

Der Korrelationskoezient nach Pearson Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff.

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff. FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft Name: Vorname: Klausur: Prüfer: Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff Termin: 06. September 2012 11:30 13:30

Mehr

Textfunktionen. Die Tabellenfunktion LINKS. Zellinhalte extrahieren

Textfunktionen. Die Tabellenfunktion LINKS. Zellinhalte extrahieren Kapitel 5 201 Die sind dann sehr wertvoll, wenn Sie Texte in Tabellen bearbeiten oder anpassen möchten. Oft müssen vor allem Daten, die aus Fremdsystemen kommen, in Excel umgewandelt und in eine besser

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t Kapitalwertmethode Art: Ziel: Vorgehen: Dynamisches Investitionsrechenverfahren Die Kapitalwertmethode dient dazu, die Vorteilhaftigkeit der Investition anhand des Kapitalwertes zu ermitteln. Die Kapitalwertverfahren

Mehr

Erinnerung an letztes Mal: Erreichbare Kombinationen aus erwarteter Rendite und Risiko (gemessen in Standardabweichung

Erinnerung an letztes Mal: Erreichbare Kombinationen aus erwarteter Rendite und Risiko (gemessen in Standardabweichung Erinnerung an letztes Mal: Erreichbare Kombinationen aus erwarteter Rendite und Risiko (gemessen in Standardabweichung Anteil Aktie 5: 100 % Anteil Aktie 2: 0 % absteigend aufsteigend Anteil Aktie 5: 0

Mehr

Risikodiversifikation. Steffen Frost

Risikodiversifikation. Steffen Frost Risikodiversifikation Steffen Frost 1. Messung Risiko 2. Begriff Risiko 3. Standardabweichung 4. Volatilität 5. Gesamtrisiko 6. Systematische & unsystematisches Risiko 7. Beta und Korrelation 8. Steuerung

Mehr

Tutorial Excel Übung 5&6 Tom s Skater -1- Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung5&6.

Tutorial Excel Übung 5&6 Tom s Skater -1- Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung5&6. Tutorial Excel Übung 5&6 Tom s Skater -1-1 Aufgabenstellung Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung5&6. 2 Ergänzung mit einfachen Formeln Summe der Einnahmen Dieser Betrag ergibt

Mehr

Die Boolesche Algebra

Die Boolesche Algebra Die Boolesche Algebra Die Boolesche Algebra behandelt Ausdrücke, deren Konstanten die Werte 0 und 1 annehmen können. In der Aussagelogik steht 0 für "falsch" und 1 für "wahr". Logische Funktionen in Calc

Mehr

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet.

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. Übungsblatt 5 Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. 1. Ein Unternehmen ist A. ein Betrieb, der nach dem

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0 1 ÜBUNGSAUFGABEN 0 1 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1 Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte

Mehr

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm A b s c h l u s s k l a u s u r z u r V o r l e s u n g K a p i t a l m a r k t t h e o r i e W i n t e r s e m e s t e r 1 9 9 9 / 2

Mehr

Dokumentation. estat Version 2.0

Dokumentation. estat Version 2.0 Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim

Mehr

EDV-Fortbildung Kombi-Schulung Word-Excel 2010. Modul Excel. Informationen zum Programm. Die Programmoberfläche von Excel

EDV-Fortbildung Kombi-Schulung Word-Excel 2010. Modul Excel. Informationen zum Programm. Die Programmoberfläche von Excel EDV-Fortbildung Kombi-Schulung Word-Excel 2010 Modul Excel Informationen zum Programm Microsoft Excel ist das meistverbreitete Programm zur Tabellenkalkulation. Excel bietet sich für umfangreiche, aber

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 0.07.017 Aufgabe 1 Ein Handy- und PC-Hersteller verfügt über ein exklusives Filialnetz von 900 Filialen. Der Gewinn (in GE) der Filialen ist in der folgenden Tabelle nach

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Black Jack - Kartenzählen

Black Jack - Kartenzählen Black Jack - Kartenzählen Michael Gabler 24.01.2012 Literatur: N. Richard Werthamer: Risk and Reward - The Science of Casino Blackjack, Springer Black Jack - Kartenzählen 1 Wie zähle ich Karten? Historisches

Mehr

Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten

Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten Die LED-Technologie stellt eine vergleichsweise junge Technologie dar und verfügt aktuell über ein sehr dynamisches

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

Statistischer Mittelwert und Portfoliorendite

Statistischer Mittelwert und Portfoliorendite 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl

Mehr

AIP. AlternativeInvestmentPartnerAG. besser. als anders. N e w s l e t ter. I P feffer fürs Por tfolio: Einführung in die moderne Por tfoliotheorie

AIP. AlternativeInvestmentPartnerAG. besser. als anders. N e w s l e t ter. I P feffer fürs Por tfolio: Einführung in die moderne Por tfoliotheorie AIP AlternativeInvestmentPartnerAG besser als anders N e w s l e t ter I P feffer fürs Por tfolio: Einführung in die moderne Por tfoliotheorie I Editorial «Nur ein verzweifelter Spieler setzt alles auf

Mehr

Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung

Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung - 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G. Universität Wien Institut für Betriebswirtschaftslehre ABWL IV: Finanzwirtschaft 400 026/2+7 Univ. Ass. Dr. M.G. Schuster Foliensatz Vertiefungskurs aus ABWL: Finanzwirtschaft im Sommersemester 2004 2.

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Grundzüge der Wirtschaftsinformatik - Übung

Grundzüge der Wirtschaftsinformatik - Übung Grundzüge der Wirtschaftsinformatik - Übung Prof. Dr. Martin Hepp Dipl.-Kfm. Alexander Richter Fakultät für Wirtschafts- und Organisationswissenschaften 2 SWS Übung 2 SWS Übung Herbsttrimester 2007 Stunde

Mehr

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Bachelor-Kursprüfung International Finance Schwerpunktmodule Finanzmärkte und Außenwirtschaft 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten WS 2014/15, 04.02.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse VDAX-NEW Der neue Volatilitätsindex der Deutschen Börse Volatilität handeln Die Wertentwicklung eines Investments wird neben der Rendite auch vom Risiko bestimmt, mit dem die erwartete Rendite verknüpft

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

Neoklassische Kapitalmarkttheorie und Behavioral Finance

Neoklassische Kapitalmarkttheorie und Behavioral Finance Neoklassische Kapitalmarkttheorie und Behavioral Finance von Jessica Plöger 1. Auflage Neoklassische Kapitalmarkttheorie und Behavioral Finance Plöger schnell und portofrei erhältlich bei beck-shop.de

Mehr

Vergleich verschiedener Optimierungsansätze

Vergleich verschiedener Optimierungsansätze Vergleich verschiedener Optimierungsansätze Inhaltsverzeichnis 1 Einleitung... 2 2 Welchen Nutzen schafft munio?... 3 3 Analysen... 3 3.1 Schritt 1: Optimierung anhand von Indizes... 3 3.2 Schritt 2: Manuell

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 2 - Varianz, Standardabweichung, Kovarianz Das zweite Übungsblatt umfasst die Themen Varianz, Standardabweichung und Kovarianz. Hinter den Aufgaben steht wie gewohnt in Klammern die durchschnittliche

Mehr

Materialien zur Vorlesung. Portfolio-Selektion

Materialien zur Vorlesung. Portfolio-Selektion Materialien zur Vorlesung Portfolio-Selektion Burkhard Erke Quellen: Schmidt/Terberger, Kap. 8; Brealey/Myers, Kap. 7/8 Juli 2002 Lernziele Diversifikation mindert das Risiko eines Portefeuilles Effiziente

Mehr

ZERTIFIKATE spielend beherrschen

ZERTIFIKATE spielend beherrschen UDI ZAGST / MICHAEL HUBER RUDI ZAGST / MICHAEL HUBER ZERTIFIKATE ZERTIFIKATE spielend beherrschen spielend beherrschen Der Performance-Kick Der Performance-Kick für Ihr für Portfolio Ihr Portfolio inanzbuch

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Aufgabe 1 2 3 4 Summe

Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Klausur: Finanz- und bankwirtschaftliche Modelle Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 203 Aufgabe 2 3 4 Summe maximale Punktzahl

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 2013

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Statische Versuchsplanung (DoE - Design of Experiments)

Statische Versuchsplanung (DoE - Design of Experiments) Statische Versuchsplanung (DoE - Design of Experiments) Übersicht Bei der statistischen Versuchsplanung wird die Wirkung von Steuerparametern unter dem Einfluss von Störparametern untersucht. Mit Hilfe

Mehr