2 Die Darstellung linearer Abbildungen durch Matrizen

Größe: px
Ab Seite anzeigen:

Download "2 Die Darstellung linearer Abbildungen durch Matrizen"

Transkript

1 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V ) zu einem Vektorraum. Seien F, G Hom K (V, V ) und λ K. Addition: F + G ist die Abbildung F + G : V V mit v F (v) + G(v) Skalare Multiplikation: λf ist die Abbildung λf : V V, v λ F (v) (2.1) emerkung: F + G und λ F sind wieder K linear. eweis: Zeige, dass F + G linear ist. (Analoge Rechnung für λf ) (F + G)(v + w) = F (v + w) + G(v + w) = F (v) + F (w) + G(v) + G(w) = (F (v) + G(v)) + (F (w) + G(w)) = (F + G)(v) + (F + G)(w) (F + G)(µv) = F (µv) + G(µv) = µf (v) + µg(v) = µ((f + G)(v)) Damit ist innerhalb von Hom K (V, V ) eine Addition und eine Skalarmultiplikation erklärt. (2.2) Satz: (Hom K (V, V ); +, ) ist ein K Vektorraum. eweis: Die Nullabbildung O(v) := 0 für alle v V ist offenbar ein neutrales Element bzgl. der Addition. Das Negative von F ist die Abbildung ( F )(v) := F (v). Offenbar ist F + ( F ) = 0 Abbildung. Noch zu zeigen wäre: F + G = G + F, (F + G) + H = F + (G + H) 1 H = H, λ(µh) = (λµ)h, λ(f + G) = λf + λg, (λ + µ)h = λh + µh) Zeige stellvertretend, dass (F + G) + H = F + (G + H): Für v V ist ((F + G) + H)(v) = (F + G)(v) + H(v) = (F (v) + G(v)) + H(v) = = F (v) + (G(v) + H(v)) = F (v) + ((G + H)(v)) = (F + (G + H))(v). 1

2 Zusammenhang zwischen Matrizen und linearen Abbildungen 1) Spezialfall: V = K n, V = K m Nach 1 induziert jede m n Matrix A eine lineare Abbildung L A : K n K m, x A x Dabei gilt: L A (e j ) = A e j = j te Spalte von A ist das ild des j-te Einheitsvektors e j unter L A, j = 1,..., n. Sei umgekehrt F Hom K (K n, K m ). etrachte die Matrix M F := (F (e 1 ),..., F (e n )), deren Spalten die ilder der Einheitsvektoren unter der Abbildung F sind. Insbesondere gilt für F = L A : M LA = A nach obiger Ausführung. Nach 1.2 ist eine lineare Abbildung durch die ilder der asisvektoren e 1,..., e n bestimmt. Wegen M F e j = j te Spalte von M F = F (e j ) folgt M F v = F (v) für alle v K n, d.h. L MF = F. Insgesamt hat sich ergeben: die Abbildungen L : M(m n, K) Hom K (K n, K m ), A L A, und M : Hom K (K n, K m ) M(m n, K), F M F sind zueinander invers. 2) Allgemeiner Fall: Seien V und V endliche Vektorräume mit asen = (v 1,..., v n ) und = (w 1,..., w m ). F : V V sei eine lineare Abbildung. Wir schreiben F (v j ) V als Linearkombination F (v j ) = a 1j w a mj w m von, j = 1,..., n. Die Matrix a 11 a a 1n M (F ) = a 21 a a 2n... a m1 a m2... a mn mit den Spalten a 1j a 2j. a mj, j = 1,..., n heißt darstellende Matrix von F bezüglich der asen und. 2

3 Ist speziell V = K n, V = K m und sind und die kanonischen asen = (e 1,..., e n ), = (e 1,..., e m ) von K n bzw. K m, so ist F (e j ) = a 1j e a mj e m = M (F ) = (F (e 1),..., F (e n )) = M F a 1j. a mj Wir wollen nun M (F ) noch etwas anders beschreiben: Nach 1 gibt es genau einen Isomorphismus x 1 Es ist φ. x n und φ : K n V mit φ (e j ) = v j, j = 1,..., n = φ (x 1 e x n e n ) = x 1 v x n v n φ heißt Koordinatenisomorphismus von V bzgl. der asis. Schreibt man v V als Linearkombination v = x 1 v x n v n, so ist somit. φ 1 x 1 x n = (v). Dieser Vektor wird Koordinaten n Tupel von v bezüglich der asis genannt. eschreibung von M (F) m.h. von φ und φ : Sei Dann ist für j = 1,..., n F := φ 1 F φ : K n K m F (e j ) = F (φ 1 (v j)) = φ 1 (F (v j )) = F (v j ) = a 1j w a mj w m, d.h. M (F ) = (a ij) = ( F (e 1 ),..., F (e n )) = M F a 1j. a mj, wenn eispiel: Sei V = V der Vektorraum der reellen Polynome vom Grad 3. Dann ist neben = (v 1, v 2, v 3, v 4 ) = (1, t, t 2, t 3 ) auch = (w 1, w 2, w 3, w 4 ) = (1, t 1, (t 1) 2, (t 1) 3 ) eine asis von V (Übungsaufgabe.) 3

4 f bezeichne die Ableitung von f V. Dann ist die Abbildung F : V V, f f + f linear: F (p + q) = p + q + (p + q) = p + q + p + q = F (p) + F (q), F (λp) = (λp) = λp = λf (p) für p, q V und λ R estimme A = M (F ): F (1) = 1 = 1 w w w 4, also ist (1, 0, 0, 0) t die 1. Spalte von A. F (t) = t + 1 = 1 (t 1) + 2 = 2 w w w w 4 und (2, 1, 0, 0) t ist die 2. Spalte von A. F (t 2 ) = t 2 + 2t = (t 1) 2 + 4(t 1) + 3 = 3w 1 + 4w w w 4 (3, 4, 1, 0) ist die 3. Spalte von A F (t 3 ) = t 3 + 3t 2 = (t 1) 3 + 6(t 1) 2 + 9(t 1) + 4 und (4, 9, 6, 1) t ist die 4. Spalte von A. Also ist M (F ) = (2.3) Satz: M : Hom K(V, V ) M(m n, K), F M (F ) ist ein Isomorphismus von Vektorräumen. Insbesondere ist nach (. ) dim Hom K (V, V ) = m n. eweis: Seien F, G : V V linear und F, G, F + G wie oben definiert. Da F (e j ) die j te Spalte von M (F ) ist, genügt für die Identität M (F + G) = M (F ) + M (G) zu zeigen, dass F + G(e j ) = F (e j ) + G(e j ) für j = 1,..., n F + G(e j ) = φ 1 (F + G) φ (e j ) = φ 1 ((F + G)(φ (e j )) = φ 1 (F (φ (e j )) + G(φ (e j ))) = φ 1 (F (φ (e j ))) + φ 1 = F (e j ) + G(e j ), da φ 1 4 (G(φ (e j ))) linear ist.

5 Analog zeigt man, dass M (λf ) = λm (F ). Damit ist M linear. Ist M (F ) die Nullmatrix, so ist F (e j ) = 0, j = 1,..., n, also φ 1 F φ = F = 0 und somit auch F = φ F φ 1 = 0. Also ist Kern M = 0 und M ist injektiv. Für A M(m n, K) sei F := φ L A φ 1. Dann ist F = L A und M (F ) = M F = M LA = A, also ist M surjektiv. (2.4) Satz: Verträglichkeit mit der Multiplikation) Seien V, V und V K Vektorräume der Dimensionen n, m, r mit asen,,. Dann gilt: Sind F : V V und G : V V linear, so ist M (G F ) = M (G) M (F ) eweis: M (G F ) = M G F mit G F = φ 1 (G F ) φ ; M (G) = M G, G = φ 1 G φ ; M (F ) = M F, F = φ 1 f φ. Es folgt G F = φ 1 G φ φ 1 F φ = G F. Also ist die j te Spalte von M G F = G F = G( (e j )) = G(M F e j ) = M G (M F e j ) = (M G M F ) e j = j te Spalte von M G M F für j = 1,..., n. Es folgt M (G F ) = M G F = M G M F = M (G) M (F ). Die Transformationsformel Seien = (v 1,..., v n ) und = (w 1,..., w n ) asen des Vektorraums V. Dann schreiben sich die w j in der Form w j = v j = n c ij v i ; j = 1,..., n, und entsprechend i=1 n c ijw i, j = 1,..., n i=1 M.a.W.: C = (c ij ) = M (id), C = (c ij) = M (id) C heißt Übergangsmatrix von nach. Nach (2.4) ist C C = M (id)m (id) = M (id) = E n, also C = C 1. (2.5) Satz Sei F : V V linear. Dann gilt 5

6 a) M (F ) = C 1 M (F )C b) Ist F ein Isomorphismus, so ist M (F 1 ) = (M (F )) 1 eweis: a) M 2.4 (idf id) = M 2.4 (id)m (F id) = M (id) M (F ) M (id) = C 1 M (F )C b) E n = M (id) = M (F 1 F ) 2.4 = M (F 1 ) M (F ). (2.6) Korollar: Sei A M(n n, K) und = (v 1,..., v n ) eine asis des K n. C sei die Matrix mit den Spalten v 1,..., v n. Dann ist M (L A ) = C 1 AC eweis: A = M K K (L A) und C = M K (id). Also gilt nach 2.5 M (L A) = C 1 M K K (L A) = C 1 AC. (K = (e 1,..., e n ) die kanonische asis des K n.) Der Rang einer linearen Abbildung Seien V, V Vektorräume, dim V = n, dim V = m und, asen von V bzw. V. Problem: Wie sieht man der Matrix M (F ) an surjektiv ist?, ob F injektiv bzw. Genauer: Wie bestimmt man ild und Kern von F m.h. von M (F )? Definition: Der Rang von F ist Rang F := dim (ild F ). (2.7) emerkung: a) Genau dann ist F injektiv, wenn Rang F = dim V. b) Genau dann ist F surjektiv, wenn Rang F = dim V. eweis: a) Nach 1 ist dim V = Rang F + dim Kern F und F ist injektiv genau dann, wenn dim Kern F = 0. b) F ist surjektiv genau dann, wenn V = ild F, d.h. wenn dim V = Rang F. 6

7 Wenn man also Rang F kennt, so weiß man, ob F injektiv bzw. surjektiv ist. Diesen liest man an M (F ) ab: (2.8) Satz: Rang F = Rang M (F ). Insbesondere falls dim V = dim V : F ist ein Isomorphismus genau dann, wenn M (F ) invertierbar ist. eweis: Sei F = φ 1 F φ : K n K m. F (e j ) = j te Spalte von M (F ) und somit ild F = K F (e 1 ) K F (e n ) = SR(M (F )), also Rang F = Rang (M (F )) φ und φ sind Isomorphismen, φ, F = F φ. Also ist φ (ild F ) = F ( ild φ ) = F (V ) = ild F und φ ild : ild F ild F ist ein Isomorphismus, also F dim ild F = dim ild F. Es folgt Rang F = Rang F = Rang (M (F )). Wie bestimmt man eine asis von ild F? 1) estimme eine asis des Spaltenraum von A = M (F ) gemäß II, 3: ringe A t durch elementare Zeilenumformungen (vom Typ I und II) auf Zeilenstufenform = (b ji ) j=1,...,n i=1,...,m Seien b 1,..., b k die von Null verschiedenen Zeilen von. Dann ist (b t 1,..., b t k ) eine asis des Spaltenraums von A,. 2) estimme wie folgt aus (b 1, t,..., b t k ) eine asis von ild F : Wie oben gesehen: ild F = SR(A), also ist (b t 1,..., b t k ) eine asis von ild F. Ferner ist φ ild F : ild F ild F ein Isomorphismus. Es ist φ : K m V, y 1. y m b t j = y 1 w y m w m, also b j1. b jm b j1 w b jm w m 7

8 Somit ist die gesuchte asis von ild F ( m ) m b 1i w i,..., b ki w i i=1 Rechenbeispiel: Seien V und V R Vektorräume mit asen = (v 1, v 2, v 3, v 4, v 5 ) bzw. = (w 1, w 2, w 3, w 4 ). F : V V sei die lineare Abbildung mit i=1 F (v 1 ) = w 1 2w 2 + 2w 3 + w 4 F (v 2 ) = 2w 2 + 3w 3 w 4 F (v 3 ) = w 1 4w 2 w 3 + 2w 4 F (v 4 ) = w 1 + w 2 + 7w 3 w 4 F (v 5 ) = w 1 + 5w 4 Die Koordinatenvektoren der ilder der Elemente von in ezug auf die asis sind die Spalten der Matrix A = M (F ). Also ist A = und At = Führe an A t elementare Zeilenumformungen durch: A t b 1 b 2 b 3 8

9 Gemäß des obigen Verfahrens bilden dann die drei Vektoren eine asis von ild F. φ (b t 1) = w 1 2w 2 + 2w 3 + w 4 φ (b t 2) = w 2 w 3 + 2w 4 φ (b t 3) = w 3 w 4 estimmung einer asis von Kern F aus A = M (F): Sei L A : K n K m, x Ax 1) estimme gemäß I.4 eine asis (v 1,..., v r ) des Lösungsraums Lös A = Kern L A des Gleichungssystems A x = 0. 2) Es ist F = φ L A φ 1, wobei φ folgt ( ) Kern F = φ (Kern L A ) eweis: Für x Kern F ist φ (L A φ 1 Wegen φ Isomorphismus ist dann auch L A (φ 1 und φ Isomorphismen sind. Es (x)) = 0. (x)) = 0 und y = φ 1 (x) Kern L A. Es folgt x = φ (y) φ (Kern L A ). Sei umgekehrt x φ (Kern L A ), also x = φ (y), y Kern L A. Es folgt F (x) = φ L A φ 1 (x) = φ (L A(y)) = φ (0) = 0 und x Kern F. Wegen ( ) ist dann (φ (v 1 ),..., φ (v r )) eine asis von Kern F. Rechenbeispiel: Sei F : V V wie oben. Nach obiger Rechnung ist A = M (F ) = Wir wissen schon, dass Rang f = Rang A = 3 (s.o.) und somit dim Kern F = dim V Rang F = 5 3 = 2. Wir wollen nach obigem Schema eine asis von Kern F berechnen. Dazu ist zunächst die Matrix A auf Zeilenstufenform zu bringen, um eine asis von Lös A zu bestimmen: A

10 Als freie Variable wählen wir x 3 und x 5 : x 3, x 5 = 1 : x 4 = 10, x 2 = 16, x 1 = 11 x 3 = 1, x 5 = 0 : x 4 = 0, x 2 = 1, x 1 = 1 Eine asis von Lös A: (( 11, 16, 0, 10, 1) t, ( 1, 1, 1, 0, 0) t ) Diese Vektoren sind nach obiger Ausführung die Koordinatenvektoren einer asis von Kern F bezüglich der asis = (v 1,..., v 5 ). Also bilden eine asis von Kern F. 11v 1 16v v 4 + v 5 und v 1 v 2 + v 3 10

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

34 Lineare Abbildungen

34 Lineare Abbildungen 34 Lineare Abbildungen 34 Motivation Wir haben wichtige Eigenschaften von Vektorräumen kennen gelernt Damit ist es sinnvoll zu untersuchen, wie Abbildungen zwischen Vektorräumen aussehen können Die wichtigsten

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Koordinaten und darstellende Matrizen

Koordinaten und darstellende Matrizen Koordinaten und darstellende Matrizen Olivier Sète 23 Juli 200 Inhaltsverzeichnis Koordinatenabbildung 5 Definition und Eigenschaften 5 2 Beispiele 6 2 Matrixdarstellung eines Vektorraumhomomorphismus

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG. Skripten der Mathematischen Institute. Wolfgang Marten. Lineare Algebra

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG. Skripten der Mathematischen Institute. Wolfgang Marten. Lineare Algebra TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG Skripten der Mathematischen Institute Wolfgang Marten Lineare Algebra für Studierende der Informatik und Wirtschaftsinformatik Wintersemester 24/25 Neunte, überarbeitete

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

2 Lineare Algebra. 6 Tupel und Matrizen. Vektorräume. 6.1 Tupel. 6.1.1 Definition der Tupel. Auftreten von Tupeln

2 Lineare Algebra. 6 Tupel und Matrizen. Vektorräume. 6.1 Tupel. 6.1.1 Definition der Tupel. Auftreten von Tupeln 5 Lineare Algebra 6 Tupel und Matrizen Vektorräume 6 Tupel 6 Definition der Tupel Auftreten von Tupeln Definition : Sei n N Eine Folge von n reellen Zahlen in festgelegter Reihenfolge heißt ein n-tupel

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche Lineare Algebra für Informatiker TUM Sommersemester 20 Dozent: Christian Pötzsche Janosch Maier 3. Juli 20 Herzlichen Dank an Lucas Westermann, Florian Scheibner (https://github. com/lswest/lamitschrift)

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen

Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Kapitel IV. Lineare Abbildungen Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Wir wollen nun die Abbildungen F : V W zwischen Vektorräumen V und W untersuchen,

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

Übung zur Algebra WiSe 2008/2009, Blatt 1

Übung zur Algebra WiSe 2008/2009, Blatt 1 Aufgabe 1: Zeigen Sie, dass die Untergruppe der Permutationsmatrizen in GL(n, R) isomorph zur symmetrischen Gruppe S n ist. Es sei Perm n die Menge der Permutationsmatrizen in GL(n, R). Der Isomorphismus

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5 Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band,.Aufl. Version, Kapitel 5 Bilinear-und Sesquilinearformen Abschnitt.A, Aufg., p. 6.6. : Man bestimme die

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr