Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung"

Transkript

1 Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006

2 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen zweiten Grades Rainer Hufnagel/ Laura Wahrig /22

3 Sensitivitätsanalyse Wir wollen uns nun damit befassen, wie groß der Stabilitätsbereich einer Lösung eines linearen Optimierungsproblems ist. Uns interessiert also, was passiert, wenn wir die gegebenen Voraussetzungen der Aufgabe ändern. Die Betrachtung dessen nennt sich Sensitivitätsanalyse. Rainer Hufnagel/ Laura Wahrig /22

4 Sensitivitätsanalyse Wir haben also folgendes Problem gegeben: G = p + p x + p x p x max! oder min! ist unsere Zielfunktion mit m Unbekannten Wir haben endlich viele Nebenbedingungen mit wieder jeweils m Unbekannten a11x 1 + a12x a1 mxm oder oder = a a n1x1 an2x2... anmxm oder oder = an0 m m Rainer Hufnagel/ Laura Wahrig /22

5 Sensitivitätsanalyse In der Sensitivitätsanalyse interessieren wir uns dafür, was mit der Lösung passiert, wenn wir ur 1. die Koeffizienten der Zielfunktion ändern (den Vektor p) oder 2. die rechte Seite der Nebenbedingungen ändern (den Vektor a uur ), also die Absolutglieder in der Restriktion 0 ändern (Kapazitäten/ Mindestanforderungen) 3. Koeffizienten in den Restriktionen ändern oder neue Variablen hinzufügen Rainer Hufnagel/ Laura Wahrig /22

6 Sensitivitätsanalyse Hier wollen wir nur die ersten beiden Möglichkeiten (graphisch) behandeln. Die dritte lassen wir weg, denn für diesen Kurs ist sie zu komplex. Besser ausgedrückt: Wir wollen nun bestimmen, welchen Gültigkeitsbereich der Lösungsvektor in Bezug auf die Koeffizienten der Zielfunktion oder die Nebenbedingungen hat. Rainer Hufnagel/ Laura Wahrig /22

7 Sensitivitätsanalyse Wofür kann es interessant sein, dies zu wissen? Bei Schätzung der Koeffizienten (oder Unsicherheit) Auswirkungen von geringfügigen Kapazitätsänderungen Also: Habe ich eine eher stabile oder eine eher instabile Lösung vorliegen? führt zu parametrischer Optimierung Rainer Hufnagel/ Laura Wahrig /22

8 Sensitivitätsanalyse Glücklicherweise muss man dafür nicht die ganze Aufgabe von neuen aufrollen. Rainer Hufnagel/ Laura Wahrig /22

9 Variation in Koeffizienten der Zielfunktion Wir betrachten das Problem, nachdem wir das Ausgangsproblem gelöst haben. Also, ein Koeffizient ändert sich um einen positiven oder negativen Betrag p M, der zu p M addiert wird. Unsere Frage: um wie viel kann sich der Koeffizient ändern, ohne dass sich die Basislösung ändert (so dass wir dieselbe optimale Lösung erhalten)? Dafür suchen wir eine untere Grenze p M ( 0)und eine obere Grenze p M ( 0). Rainer Hufnagel/ Laura Wahrig /22

10 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) Mathematische Umsetzung: G = 4x + 5x max! ist die Zielfunktion. 1 2 Die Nebenbedingungen sind: x + x 40 - ist die Zeitrestriktion x1+ 4x ist die Geldrestriktion. x 0 ; x 0 - Fensterbilder und Osterhasen 1 2 können nicht in negativen Mengen produziert werden. Rainer Hufnagel/ Laura Wahrig /22

11 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) Unsere Zielfunktion ist G = 4x1+ 5x2 max! Nun variieren wir den Koeffizient p 1 von x 1 so, dass sich die Basislösung nicht ändert. D.h. es soll weiterhin optimal sein, 80 Fensterbilder und 40 Osterhasen zu produzieren. Rainer Hufnagel/ Laura Wahrig /22

12 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) x x1 Zeitrestriktion Geldrestriktion Zielfunktion Rainer Hufnagel/ Laura Wahrig /22

13 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) 520 ( 4 + Δp ) 1 x2 = x1 5 5 soll weiterhin dieselbe Ecke schneiden. Daraus ergibt sich: I Δp 1 =-1.5 II 1 1 Δ p = Rainer Hufnagel/ Laura Wahrig /22

14 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) Der Optimalwert der Zielfunktion ändert sich folgendermaßen: Δ G* = Δp x * hier Δ G* = Δp x * Zum Beispiel: p 1 =1 Dann ist M 1 1 M Δ G* = 1 80 und c=520+80=600 Rainer Hufnagel/ Laura Wahrig /22

15 Variation in Koeffizienten der Zielfunktion Beispiel 1 (Maximierung) Diese Analyse kann man so nur für Koeffizienten von Variablen durchführen, die im Endtableau basisch sind, d.h. deren Lösung nicht gleich Null ist. Für Koeffizienten von Variablen, die nicht basisch sind, kann man nur eine untere oder obere Grenze bestimmen. Im Maximierungsbeispiel würden wir nach einer oberen Grenze suchen, im Minimierungsbeispiel nach einer unteren Grenze. Bei einer Nichtbasisvariable könnten wir den oberen Wert direkt aus der dualen Lösung der Variablen ablesen. Rainer Hufnagel/ Laura Wahrig /22

16 Variation in den Absolutgliedern der Restriktionen Es handelt sich um eine Änderung in a N0. Die Frage, die wir uns hier stellen lautet: Um wie viel kann sich die Kapazität/ der Mindestbedarf ändern, ohne dass die Basislösung sich ändert? Wenn a 0N Nichtbasisvariable ist, kann die Lösung sich nicht nicht ändern, wenn man a N0 ändert. Wenn a N0 Basisvariable ist, ist die Kapazität/ der Mindestbedarf nicht bindend. Es handelt sich in einem bestimmten Abschnitt um ein freies Gut. Wir können die Kapazität senken ( Δa 0 0 ) oder den Mindestbedarf erhöhen ( Δa 0 0 ). Rainer Hufnagel/ Laura Wahrig /22

17 Variation in den Absolutgliedern der Restriktionen Beispiel 2 (Minimierung) G = 8x + 12x min! ist die Zielfunktion 1 2 Die Nebenbedingungen sind: 0.1x1+ 0.2x2 1 - ist die Restriktion für Eiweiß 0.2x1+ 0.1x ist die Restriktion für Fett 0.1x1+ 0.6x ist die Restriktion für Kohlenhydrate x 0 ; x 0 - die Futtermittel können nicht in 1 2 negativen Mengen produziert werden Rainer Hufnagel/ Laura Wahrig /22

18 Variation in den Absolutgliedern der Restriktionen Beispiel 2 (Minimierung) x u 3 b 1 b 2 K u 2 40/3 4/3 -(20/3) 50/ x1 Eiweißrestriktion Fettrestriktion Kohlenhydraterestriktion Zielfunktion u 1 160/3 -(11/3) 10/3 -(20/3) Rainer Hufnagel/ Laura Wahrig /22

19 Variation in den Absolutgliedern der Restriktionen Beispiel 2 (Minimierung) Die Schlupfvariable der dritten Restriktion ist in der Basislösung der primalen Aufgabedie Restriktion ist nicht bindend. Aus dem Tableau können wir direkt ablesen, dass wir die Kohlenhydraterestriktion um 0.8 erhöhen können, ohne das die Basislösung sich ändert (oder der Optimalwert der Zielfunktion). Rainer Hufnagel/ Laura Wahrig /22

20 Simulation Es gibt viele Simulationsmöglichkeiten, die für den privaten Haushalt interessant sind. Wir befassen uns hier mit dem Beispiel einer linearen Differenzengleichung. Beispiel: Auf einem Girokonto gehen in jeder Periode Gehaltszahlungen F ein. Die Abhebungen sind proportional zum Guthaben der vorhergehenden Periode. Hierfür wollen wir ein Modell bilden. Uns interessiert besonders der Bestand auf dem Konto in jeder Periode - also eine mathematische Folge. Rainer Hufnagel/ Laura Wahrig /22

21 Simulation Parameter (exogen) sind: F Gehaltszahlung c Proportionalitätsfaktor des Konsums Variablen (endogen) sind: G(t) Bestand auf dem Konto in Periode t C(t) Konsum in Periode t Uns interessiert es, den Verlauf von G(t) zu simulieren und das Problem zu lösen. Rainer Hufnagel/ Laura Wahrig /22

22 Simulation Weiter mit dem OHP / an der Tafel Rainer Hufnagel/ Laura Wahrig /22

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Einführung in die Mathematische Optimierung

Einführung in die Mathematische Optimierung Einführung in die Mathematische Optimierung Rainer E. Burkard Technische Universität Graz Institut für Mathematik Steyrergasse 30 A-800 Graz, Austria burkard@opt.math.tu-graz.ac.at 2 Inhaltsverzeichnis

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de)

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de) Lineare Optimierung Vorlesung von Prof Christiane Tammer Author : Georg Kuschk (Quelle : wwwrikutide) 11 August 2006 Inhaltsverzeichnis 1 Einleitung, Beispiele 2 2 Das allgemeine lineare Optimierungsproblem

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Einführung in das Operations Research

Einführung in das Operations Research S. Nickel, O. Stein, K.-H. Waldmann Einführung in das Operations Research Skript zur Vorlesung am Karlsruher Institut für Technologie Vorläufige Version, Stand: 11. März 2011 Inhaltsverzeichnis 1 Kernkonzepte

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Anwendungen der linearen Programmierung

Anwendungen der linearen Programmierung Anwendungen der linearen Programmierung BACHELOR-ARBEIT Referent Prof. Dr. Karl Frauendorfer vorgelegt von Simon Wehrmüller Universität St. Gallen Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften

Mehr

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support 0. Einleitung 0.1. Der Begriff Operations Research / Decision Support Es werden Methoden zur Entscheidungsunterstützung (Decision Support, DS) vorgestellt. Durch Problemanalyse, daraus formulierte mathematische

Mehr

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010 Prof. Dr. S. Dempe Inhaltsverzeichnis Kapitel 0. Einleitung 5 0.1. Historische Entwicklung 5 0.2. Begriff des Operations

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten

Mehr

1.2 Wachstum bei endogener Sparquote

1.2 Wachstum bei endogener Sparquote TU Dortmund, WS 2/3, Konjunktur, Wachstum und Beschäftigung 43.2 Wachstum bei endogener Sparquote Das Ramsey-Modell Im Ramsey-Modell, genauer im Ramsey (928) Cass(965) Koopmans (965) Modell, ist die Sparquote

Mehr

Vorlesungsmitschrift Operations Research I und II

Vorlesungsmitschrift Operations Research I und II Vorlesungsmitschrift Operations Research I und II Bemerkung: Dies ist eine Überarbeitung der beiden Skripte [1] und [2] zu den oben genannten Vorlesungen von Prof. Sebastian, ergänzt um Anmerkungen, die

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen OPTIMIERUNG I Vorlesungsskript, Sommersemester 2014 Christian Clason Stand vom 1. Juli 2014 Fakultät für Mathematik Universität Duisburg-Essen INHALTSVERZEICHNIS I GRUNDLAGEN 1 theorie der linearen ungleichungen

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Optimierung I Wintersemester 1996/97

Optimierung I Wintersemester 1996/97 Optimierung I Wintersemester 1996/97 Florian arre Institut für Angewandte Mathematik und Statistik Universität Würzburg, Am Hubland D 97074 Würzburg 8 November 2000 Inhalt 1 Lineare Optimierung: Definition

Mehr

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1 Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr Operations Research für Wirtschaftsinformatiker Vorlesungsskript von Richard Mohr Fachhochschule Esslingen, SS 2005 INHALTSVERZEICHNIS i Inhaltsverzeichnis Lineare Optimierung. Graphische Lösung des linearen

Mehr

Statische Optimierung unter Ungleichungsrestriktionen (Kuhn-Tucker)

Statische Optimierung unter Ungleichungsrestriktionen (Kuhn-Tucker) Kapitel 3 Statische Optimierung unter Ungleichungsrestriktionen (Kuhn-Tucker) 3.1 Einleitung/Ziel/Bedeutung/Übersicht In ökonomischen Anwendungen treten die Restriktionen häufig als Ungleichungen (statt

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Spieltheoretische Modellierung. Nullsummenspiele

Spieltheoretische Modellierung. Nullsummenspiele Spieltheoretische Modellierung Nullsummenspiele Definition 2.1 Unter einem Zweipersonen-Nullsummenspiel in Normalformdarstellung versteht man ein Tripel (X, Y, K), bestehend aus ) einer nichtleeren Menge

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Statistische Versuchsplanung - zuverlässiger und schneller zu Ergebnissen" Dr. Uwe Waschatz

Statistische Versuchsplanung - zuverlässiger und schneller zu Ergebnissen Dr. Uwe Waschatz Statistische Versuchsplanung - zuverlässiger und schneller zu Ergebnissen" Dr. Uwe Waschatz Inhalt Problembeschreibung Multiple lineare Regressionsanalyse Statistische Versuchsplanung / Design of Experiments

Mehr

4 Geld und Inflation im Ramsey-Modell

4 Geld und Inflation im Ramsey-Modell 4 Geld und Inflation im Ramsey-Modell Literatur: - Maussner & Klump 996, C.II.3] - Blanchard & Fischer 989, Ch. 4] - Obstfeld & Rogoff 996, Ch. 8.3] 84 4. Monetärer Sektor im Ramsey Modell Berücksichtigung

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr.

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr. Ratt und Skonto Rechnung Computersystem Computer P7 '650.00 Fr. Drucker XX 300.00 Fr. Total '950.00 Fr. 15% 44.50 Fr. '507.50 Fr. % 50.15 Fr. '457.35 Fr. Bruttopreis Ratt Nettopreis Skonto Zahlung Worterklärungen

Mehr

Inhaltsverzeichnis. Erster Teil: Konzeption quantitativer Planung. Vorwort Danksagungen Abbildungsverzeichnis Tabellenverzeichnis

Inhaltsverzeichnis. Erster Teil: Konzeption quantitativer Planung. Vorwort Danksagungen Abbildungsverzeichnis Tabellenverzeichnis Wolf gang Berens / Werner Delfmann Walter Schmitting Quantitative Planung Grundlagen, Fallstudien, Lösungen 4., überarbeitete und erweiterte Auflage ^2004 Schäffer-Poeschel Verlag Stuttgart XI Vorwort

Mehr

1 Die Fisher Gleichung

1 Die Fisher Gleichung Zusammenfassung Die Fisher Gleichung Geldtheorie und Geldpolitik Wintersemester, 2011/12 1 Die Fisher Gleichung Die Unterscheidung zwischen nominalen und realen Größen verändert das Problem der optimalen

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Klausur Mikroökonomie I Diplom SS 06 Lösungen

Klausur Mikroökonomie I Diplom SS 06 Lösungen Universität Lüneburg Prüfer: Prof. Dr. Thomas Wein Fakultät II Prof. Dr. Joachim Wagner Institut für Volkswirtschaftslehre Datum: 17.7.2006 Klausur Mikroökonomie I Diplom SS 06 Lösungen 1. Eine neue Erfindung

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

Die optimale Besteuerung von Heimarbeit

Die optimale Besteuerung von Heimarbeit Kapitel 4 Die optimale Besteuerung von Heimarbeit Im ersten Kapitel wurde die sog. reizeitkomplementaritätsregel Corlett-Hague Regel) abgeleitet, welche besagt, dass diejenigen Güter stärker besteuert

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation

Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation - für Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation Thomas Hanne *, Patrick Lang, Stefan Nickel,

Mehr

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63 1 Einleitung... 1 1.1 Optimierungstypen.............................................. 3 1.2 Motivation und Grundbegriffe der Optimierung........................... 4 1.3 Allgemeine Form des Optimierungsproblems............................

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Ressourceneinsatzplanung in der Fertigung

Ressourceneinsatzplanung in der Fertigung Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Ressourceneinsatzplanung in der Fertigung Dr. Christoph Laroque Sommersemester 2012 Dresden, Ausblick: Ab

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Bearbeiten Sie vier der fünf Aufgaben!

Bearbeiten Sie vier der fünf Aufgaben! Master-Kursprüfung West-East Trade Theory SS 2014 Pflichtmodul Internationale VWL (M.Sc. IVWL) Schwerpunktmodul Außenwirtschaft (M.Sc. VWL) 6 Kreditpunkte Bearbeitungsdauer: 90 Minuten 16.7.2014 Prof.

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

2.2 Systeme des Bestandsmanagements

2.2 Systeme des Bestandsmanagements . Systeme des Bestandsmanagements Was ist Bestandsmanagement? Grob gesagt, wird im Bestandsmanagement festgelegt, welche Mengen eines Produktes zu welchem Zeitpunkt zu bestellen sind Hierdurch wird der

Mehr

Reproduzierbarkeit der Bachelor-Thesis

Reproduzierbarkeit der Bachelor-Thesis der Bachelor-Thesis Anonymisierungsverfahren: Randverteilungen und ihr statistisches Analysepotential Seminar Institut für Statistik Ludwig-Maxmilians-Universität in München Betreuung: Manuel J. A. Eugster

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr