Eigenwerte und Diagonalisierung

Größe: px
Ab Seite anzeigen:

Download "Eigenwerte und Diagonalisierung"

Transkript

1 Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende Matrix MB A (F bzgl. dieser Basen. MB A(F ist eine m n Matrix. Die j-te Spalte von M B A (F ist der Koordinatenvektor von F (a j bzgl. B, falls A = {a, a,..., a n }. Ist RgF = r, dann existieren Basen A bzw. B in V bzw. W mit ( MB A(F = Er. Dies ist die einfachste Form, die eine darstellende Matrix haben kann. Beispiel. Wir betrachten den Endomorphismus F : R R mit F (x, x = (x + x, x x. Wählen wir ( in beiden Vektorräumen die kanonische Basis K, erhalten wir MK K(F =. Wählen wir A = ((,, (, und B = ((,, ( (,, dann ist F (a = b und F (a = b und damit MB A(F = = E. Was geschieht nun, wenn wir nur eine( Basis verwenden? Gibt es eine Basis A, sodass M A (F = MA A(F =? Wir nehmen an, es gäbe eine solche Basis A = (v, v. Dann wäre F (v = v. Mit v = (x, x würde sich ergeben, dass (x + x, x x = (x, x bzw. x + x = x, x x = x. Dies impliziert aber, dass x =, x =, ein Widerspruch.

2 Dies bedeutet, dass es keine Basis A gibt mit ( M A (F = MA A(F =. (Beachte auch, dass RgF = Wir stellen nun eine modifizierte Frage, ( nämlich ob es eine Basis A = (v, v gibt mit M A (F = MA A(F = λ, wo also M λ A (F = MA A (F eine Diagonalmatrix ist. In diesem Fall suchen wir also Vektoren v, v mit F (v = λ v, F (v = λ v also Vektoren v mit der Eigenschaft F (v = λv. Wir treffen den Ansatz v = (x, x und F (v = F (x, x = (x + x, x x = λ(x, x = (λx, λx. Dies führt zu einem homogenen Gleichungssystem x + x = λx x x = λx bzw. ( λx + x = x + ( λx =. Dieses homogene Gleichungssystem ist genau dann nichttrivial lösbar, wenn λ λ = λ = ist, also wenn λ, = ±. Für λ = + erhalten wir ( ( x x Für λ = erhalten wir ( ( + + x x = = ( ( ( v = ( v = + Die beiden Vektoren v, v Basis A von R. sind linear unabhängig und bilden damit eine

3 Es gilt F (v = v, F (v = ( v, M A (F = In diesem Fall gibt es also eine Basis A, sodass die darstellende Matrix von F bzgl. A eine Diagonalmatrix ist. (Ende des Beispiels. Die Diskussion des Beispiels führt zur allgemeinen Fragestellung : Sei V ein K-Vektorraum mit dim V = n und F : V V ein Endomorphismus. Wie muß eine Basis B gewählt werden, damit M B (F = MB B (F möglichst einfach wird? Die Transformationsformel für darstellende Matrizen besagt, dass zwei darstellende Matrizen A, B einer linearen Abbildung F : V W mittels B = SAT zusammenhängen (wobei T und S (invertierbare Transformationsmatrizen sind. Dies führte auch zum Begriff der äquivalenten Matrizen. Im jetzigen Fall mit F : V V und Basen A und B ergibt sich damit für A = M A (F = MA A(F und B = M B(F = MB B (F, dass B = SAS. Definition. Zwei Matrizen A, B M(n n; K heißen ähnlich, wenn es eine reguläre n n Matrix S gibt mit B = S AS gibt (bzw. gleichwertig B = SAS. Bemerkungen. (i Die Ähnlichkeit von n n Matrizen ist eine Äquivalenzrelation (Beweis analog wie im Falle äquivalenter Matrizen. (ii Für F : V V und Basen A, B sind A = M A (F und B = M B (F ähnlich. 3

4 Beispiel. (von vorher F : R R mit F (x, x = (x + x, x x. ( A = ((,, (, liefert A = M A (F =, B = ((, +, (, ( liefert B = M B (F =. Rechnung liefert S = und B = SAS. ( + + (, S = + Wir beobachten weiters, dass die Spalten von S durch die Vektoren v, v gebildet werden! Definition. Sei V ein K-Vektorraum und F : V V linear. (i λ K heißt Eigenwert (EW von F, wenn v V, v mit F (v = λv. (ii Jeder Vektor v mit F (v = λv heißt Eigenvektor (EV von F zum Eigenwert λ. Bemerkung. Sei dim V = n < und F : V V linear. Dann sind folgende Aussagen äquivalent : ( Basis von V, welche aus Eigenvektoren von F besteht, ( Basis B von V, sodass M B (F eine Diagonalmatrix der Form λ.. M B (F = λ ist. λ n Beweis. Ist B = (v, v,..., v n eine Basis von V, dann sind die Spalten von M B (F die Koordinatenvektoren von F (v, F (v,..., F (v n bzgl. 4

5 B. M B (F = λ.. λ λ n v i ist EV von F i. F (v i = λ i v i i Definition. (i F : V V heißt diagonalisierbar, wenn eine der beiden vorigen Bedingungen erfüllt ist. (ii Eine n n Matrix A heißt diagonalisierbar, wenn der zugehörige Endomorphismus L A : K n K n mit L A (v = Av diagonalisierbar ist ( A ist ähnlich zu einer Diagonalmatrix. Bemerkung. Nicht jede Matrix (und damit nicht jeder Endomorphismus ist diagonalisierbar. ( Beispiel. Sei K = R und A =. Dann ist L 5 A = F : R R mit F (x, x = (x, 5x + x. Sei nun v = (x, x ein EV von F. Dann λ mit F (v = λv. Also ist (x, 5x + x = λ(x, x bzw. x = λx, 5x + x = λx ( λx = 5x + ( λx =. Dieses homogene Gleichungssystem ist nichttrivial lösbar λ 5 λ =, woraus folgt, dass λ =. bzw. Mit λ = erhalten wir die Gleichungen x = x und 5x + x = x, womit x = und x = t beliebig ist. Damit ist v = t (,, t R und es kann keine Basis von R welche aus Eigenvektoren von F = L A besteht. geben, 5

6 Man beachte, dass λ = der einzige EW ist. Man kann nun zeigen: ( Sei F : V V linear und seien v,..., v m EV zu paarweise verschiedenen EW. Dann sind die Vektoren v, v,..., v m linear unabhängig. ( Ist dim V = n <, F : V V linear und paarweise verschiedene EW λ, λ,..., λ n, dann ist F diagonalisierbar. Definition. Sei F : V V linear und λ K. Dann heißt Eig(F ; λ = {v V bzgl. λ. : F (v = λv} der Eigenraum von F Bemerkungen. F (v = λv (F λid V (v = v Ker(F λid V Also ist Eig(F ; λ ein Untervektorraum von V, und Eig(F ; λ \ {} ist die Menge der zu λ gehörigen EV von F. λ ist EW von F Eig(F ; λ {} F λid V nicht injektiv. 3 F ist nicht injektiv λ = ist EW. 4 λ λ Eig(F ; λ Eig(F ; λ = {}. (v Eig(F ; λ Eig(F ; λ F (v = λ v, F (v = λ v (λ λ v = v = Sei nun dim V = n <, F : V V linear und seien A, B Basen von V. Mit A = M A (F und B = M B (F gilt wegen früher B = SAS damit det B = det(sas = det S det A det S = det A. und Damit können wir nun die Determinante eines Endomorphismus F 6

7 auf eindeutige Weise durch det F = det M A (F (A irgendeine Basis von V definieren. Damit gilt : λ ist EW von F det(f λid V =. (λ ist EW von F F λid V ist nicht injektiv F λid V ist nicht bijektiv det(f λid V = Ist darüberhinaus A eine Basis von V und A = M A (F, dann gilt offenbar M A (F λid V = A λe n und det(f λid V = det(a λe n. Definition. Mit der Unbestimmten t heißt dann a t a... a n P F (t = det(a te n = a a t... a n a n a n... a nn t das charakteristische Polynom von F. (Beachte, dass das charakteristische Polynom von F nicht von der Wahl der Basis A abhängt! Bemerkung. Setzen wir P F (t = α n t n + α n t n α t + α, dann kann man zeigen dass α n = ( n α n = ( n (a a nn ( a a nn heißt Spur von A α = det A. Bemerkung. Das charakteristische Polynom einer (quadratischen Matrix A ist das charakteristische Polynom des durch A definierten Endomorphismus x Ax und folglich gleich det(a λe n. Aufgabe. Man zeige, dass für ähnliche Matrizen A, B M(n n; K 7

8 gilt : P A (t = P B (t. Wollen wir also die Eigenwerte eines Endomorphismus bestimmen, müssen wir die Nullstellen des zugehörigen charakteristischen Polynoms bestimmen. Bemerkung. Ist F : V V Linearfaktoren. diagonalisierbar, dann zerfällt P F (t in Beweis. Laut Annahme existiert eine Basis A mit λ... M A (F = λ λ n Damit ist P F (t = (λ t(λ t...(λ n t. Bemerkung. F : K n K n Sei die n n Matrix A diagonalisierbar, i.e. mit F (v = Av ist diagonalisierbar. bzgl. der kanon- Dann ist bekannterweise die darstellende Matrix von F ischen Basis A gleich A. Weiters gibt es eine Basis B = (v,..., v n, sodass B = M B (F eine Diagonalmatrix ist. Wie früher erwähnt, gibt es dann eine invertierbare Matrix S mit B = S AS, und die j-te Spalte von S ist der Koordinatenvektor von v j bzgl. der kanonischen Basis A. Damit : Die Spalten von S sind die Vektoren v, v,..., v n. (Schreibt man B = SAS dann sind die Spalten von S die Vektoren v, v,..., v n 8

9 Beispiel. Sei A = Dann ist P A (t = t 3 t 3 3 t =... = (t (t +. Damit sind λ = λ = und λ 3 = die Eigenwerte. Nun zur Bestimmung der Eigenvektoren bzw. Eigenräume. Für λ = λ = erhalten wir das homogene Gleichungssystem x x = als Lösungsvektor x 3 x x x 3 =, damit x 3 = x + x und x x x + x = x + x Somit existieren zum (doppelten Eigenwert λ = zwei linear unabhängige Eigenvektoren (,,, (,,, welche den zugehörigen Eigenraum Eig(A; aufspannen. Für λ 3 = erhalten wir das homogene Gleichungssystem x 3 3 x 4 = und weiters als Lösungsvektor x 3 x x x 3 = x 3x x = x Zum (einfach auftretenden Eigenwert gibt es also einen linear unabhängigen Eigenvektor, etwa (, 3,, welcher den Eigenraum Eig(A; aufspannt. 3.. Die Vektoren (,,, (,,, (, 3, sind linear unabhängig, damit ist A diagonalisierbar und es gilt 9

10 S = 3 und SAS =. Beispiel. Gesucht sind die Eigenräume von F : P P, wobei p(τ ( + τp (τ 3p(τ. Ist A = (, τ, τ die kanonische Basis von P, dann ist F ( = 3, F (τ = τ, F (τ = τ τ, also 3 A = M A (F =. EW von A : 3 λ λ λ λ =, λ =, λ 3 = 3. = Zu λ = erhalten wir den Eigenvektor x I = und Eig(F ; = {p(τ P : p(τ = ν( + τ + τ, ν R}. Zu λ = erhalten wir den Eigenvektor x II = und Eig(F ; = {p(τ P : p(τ = ν( + τ, ν R}. Zu λ 3 = 3 erhalten wir den Eigenvektor x III = Eig(F ; 3 = {p(τ P : p(τ = ν, ν R}. und

11 ( cos α sin α Beispiel. Die Matrix A = sin α cos α des R. P A (t = cos α t sin α sin α cos α t = t t cos α + beschreibt eine Drehung Die Nullstellen von P A (t sind damit durch λ, = cos α ± cos α gegeben. λ, R cos α = α = oder α = π. Nur diese beiden Drehungen sind diagonalisierbar, - alle anderen Drehungen haben keine Eigenvektoren. ( cos α sin α Beispiel. Sei A = sin α cos α P A (t = t = (t + (t., α R. Damit gibt es zwei verschiedene Eigenwerte λ = und λ = und somit ist A diagonalisierbar. Man rechnet leicht nach, dass ( cos α Eig(A; = R sin α und Eig(A; = R ( cos α+π sin α+π. Geometrische Interpretation : A beschreibt eine Spiegelung an der Geraden Eig(A; = {v R : Av = v}. Frage. Was geschieht, wenn P F (t mehrfache Nullstellen besitzt? Wir bezeichnen dabei die Vielfachheit der Nullstelle λ mit µ(p F ; λ. Dabei gilt stets µ(p F ; λ dim Eig(F ; λ. (algebraische Vielfachheit von λ geometrische Vielfachheit von λ Satz. Sei F : V V linear und dim V = n. Dann sind folgende

12 Aussagen äquivalent : F ist diagonalisierbar, (i P F (t zerfällt in Linearfaktoren, und (ii µ(p F ; λ = dim Eig(F ; λ Eigenwerte λ 3 Sind λ,..., λ k die paarweise verschiedenen EW von F, dann ist V = Eig(F ; λ... Eig(F ; λ k. Zur konkreten Bestimmung, ob ein Endomorphismus diagonalisierbar ist, betrachten wir folgende Situation : F : V V linear, dim V = n, A eine Basis von V und A = M A (F. Schritt. Bestimme P F (t. Wenn eine Zerlegung von P F (t in Linearfaktoren nicht möglich ist, dann ist F nicht diagonalisierbar. Sonst Schritt. Für jeden EW λ von F bestimme nun eine Basis von Eig(F ; λ. Wenn µ(p F ; λ dim Eig(F ; λ, dann ist F nicht diagonalisierbar. Wenn µ(p F ; λ = dim Eig(F ; λ, dann ist F diagonalisierbar, und die EV von F bilden eine Basis B von V. Für B = M B (F gilt dann B = SAS und die Spalten von S sind die Koordinatenvektoren der Basisvektoren aus B bzgl. der Basis A. Beispiele. ( Sei A = 3 4 mit K = R und F : R R, F (x = Ax. P F (t = t 3 4 t = t 5t +.

13 P F (t ist in R nicht in Linearfaktoren zerlegbar, daher ist F nicht diagonalisierbar. Sei A = , K = R, F : R 3 R 3, F (x = Ax. P F (t = (5 tt, zerfällt also in Linearfaktoren (über K = R. Die EW sind λ = 5, λ = λ 3 =, des weiteren ist µ(p F ; 5 = und µ(p F ; =. Zu λ = 5 erhalten wir das homogene Gleichungssystem 7 x 8 3 x = x I = µ, µ R. 3 x 3 Damit ist dim Eig(F ; 5 =. Zu λ = λ 3 = erhalten wir das homogene Gleichungssystem 5 7 x 3/5 3 3 x = x II = µ, µ R. 3 3 x 3 Damit ist dim Eig(F ; = µ(p F ; =. Somit ist A bzw. F nicht diagonalisierbar. 3 Sei F : R 3 R 3 mit F (x, x, x 3 = ( x + x 3, 3x x + 3x 3, x x + 3x 3. Ist A die kanonische Basis im R 3, dann ist A = M A (F = P F (t = (t (t +, damit ist λ = λ =, λ 3 =. 3

14 Eig(F ; = R + R, Eig(F ; = R Somit dim Eig(F ; = = µ(p F ;, dim Eig(F ; = = µ(p F ;. Folglich ist A diagonalisierbar und,, 3 bilden eine Basis für R 3. SAS = und S = Definition. Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a a... a n A = M B (F = a... a n eine obere Dreiecksmatrix ist.... a nn Eine n n Matrix A heißt trigonalisierbar, wenn F : K n K n, F (x = Ax, trigonalisierbar ist (d.h. A ist ähnlich zu einer oberen Dreiecksmatrix. Satz. (ohne Beweis Sei F : V V linear, dim V = n. F trigonalisierbar P F (t zerfällt über K in Linearfaktoren Folgerung. Sei V ein endlich-dimensionaler C-Vektorraum und sei F : V V linear. Dann ist F trigonalisierbar. 4

15 (Nach dem Fundamentalsatz der Algebra zerfällt P F (t über C in Linearfaktoren Die getroffene Folgerung ist z.b. wichtig bei der Behandlung von Systemen linearer Differentialgleichungen. Ordnung mit konstanten Koeffizienten. Wir stellen uns die Frage ob es im Falle der Trigonalisierbarkeit möglichst einfache obere Dreiecksmatrizen als darstellende Matrizen gibt. Definition. Eine r r Matrix J heißt Jordanmatrix zum EW λ K, wenn J die Form besitzt λ.. J = λ λ Damit erhält man für r = J = (λ, für r = J = für r = 3 J = λ λ λ. ( λ λ und Satz. (Satz über die Jordansche Normalform Sei V ein K-Vektorraum mit dim V = n <, und sei F : V V linear. Dann gilt : Zerfällt P F (t über K in Linearfaktoren, dann gibt es eine Basis B von V, sodass J M B (F = J......, wobei die J i Jordanmatrizen sind... J l Man sagt, M B (F hat Jordansche Normalform. 5

16 Bemerkungen. (i Im allgemeinen ist die Anzahl der auftretenden Jordanmatrizen größer als die Anzahl der verschiedenen Eigenwerte von F. (ii Ist V ein C-Vektorraum, dann lässt sich jeder Endomorphismus F : V V durch eine Matrix in Jordanscher Normalform darstellen. 6

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren 2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Musterlösung Donnerstag - Determinanten und Eigenwerte

Musterlösung Donnerstag - Determinanten und Eigenwerte Musterlösung Donnerstag - Determinanten und Eigenwerte 6. März Aufgabe : Zum Aufwärmen () Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent,

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Vorlesung 28 If it works, it s out of date David Bowie Ein Zerlegungssatz Satz 28 Sei ϕ: V V ein trigonalisierbarer K-Endomorphismus

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lineare Algebra - Determinanten und Eigenwerte

Lineare Algebra - Determinanten und Eigenwerte Lineare Algebra - Determinanten und Eigenwerte 26 März 2011 1 Determinanten 11 Definition (Determinanten): Sei K ein Körper und N n 0 Dann nennt man eine durch det : M(n n, K) K, a det(a) definierte Abbildung

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Diplomvorprüfung LA H 06 VD : 1

Diplomvorprüfung LA H 06 VD : 1 Diplomvorprüfung LA H 6 VD : Aufgabe : (3 + + = 6 Punkte) Gegeben sei die Matrix A = a) Bestimmen Sie die Eigenwerte von A b) Bestimmen Sie alle Eigenvektoren der Matrix A c) Ist die Matrix A invertierbar?

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Aufgabe 1 Sei V ein endlich-dimensionaler K-Vektorraum, und seien f und g Endomorphismen von V mit f g = g f. Zeige: a) Sind f und g diagonalisierbar,

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

3.3 Das charakteristische Polynom

3.3 Das charakteristische Polynom LinAlg II Version 1 2. Mai 2006 c Rudolf Scharlau 209 3.3 Das charakteristische Polynom Wir setzen die im vorigen Abschnitt begonnene Untersuchung von Eigenvektoren und Eigenwerten fort und stellen den

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Donnerstag WS 2/2 4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform 4 Determinanten 4 Definition

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Abschnitt: Diagonalisierung von Endomorphismen

Abschnitt: Diagonalisierung von Endomorphismen Abschnitt: Diagonalisierung von Endomorphismen Wiederholung: Endomorphismus von V ist eine lineare Abbildung von V nach V. Frage: f sei ein Endomorphismus. In welcher Basis ist die darstellende Matrix

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie:

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie: Prof Emmanuel Kowalski Lineare Algebra II Serie 3 Sei V ein Vektorraum Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt Zeigen Sie: a Der Kern und das Bild einer Projektion

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr